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Optimization of the Cut-Off Rate of Generalized
Spatial Modulation with Transmit Precoding

Nemanja Stefan Perović, Peng Liu, Member, IEEE, Jiri Blumenstein, Member, IEEE, Marco Di Renzo, Senior
Member, IEEE, and Andreas Springer, Member, IEEE

Abstract—Spatial modulation (SM) and generalized spatial
modulation (GSM) are emerging multiple input multiple output
(MIMO) schemes that use transmitter (TX) antenna switching for
data transmission. Their operating principle makes optimization
of channel capacity and mutual information usually more difficult
than for conventional MIMO schemes which are not based on
antenna switching. We propose to use channel cut-off rate as a
relevant and more tractable metric for performance optimization
of SM/GSM systems, as it constitutes a practical lower-bound of
channel capacity. In particular, we propose four TX precoding
schemes for increasing the cut-off rate of SM/GSM systems. We
show that those TX precoding schemes which are designed for
increasing array gain provide the largest improvement of cut-
off rate for low signal-to-noise ratio (SNR). On the other hand,
the TX precoding schemes that are designed for increasing the
minimum Euclidean distance of GSM symbols are more suitable
for application to medium to high SNR setups and correlated
channels. The proposed precoding schemes are shown to be able
to enhance mutual information, and the gain is shown to be of
the same order of magnitude as the gain of the corresponding
channel cut-off rate.

Index Terms—Channel cut-off rate, channel capacity,
generalized spatial modulation (GSM), mutual information, op-
timization, TX precoding.

I. INTRODUCTION

Among the many multiple input multiple output (MIMO)
schemes that exist in the literature, spatial modulation (SM)
and generalized spatial modulation (GSM) have attracted a lot
of research interest during the last decade [1], [2]. In the last
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years, in particular, many schemes that enhance and optimize
the performance of SM/GSM systems have been proposed.
Most of them are focused on optimizing error performance,
while only a few of them are concerned with optimization
of channel capacity and mutual information. This is due to
the inherent complexity of formulating the channel capacity
of SM/GSM systems in a mathematically tractable manner
that is suitable for system optimization [3]. This is, on the
other hand, relatively simpler to do for error probability. To
overcome this issue, we propose to use channel cut-off rate,
as a practical surrogate of channel capacity, for optimizing
capacity and mutual information of SM/GSM systems [4].

Channel cut-off rate constitutes an upper-bound of the
codeword error probability of a communication system over
the ensemble of random binary channel codes, and, thus, it
is independent of the specific code being used. The main
motivation for proposing it as a substitute of channel capacity
for optimizing the performance of SM/GSM systems origi-
nates from James Massey, who suggested that, as a rule of
thumb, channel cut-off rate is the practical upper-limit on
the code rate for reliable communications, whereas channel
capacity is the theoretical upper-limit [4]. Channel cut-off rate
is a widely accepted and sensible performance indicator for
comparing channels for which a coding scheme with finite
complexity is used [5]. In the context of optimizing the design
of SM/GSM systems, relying on channel cut-off rate instead
of channel capacity has two main advantages: i) optimization
of the modulator is independent of the specific channel code
being used [6]; and ii) there is no need to deal with the
intractable mathematical expression of the channel capacity
of SM/GSM [3].

In mathematical terms, the relation between channel cut-off
rate R0 and codeword error probability Pe can be formulated
as Pe ≤ e−n(R0−R), where n is the number of times that
the channel is used for transmitting a codeword (i.e., the
codeword length), and R is the information rate in bits per
channel use (i.e., the binary code rate) [7], [8]. For very long
code sequences (i.e., n → ∞), Pe can approach zero, i.e., it
becomes arbitrarily small, as long as R < R0. Hence, channel
cut-off rate can be interpreted as a practical lower-bound of
channel capacity [9].

In SM-MIMO systems, two data streams are transmitted —
one in the conventional in-phase and quadrature (IQ) domain
by employing, e.g., M-PSK or M-QAM modulation, and the
other one in the so-called spatial domain, i.e., by selecting
and activating one out of Nt antennas that are available at
the transmitter (TX) [1], [2]. A generalization of SM consists
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either of activating more than one TX antenna per time slot
while still transmitting a single IQ stream [10], or of activating
multiple TX antennas and transmitting more than one IQ
stream [11], [12]. This generalized scheme is referred to
as GSM and it provides higher data rates than SM, at the
cost of an increased complexity. In this paper, we focus our
attention on the GSM scheme in which a fixed number of
0 < Na < Nt TX antennas are activated and a single IQ
stream is transmitted, due to its promising tradeoff between
achievable rate and implementation complexity. Compared
with conventional spatial multiplexing (SMX) systems [13],
[14], which typically need the same number of full TX chains
(from baseband to RF) as the number of transmitted IQ
streams, GSM offers three main advantages [2]: 1) reduced
signal processing complexity and hardware cost due to the fact
that it needs a single RF chain at the TX; 2) improved energy
efficiency at the TX [15], since a single power amplifier is
needed; and 3) avoidance of the inter-channel interference at
the receiver (RX), which significantly reduces the complexity
of the maximum likelihood (ML) demodulator [16].

Due to the encoding of information into IQ and spatial
domains, it is not an easy task to derive a tractable and
closed-form expression for the channel capacity of SM/GSM
systems. In [10], [17], [18], the total channel capacity of
SM is formulated as the sum of the capacities of IQ and
spatial domains. The computation of the capacity of the
spatial domain requires numerical integrations and no closed-
form expression is available. An analytical expression for
the average ergodic channel capacity of GSM systems is
introduced in [19]. In [20], [21], the authors propose a lower-
bound for the mutual information of SM/GSM systems that
assume Gaussian signaling for IQ symbols. An approximate
capacity expression, in which the channel capacity in spatial
domain is computed by using a multivariate Taylor series
expansion, is presented in [22]. In [23], the authors derived a
lower-bound of the mutual information of GSM in millimeter-
wave (mmWave) sparsely scattered channels. In [24], unlike
the previous papers that assume Gaussian signaling for the IQ
symbols, a lower-bound for the mutual information of SM-
multiple input single output (MISO) systems that employ a
discrete IQ modulation alphabet is derived. And the analysis
is generalized for application to GSM systems in [25]. In
[26], the authors introduced a lower-bound expression for the
mutual information of SM with discrete IQ signaling in non-
orthogonal multiple access systems.

To circumvent direct calculation of the channel capacity of
SM/GSM systems, we propose to employ channel (or sim-
ply) cut-off rate for optimizing the performance of SM/GSM
systems. To the best of our knowledge, this is the first time
that cut-off rate is utilized for optimizing the performance of
SM/GSM systems. Indeed, just a few available research works
are focused on optimizing the cut-off rate of conventional
MIMO. In [9], the authors consider SMX-MIMO and propose
a phase precoder design that increases the averaged cut-off
rate with respect to channel statistics. Precoding schemes that
optimize the cut-off rate of MIMO systems, under imperfect
channel estimation, are proposed in [27], [28]. In [29], [30],
the authors propose new designs for the IQ modulation to

optimize the cut-off rate of MIMO systems.
Against this background, the contributions made by this

paper are as follows:
1) We propose to utilize cut-off rate as a performance met-

ric for optimizing the mutual information (i.e., channel
capacity) of the SM/GSM systems that employ a discrete
IQ modulation alphabet. We show that the cut-off rate
of SM/GSM systems can be formulated in a closed-form
expression, which is easier to compute and to optimize
compared with the actual channel capacity. Thus, cut-off
rate is proved to be a convenient surrogate of channel
capacity for system optimization and design.

2) We propose four different precoding schemes for in-
creasing the cut-off rate of SM/GSM. The proposed pre-
coding schemes employ different strategies for system
optimization, which include grouping the TX antennas,
applying singular value decomposition (SVD) or SVD-
discrete Fourier transform (DFT) pre-processing and
then selecting a subset of inputs, and employing DFT
precoding. We prove, also, that the precoding scheme
based on SVD-DFT pre-processing usually outperforms
its counterpart based on SVD pre-processing.

3) We evaluate the performance of the proposed precoding
schemes with the aid of numerical simulations. All
schemes, with the exception of DFT precoding, provide
gains in low to moderate signal-to-noise ratio (SNR)
regime. The DFT precoding scheme, on the other hand,
is shown to outperform the other schemes in moderate
to high SNR regime and especially in highly correlated
channels.

4) We show that the improvement of the cut-off rate of
SM/GSM systems that is obtained by using the proposed
precoding schemes is comparable with the improvement
of the mutual information that is computed numerically.
Furthermore, we study channel capacity obtained by the
proposed precoding schemes when discrete IQ signaling
is replaced by Gaussian signaling. As a side product,
we show that the proposed precoding schemes can be
applied for enhancing the cut-off rate of SMX-MIMO
systems as well. However, compared with SM/GSM
systems, the gain is smaller. Meanwhile, we prove
that optimizing symbol error probability (SEP) leads to
smaller improvements of mutual information compared
with those obtained by maximizing cut-off rate. Last but
not least, we demonstrate that the proposed precoding
schemes, though originally designed for SM/GSM, are
also applicable to quadrature spatial modulation (QSM).

The rest of the paper is organized as follows. In Section II,
we introduce the system model and derive the cut-off rate for
SM/GSM systems. In Section III, we propose four precoding
schemes that aim to increase cut-off rate. In Section IV, we
illustrate simulation results of the cut-off rate for the proposed
precoding schemes, and discuss the advantages and limitations
of each of them. Finally, Section V concludes this paper.

Notation: Lowercase bold symbols denote column vectors;
uppercase bold symbols denote matrices; |· | and ‖·‖ denote
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absolute value and L2-norm, respectively; exp(·), log2(· ),
R{·} and E{·} denote exponential function, base-two log-
arithm, the real part of a complex number and the mean
(expected) value of a random variable, respectively; j denotes
the imaginary unit; p(· ), H(· ) and I(· ) denote probability,
entropy, and mutual information, respectively; A(i, j) denoted
the j-th element of the i-th row of matrix A; B(:, j) denotes
the j-th column of matrix B; CN (·, ·) denotes a circularly
symmetric complex Gaussian random variable.

II. SYSTEM MODEL

The receive signal vector of a Nt × Nr SM/GSM system
can be formulated as follows:

y =
1√
Na

Heism + n, (1)

where H ∈ CNr×Nt is the channel matrix and sm (m =
1, . . . ,M ) is an IQ (e.g., M-QAM) symbol. The number of
active TX antennas during each symbol interval is Na. Hence,
Nc =

(
Nt
Na

)
TX antenna activation patterns are used1, where

each TX antenna activation pattern consists of a unique combi-
nation of Na active TX antennas. Spatial symbol ei is a Nt×1
vector with Na ones (representing the active TX antennas) and
Nt − Na zeros (representing the inactive TX antennas), and
i = 1, . . . , Nc is the spatial symbol index. Each spatial symbol
specifies a unique TX antenna activation pattern. The indices
of the active TX antennas for the i-th TX antenna activation
pattern are denoted by a set Ωi. Finally, n ∈ CNr×1 is a noise
vector whose distribution is CN (0, N0I), where N0 denotes
the noise variance and I is a identity matrix. Since the data
bits are encoded in both the IQ and spatial domains, the total
number of GSM symbols is equal to NGSM = NcM . As a
result, log2NGSM = log2(NcM) bits per channel use (bpcu)
are transmitted.

A. Cut-off Rate

Based on the definition in [4], the cut-off rate of GSM
systems can be formulated, by assuming equiprobable GSM
symbols, as follows:

R0 = −log2

 1

N2
GSM

∫
y

∑
i,j,m,n

È
p(y|sm, ei)p(y|sn, ej)dy


(2)

for i, j = 1, . . . , Nc and m,n = 1, . . . ,M . The conditional
probability density function of the received data can be written
as follows:

p(y|sm, ei) =
1

(πN0)
Nr

exp

�
−

∥∥∥y −Heism/
√
Na

∥∥∥2
N0

�
.

(3)

1We assume the use all the TX antenna activation patterns and do not
restrict Nc to be a power of 2. This can be realized by using the methods
proposed in [31], [32].

By inserting (3) in (2) and with the aid of some algebraic
manipulations, the cut-off rate of GSM can be written as
follows:

R0 = −log2

 1

N2
GSM

∑
i,j,m,n

exp

�
−Φm,n,i,j

4N0

� , (4)

where the Euclidean distance between two GSM symbols at
the RX is equal to:

Φm,n,i,j =
1

Na

∥∥∥H (eism − ejsn
)∥∥∥2 . (5)

It is worth mentioning that the cut-off rate in (2) is computed
by assuming that the GSM symbols are equally probable. This
assumption is made because this is a typical operating scenario
of communication systems. Since the definition of cut-off
rate in (4) requires channel state information at TX (CSIT),
the performance may be further improved by optimizing the
probability of emitting GSM symbols as a function of CSIT
[4]. This is an interesting generalization of the study reported
in the presented paper. Due to space limitations, however, it
is postponed to future research. In the present paper, in fact,
we are interested in focusing our attention to the sole impact
of TX precoding.

III. PROPOSED PRECODING SCHEMES

In this section, we introduce four precoding schemes that
are capable of improving the cut-off rate of GSM systems2.
The first precoding scheme is based on grouping together
TX antennas that have the smallest Euclidean distance among
them. The grouped TX antennas are activated together for
data transmission. The second and third precoding schemes
first apply SVD and SVD-DFT pre-processing, respectively,
and then select a subset of active inputs3. The fourth pre-
coding scheme is based on maximizing, for each TX antenna
activation pattern, the minimum Euclidean distance between
different GSM symbols at the RX.

A. TX Antenna Grouping Precoding

From a direct inspection of (4), we note that the cut-off
rate depends on the Euclidean distances between different
GSM symbols (5). More specifically, the smallest Euclidean
distances constitute the dominant terms. Accordingly, the first
precoding scheme is based on optimizing cut-off rate by
grouping the TX antennas whose channel impulse responses
have the smallest Euclidean distance. The grouped TX an-
tennas are activated simultaneously, and, thus, they can be

2As conventional GSM works without the knowledge of CSIT, it may seem
unfair to compare it with GSM that exploits CSIT. However, this is a common
practice in the literature in order to understand the benefits of CSIT as well.

3Both SVD and SVD-DFT precoding schemes transmit signal from all
Nt TX antennas and therefore SM/GSM with SVD or SVD-DFT precoding
schemes requires higher hardware complexity (i.e., Nt RF chains at the TX)
than conventional SM/GSM which needs only one TX RF chain. Utilizing
more RF chains at the TX is a common practice in SM/GSM systems that
exploit the knowledge of CSIT in order to achieve better system performances
[33]. In addition, the operating principle of some SM schemes exploits CSIT,
such as receive spatial modulation (RSM), and thus Nt RF chains are required
at the TX [34], [35].
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Algorithm 1 TX Antenna Grouping Precoding
1: Rold = inf
2: Rnew = inf
3: Nvt = Nt

4: ω = 1 : Nt

5: Hg = H
6: while (Rnew <= Rold) & (Nvt >= Na) do
7: Rold = Rnew

8: Rnew = cutoffarg(Hg)
9: if Nvt > Na then

10: (̂i, ĵ) = arg min
i,j=1,...,Nva

∥∥hg,i − hg,j

∥∥2
11: [Hg, ω] = grouping(H, ω, î, ĵ)
12: end if
13: Nvt = Nvt − 1
14: end while
15: R0 = − log2(min(Rold, Rnew))

viewed as a virtual TX antenna whose impulse response is
the normalized sum of the channel impulse responses of the
physical TX antennas, i.e., H. Accordingly, the RX signal after
applying the proposed TX antenna grouping algorithm can be
formulated as follows:

y =
1√
Na

Hgêism + n, (6)

where Hg ∈ CNr×Nvt is the equivalent channel matrix after
TX antenna grouping and Nvt is the number of virtual TX
antennas with Nvt ≤ Nt. Spatial symbol êi is a Nvt×1 vector
with Na ones (representing the active virtual TX antennas) and
Nvt−Na zeros (representing the inactive virtual TX antennas),
and i = 1, . . . ,

(
Nvt
Na

)
is the index of the active spatial symbol.

In general, a virtual TX antenna is made of the scaled
summation of one or more physical TX antennas. An example
of TX antenna grouping is provided as follows.

Example 1. Consider a GSM system with Nt = 8
physical TX antennas and let the grouping set be ω =
{{1, 3}, 2, {4, 5, 7}, {6, 8}}. The matrix Hg consists of Nvt =
4 columns as follows: hg1 = (h1 + h3)/

√
2, hg2 = h2,

hg3 = (h4 + h5 + h7)/
√

3 and hg4 = (h6 + h8)/
√

2.
We assume that the transmit power is uniformly distributed
among the TX antenna groups and equally allocated within
each group. Hence, the sum is normalized by the number of
antennas in order to keep the total TX power constant.

The precoding scheme based on TX antenna grouping is
detailed in Algorithm 1. We note that the argument inside the
logarithm function of (4) is minimized in order to maximize
the cut-off rate R0. As a starting point, Nvt is set equal to
Nt and ω is initialized to the Nt physical antennas. In the
subsequent steps, the TX antennas are grouped iteratively and
the argument of the logarithm function in (4) is obtained.
These steps are repeated as long as the logarithm function
is decreasing (Rnew ≤ Rold) and the number of virtual TX
antennas is greater than or equal to Na. In particular, the
argument of the logarithm function in (4) for a given channel

matrix Hg is computed as follows (line 8 of Algorithm 1):

Rnew =
1�(

Nvt
Na

)
M
�2 ∑

i,j,m,n

exp

−
∥∥∥Hg

(
êism − êjsn

)∥∥∥2
4N0Na

 ,
where i, j = 1, . . . ,

(
Nvt
Na

)
and m,n = 1, . . . ,M . Then, the

indices of the virtual TX antennas that have the smallest Eu-
clidean distance between their impulse responses are identified
and grouped together. These steps are in lines 10 and 11 of
Algorithm 1, which are executed only if Nvt > Na in order
to avoid antenna groupings with Nvt < Na. At each iteration
of Algorithm 1, the number of virtual TX antennas Nvt is
decreased by one. Cut-off rate is computed4 in the last step.

B. SVD-Based Precoding with Input Selection

The second precoding scheme is based on SVD pre-
processing at the TX. SVD precoding is often used in multi-
stream SMX-MIMO systems, and, therefore, it constitutes an
attractive solution for communication devices that incorporate
SMX and GSM operation modes and that use them based on
the required rate and performance. By applying SVD decom-
position to the channel matrix H, we obtain H = UΛVH,
where U and V are unitary matrices and Λ is a diago-
nal matrix whose singular values are, assuming Nt ≤ Nr,
λ1, . . . , λNt . By using the matrix V as the precoding matrix,
the RX signal vector can be written as follows:

y =
1√
Na

HVeism + n =
1√
Na

UΛeism + n

=
1√
Na

Geism + n. (7)

The equivalent channel matrix (i.e., the product of channel
and precoding matrices) is denoted by G and it is a column
orthogonal matrix. More precisely, the transmission system in
(7) consists of Nt orthogonal sub-channels that correspond
to the inputs of G. If Na = 1, in particular, the Euclidean
distance between two GSM symbols is as follows:

Φm,n,i,j =
∥∥G(eism − ejsn)

∥∥2 =
∥∥gism − gjsn

∥∥2
= ‖gism‖2 +

∥∥gjsn
∥∥2 = λ2

i |sm|2 + λ2
j |sn|2 , (8)

where gi and gj are the i-th and j-th column of G. Equation
(8) is useful for understanding why the grouping strategy
employed in Section III-A is not effective in this case. Assume,
e.g., that two arbitrary columns, N1 and N2 with 1 ≤ N1 <
N2 ≤ Nt, of G are grouped together. The resulting impulse
response would be equal to (gN1

+gN2
)/
√

2 and the following
would hold:

‖gN1 + gN2‖2
2

=
λ2N1

+ λ2N2

2
≤ λ2N1

= ‖gN1‖2 . (9)

In other words, the power gain without grouping is larger than
the power gain with grouping. From a direct inspection of (8)
and (9), we note, in addition, that by grouping the columns of

4It should be noticed that Rnew determines the cut-off rate R0 only when
Rnew < Rold and Rnew is computed when Nvt = Na. In all other
situations Rold determines R0.
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Algorithm 2 SVD Precoding With Input Selection
1: Rold = inf
2: Rnew = inf
3: Ne = Na

4: G = HV
5: while (Rnew <= Rold) & (Ne <= Nt) do
6: Rold = Rnew

7: Ge = G(:, 1 : Ne)
8: Rnew = cutoffarg(Ge)
9: Ne = Ne + 1

10: end while
11: R0 = − log2(min(Rold, Rnew))

G we obtain an Euclidean distance between two GSM symbols
that is smaller than that corresponding to the larger singular
value of G. Based on this example, we evince that antenna
grouping is not a suitable approach based on (7). A better
strategy is, in fact, to select only a subset of active columns
of G rather than grouping them. The column orthogonality
property of G facilitates this task. Based on (9), in fact, the
columns with the largest norm can be selected to optimize
cut-off rate. This implies that cut-off rate can be maximized
by selecting the largest singular values of the channel matrix
H. By assuming, without loss of generality, that the singular
values are sorted in descending order, the first Ne (Na ≤
Ne ≤ Nt) columns of G need to be selected. Under these
assumptions, the RX signal vector in (7) can be re-written as:

y =
1√
Na

Geēism + n, (10)

where Ge ∈ CNr×Ne consists of the first Ne columns of
G and ēi is a spatial symbol, i.e., Ne × 1 vector with Na

ones (representing the active columns of Ge) and Ne − Na

zeros (representing the inactive column of Ge), where i =
1, . . . ,

(
Ne
Na

)
is the index of the active spatial symbol.

The details of the proposed precoding scheme are reported
in Algorithm 2. Similar to Algorithm 1, we aim to minimize
the argument of the logarithm function of the cut-off rate. The
difference between Algorithm 2 and Algorithm 1 is that, at
each iteration, the subset of active columns of G is increased
rather than decreased. The initialization of Algorithm 2 is
similar to that of Algorithm 1. In particular, Ne is set equal
to Na because we have to activate at least Na columns of G.
In the next few steps, we iteratively increase the set of active
columns of G until the argument of the logarithm function
of the cut-off rate decreases. The argument of the logarithm
function of cut-off rate is calculated in line 8 of Algorithm 2
as follows:

Rnew =
1�(

Ne
Na

)
M
�2 ∑

i,j,m,n

exp

−
∥∥∥Ge

(
ēism − ējsn

)∥∥∥2
4N0Na

 ,
where i, j = 1, . . . ,

(
Ne
Na

)
and m,n = 1, . . . ,M . It is worth

noting that the computational complexity of this step can be
significantly reduced. At each iteration, in fact, we need to
calculate only the Euclidean distances that are determined

1

Nt

V

...

H
1

Nr

...

2

1

Nt

Ne

...
WNe

...

...

Fig. 1. Block diagram of GSM with SVD-DFT precoding with the DFT
matrix WNe and the matrix V from the SVD of the channel matrix H. By
removing the precoding matrix WNe we get a block diagram of GSM with
SVD precoding.

by the Ne-th column of G because all the other Euclidean
distances have been pre-computed at the previous iterations.

C. SVD-DFT Precoding With Input Selection

Based on the previous section, we evince that SVD pre-
coding when applied to GSM systems, similar to SMX
systems [14], transforms the channel matrix into a set of
orthogonal sub-channels. From [14], [36], it is known that
SMX systems that employ SVD precoding achieve the largest
channel capacity if the water-filling power allocation strategy
is utilized, i.e., the higher power is allocated to the sub-
channels that correspond to the larger singular values of the
channel matrix. In [37], the authors have proposed a precoding
scheme aiming to improve the error performance of SMX
systems, which transforms a SMX system that consists of
orthogonal sub-channels with unequal allocated power into
a SMX system that consists of non-orthogonal sub-channels
with equal power allocation. This is obtained by applying a
DFT precoding matrix. In this paper, we are not interested in
power allocation, as this is left to future research work. We,
however, introduce and optimize, from the cut-off rate point of
view, a precoding scheme that takes inspiration from the SVD-
DFT precoding introduced in [37]. The proposed precoding
scheme is depicted in Fig. 1. The main difference between
the SVD-DFT precoding scheme in Fig. 1 and the precoding
scheme in [37] is the size of DFT precoding matrix. In [37],
the authors have used a DFT precoding matrix with fixed size
equal to Nt × Nt. In Fig. 1, on the other hand, we use a
DFT precoding matrix whose size is variable and is equal to
Ne ×Ne, where Ne is the number of active inputs that is not
fixed but changes similar to the SVD precoding matrix of the
previous section. Another difference compared with [37] lies
in considering a GSM system and, thus, transmitting a single
IQ stream but encoding some information bits into the columns
of the TX matrix. In the following, we first introduce the SVD-
DFT precoding scheme for application to GSM systems and
then we compare the minimum Euclidean distances of SVD
and SVD-DFT precoding schemes.

1) SVD-DFT Precoding: Based on Fig. 1, the RX signal of
a GSM system with SVD-DFT precoding can be formulated
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as follows:

y =
1√
Na

GeWNe ēism + n =
1√
Na

Fēism + n. (11)

which is obtained from (7) by multiplying the precoding ma-
trix V by the DFT matrix whose elements are the following:

WNe(i, j) =
1√
Ne

exp

�
−j

2π(i− 1)(j − 1)

Ne

�
, (12)

and the matrix F is defined as follows:

F = GeWNe = G(:, 1 : Ne)WNe . (13)

The scaling factor 1/
√
Ne ensures that the average signal

power remains constant, i.e., Tr(WNeW
H
Ne

) = Ne. The
algorithm for maximizing cut-off rate is the same as Algorithm
2. The only difference is that, at each iteration of the algorithm,
the matrix Ge is replaced by the matrix F.

2) Performance Comparison of SVD Precoding and SVD-
DFT Precoding: In order to get insight into the achievable
cut-off rate of SVD and SVD-DFT precoding schemes, we
study and compare the minimum Euclidean distance of the
GSM symbols at the RX when the two precoding schemes are
used. Since in GSM systems the data is encoded into both IQ
and spatial domains, computation of the minimum Euclidean
distance is more challenging than for SMX systems [37]. To
make the mathematical development tractable, therefore, we
restrict our analysis to SM systems, i.e., we assume Na = 1.
The main result is reported in Theorem 2. However, we first
introduce some intermediate results that are useful for the
proof of the main theorem. It is worth mentioning that, with
the exception of Lemma 2 that is similar to [37, Lemma 2],
all the results in the following proof are new and, to the best
of our knowledge, have never been published.

Theorem 1. For a SM system with SVD precoding and M-
QAM modulation (M ≥ 4), the minimum Euclidean distance
between RX-side SM symbols is:

Φmin = 2λ2Ner
2
min, (14)

where rmin = minm |sm|.
Proof: If two SM symbols differ by the transmitted IQ

symbol but activate the same TX antenna (m 6= n, i = j), the
Euclidean distance between them is:

Φm,n,i,j =
∥∥Ge(:, i) (sm − sn)

∥∥2 =
∥∥Ge(:, i)

∥∥2 |sm − sn|2
≥ λ2Ned2

min (15)

where dmin = minm,n(m 6=n) |sm − sn|. If two SM symbols
differ by the active TX antenna (i 6= j), the Euclidean distance
between them is:

Φm,n,i,j =
∥∥Ge(:, i)sm −Ge(:, j)sn

∥∥2
=
∥∥Ge(:, i)sm

∥∥2 +
∥∥Ge(:, j)sn

∥∥2
= |λi|2 |sm|2 +

∣∣λj∣∣2 |sn|2
≥
�
λ2Ne−1 + λ2Ne

�
r2min. (16)

where the last inequality holds for m 6= n and m = n,
provided that |sm| = |sn| = rmin. Since d2

min = 2r2
min

for M-QAM constellations if M ≥ 4 and the inequality
λ2Ne−1 +λ2Ne ≥ 2λ2Ne holds, the minimum Euclidean distance
between RX-side SM symbols is given by (14).

Lemma 1. The inner-product of the i-th and j-th columns of
matrix F is given by:

〈
fi, fj

〉
=

1

Ne

Ne∑
m=1

λ2m exp

�
j
2π(m− 1)(i− j)

Ne

�
. (17)

Proof: The i-th column of F is fi=GeWNe
(:, i). So, we

obtain:〈
fi, fj

〉
= fHi fj = WH

Ne
(:, i)GH

e GeWNe
(:, j )

=
1

Ne

Ne∑
m=1

λ2me
j
2π(m−1)(i−1)

Ne e−j
2π(m−1)(j−1)

Ne

=
1

Ne

Ne∑
m=1

λ2me
j
2π(m−1)(i−j)

Ne

from which the proof follows.

Lemma 2. All columns of matrix F have the same norm,
which is equal to:

‖fi‖2 =
1

Ne

Ne∑
m=1

λ2m, i = 1, . . . , Ne. (18)

Proof: If follows directly from Lemma 1.

Lemma 3. Let N > 1 be a positive integer and k ∈
{±1,±2, . . . ,±(N − 1)}. The following equation holds true:

N∑
m=1

cos

�
2π(m− 1)k

N

�
= 0. (19)

Proof: It is known that, except for the first row and
column, the sum of the elements of each row and column
of a DFT matrix is equal to zero. Therefore, we have

N∑
m=1

exp

�
j
2π(m− 1)k

N

�
= 0, (20)

where k takes any value in set {−1,−2, · · · ,−(N − 1)}.
Accordingly, the real part of (20) must be equal to zero and
(19) holds true for k < 0. Since the cosine is an even function,
(19) is valid for k > 0 as well.

Theorem 2. For a SVD-DFT precoding assisted SM systems
that employ M-QAM modulation in the IQ domain, and have
parameters M ≥ 4 and Ne > 1, the minimum Euclidean
distance is greater than the Φmin given in (14).

Proof: Similar to Theorem 1, we define dmin =
minm,n(m 6=n) |sm − sn| and rmin = minm |sm|. Three cases
are analyzed separately.
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Case 1. Assume that two SM symbols have different IQ
constellation points but the activated TX antenna is the same.
The minimum Euclidean distance between the corresponding
two RX-side SM symbols is given by

Φm,n,i,j =
∥∥fi (sm − sn)

∥∥2 = ‖fi‖2 |sm − sn|2

≥
∑Ne

k=1 λ
2
k

Ne
d2
min = 2

∑Ne
k=1 λ

2
m

Ne
r2min. (21)

From (14) and taking into account that:

2

∑Ne
k=1 λ

2
k

Ne
r2min ≥ 2λ2Ner

2
min, (22)

we conclude that the minimum Euclidean distance of SM sys-
tems with SVD-DFT precoding is greater than its counterpart
with SVD precoding.

Case 2. Assume that two SM symbols activate different TX
antennas, but transmit the same IQ symbol. The minimum
Euclidean distance between the corresponding two RX-side
SM symbols is given by

Φm,n,i,j =
∥∥(fi − fj)sn

∥∥2
=
[
‖fi‖2 +

∥∥fj∥∥2 − 2R
¦
fHi fj

©]
|sn|2

≥ 2
r2min

Ne

Ne∑
k=1

λ2k

[
1− cos

�
2π(k − 1)(i− j)

Ne

�]
.

(23)

In (23), i− j can take all possible values lying in the interval
[−Ne + 1, Ne − 1] except the zero value. In general, it is not
easy to determine the value of i− j that yields the minimum
of (23). Therefore, we need to prove that (23) is greater than
the minimum Euclidean distance from (14), i.e., 2λ2Ner

2
min, for

all possible values of i− j. In other words, we need to prove
the following inequality:

1

Ne

Ne∑
k=1

λ2k

[
1− cos

�
2π(k − 1)(i− j)

Ne

�]
≥ λ2Ne . (24)

With the aid of Lemma 3, we obtain:

Neλ
2
Ne =

Ne∑
k=1

λ2Ne

[
1− cos

�
2π(k − 1)(i− j)

Ne

�]
. (25)

By plugging (25) in (24), we obtain:

2

Ne∑
k=1

�
λ2k − λ2Ne

�
sin2

�
π(k − 1)(i− j)

Ne

�
≥ 0. (26)

The inequality in (26) implies that SVD-DFT precoding
provides a larger minimum Euclidean distance than SVD
precoding.

Case 3. Assume that two SM symbols have different IQ
constellation points and that the activated TX antennas are

different as well. The minimum Euclidean distance between
the corresponding two SM symbols at the RX is the following

Φm,n,i,j =
∥∥fism − fjsn

∥∥2
= ‖fi‖2 |sm|2 +

∥∥fj∥∥2 |sn|2 − 2R
¦
fHi fjs

∗
msn

©
= ‖fi‖2 r2m +

∥∥fj∥∥2 r2n − 2rmrnR
¦
fHi fj exp(jϕmn)

©
=

1

Ne

Ne∑
k=1

λ2k

[
r2m + r2n

− 2rmrn cos

�
ϕmn +

2π(k − 1)(i− j)
Ne

�]
,

(27)

where rm = |sm|, rn = |sn| and s∗msn = rmrn exp(jϕmn). In
this case, the comparison of the minimum Euclidean distances
is intractable. Thus, we restrict the analysis to the case study
rm = rn = rmin, which ensures to consider the minimum of
the first two terms in (27). By applying a procedure similar to
that utilized for computing (23)–(25), we obtain:

2

Ne∑
k=1

�
λ2k − λ2Ne

�
sin2

�
ϕmn

2
+
π(k − 1)(i− j)

Ne

�
≥ 0

(28)
which implies that, at least for rm = rn = rmin, SVD-DFT
precoding is capable of increasing the minimum Euclidean
distance compared to SVD precoding.

By comparing (22), (26) and (28), we evince that SVD-
DFT precoding is not capable of increasing the minimum
Euclidean distance if λ1 = λ2 = . . . = λNe holds true.
This scenario, however, is unlikely to occur. In the worst
case that it occurs, the precoding schemes would offer the
same minimum Euclidean distance. Therefore, we conclude
that SM systems with SVD-DFT precoding are expected to
have a larger minimum Euclidean distance between different
RX symbols, which, in turns, results into a better cut-off rate
compared with SM systems that employ SVD precoding. The
numerical results in Section V confirm this finding.

D. DFT Precoding

In this section, we consider a precoding scheme that aims
to improve the cut-off rate of SM/GSM systems by selecting,
for each possible TX antenna pattern, the precoding vector that
provides the largest minimum Euclidean distance between RX-
side SM/GSM symbols [38]. The precoding vector is selected
among a given set of candidate precoding vectors. Identifying
this set is, however, a difficult and open issue. In the present
paper, the set of candidate precoding vectors is obtained from
the columns of the DFT matrix introduced in the previous
section. For this reason, the scheme proposed in this section
is referred to as DFT precoding. The GSM signal vector at
the RX can be formulated as follows:

y =
1√
Na

HP̃ẽism + n, (29)

where P̃ ∈ CNt×Nc is the precoding matrix and each column
of P̃ contains Na non-zero elements and Nt − Na zero
elements. The positions of the non-zero elements correspond
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Algorithm 3 DFT Precoding
1: W = Nt ×Nt DFT matrix (30)
2: P̃ = [ ]
3: for i = 1→ Nc do
4: T = W. ∗ repmat(ei, 1, Nt)
5: for k = 1→ Nt do
6: P̃k = [P̃; tk]
7: end for
8: k̂ = arg max

k=1,...,Nt

min
(m,l)6=(n,i)
m,n=1,...,M

l=1,...,i

Φ̃
′
(n, l,m, k)

9: P̃ = P̃k̂
10: end for
11: R0 = cutoff(H, P̃)

to the indices of the active TX antennas of the i-th TX antenna
activation pattern. ẽi is a spatial symbol, i.e., a Nc× 1 vector
with a single one and Nc−1 zero elements, and i = 1, . . . , Nc

is the spatial symbol index that specifies the activated TX
antenna pattern.

The details of the proposed DFT precoding scheme for GSM
systems are reported in Algorithm 3. First, we generate an
Nt ×Nt DFT matrix W whose elements are

W(i, j) = exp

�
−j

2π(i− 1)(j − 1)

Nt

�
. (30)

Then, from W, we construct the precoding candidate matrix
T ∈ CNt×Nt , which contains the set of candidate precoding
vectors for a single TX antenna pattern. As far as the i-th
(i = 1, . . . , Nc) TX antenna activation pattern is concerned,
the matrix T is constructed by taking the rows of W whose
indices are determined by the elements of Ωi, i.e., the indices
of the active TX antennas (see Section II). All the other rows of
T, whose indices are different from the elements of Ωi, contain
only zero values. Therefore, each column tk (k = 1, . . . , Nt)
of T provides the candidate precoding vectors and has Na non-
zero elements at the positions that correspond to the indices
of the active TX antennas of the i-th TX antenna pattern.
Subsequently, we construct Nt P̃k matrices (k = 1, . . . , Nt).
Each P̃k matrix is obtained by adding the k-th column (k =
1, . . . , Nt) of T to the matrix P̃ that is obtained at the previous
iteration. Finally, we select, among all the P̃k matrices, the
matrix with the largest minimum Euclidean distance. Due to
the constant increase of the number of columns of P̃, the
Euclidean distances are calculated as follows:

Φ̃
′
(n, l,m, k) =

∥∥∥H �P̃k(:, i)sn − P̃k(:, l)sm
�∥∥∥2 . (31)

Thus, at each iteration we need to calculate only the Euclidean
distances that are affected by the candidate precoding vector
tk. This procedure is repeated for each TX antenna activation
pattern. After determining the precoding matrix P̃, the cut-off

rate is calculated as follows:

R0 = 2log2 (MNc)−

log2

 ∑
i,j,m,n

exp

�
−

∥∥∥HP̃
(
ẽism − ẽjsn

)∥∥∥2
4N0Na

� , (32)

where i, j = 1, . . . , Nc and m,n = 1, . . . ,M . In contrast to
the other proposed precoding schemes, DFT precoding keeps
the same number of GSM symbols and data rate as the original
GSM system without precoding. Algorithm 3 provides the
appropriate precoding vector for each TX antenna activation
pattern and, therefore, it does not reduce the number of GSM
symbols as the other precoding schemes. The consequences of
this property are analyzed in Section IV.

IV. SIMULATION RESULTS

In this section, we evaluate the cut-off rate of the proposed
precoding schemes with the aid of Monte Carlo simulations.
The study is conducted for a typical indoor propagation
channel. As a benchmark to quantify the gains of the pro-
posed precoding schemes, a GSM system without precoding
is considered [10], [12]. Besides cut-off rate, we study the
impact of the precoding schemes on the mutual information
of GSM systems, and show that an improvement of cut-off
rate corresponds to an improvement of mutual information.
Additionally, we evaluate capacity gains provided by the pro-
posed precoding schemes, if discrete IQ signaling is replaced
with Gaussian signaling. Further, we study suitability of the
proposed precoding schemes for application to SMX systems
and demonstrate that optimizing SEP, instead of cut-off rate,
usually results in a smaller improvement of mutual infor-
mation. Finally, we demonstrate that the proposed precoding
schemes are also applicable to QSM.

A. Cut-off Rate of SM/GSM

At low-GHz frequencies (i.e., below 6 GHz), indoor channel
are usually modeled by using the Rician distribution [39] and
the channel matrix can be written as follows:

H =

Ê
K

K + 1
HLOS +

É
1

K + 1
HNLOS, (33)

where HLOS and HNLOS are the line-of-sight (LOS) and
non-LOS (NLOS) channel matrices, respectively. The element
of HLOS that corresponds to the normalized channel coeffi-
cient between the j-th TX antenna and the i-th RX antenna is
given by the Friis formula:

HLOS(i, j) ≈ D

dij
exp

�
−j

2πdij
λ

�
, (34)

where λ is the wavelength, dij is the length of the LOS path
between the antennas and D is the distance between the mid-
points of the TX and RX antenna uniform linear array (ULA).
The inter-antenna separations of the TX and RX ULAs are
assumed to be λ/2, so that the inter-antenna interference can
be assumed to be negligible. The elements of HNLOS are
distributed according to CN (0, 1). As Rician fading implies
a scaled sum of LOS and NLOS channel components, we
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analyze the cut-off rate of the proposed precoding schemes
for LOS and NLOS channel components separately. Hence,
the Rician factor K takes two values in our simulations: 0
and +∞, which implies that either pure LOS channels or pure
independent and identically distributed (i.i.d.) Rayleigh fading
channels (i.e., NLOS channels) are considered. Using these
two extreme channel models, we are able to shed light on
the impact of the proposed precoding schemes on LOS and
NLOS channel components, and obtain a more comprehensive
overview of cut-off rate gains.

A MIMO system with 8 TX and 8 RX antennas is consid-
ered. The operating frequency is f = 5 GHz, i.e. λ = 6 cm,
and the inter-antenna separations of TX and RX ULAs, dt and
dr, are both 3 cm. The distance between the TX and RX ULA
is D = 10 m. For a fair comparison among all the considered
systems, we select parameters Na and M such that the same
data rate of 8 bpcu is achieved.

1) Cut-Off Rate in i.i.d. Rayleigh Fading Channels: The
cut-off rate of the different precoding schemes and the bench-
mark GSM system are compared against each other in Fig. 2
by assuming an i.i.d. Rayleigh fading channel model. We
observe that the SVD-DFT precoding scheme provides the
best cut-off rate at low to medium SNR. The SVD precoding
scheme provides a slightly lower cut-off rate in the same
SNR regime. In Fig. 2(b), for example, the SVD-DFT and
SVD precoding schemes provide an improvement of the cut-
off rate of about 1 bpcu for SNR = −4 dB compared with
the benchmark without precoding. On the other hand, SVD
precoding does not offer good performance in medium to high
SNR regime. The reason of this performance trend originates
from the fact that the total number of GSM symbols for SVD
precoding is constrained by its properties. The minimum Eu-
clidean distance between different RX-side SM/GSM symbols,
Φmin, for GSM with SVD precoding depends on primarily
of the smallest singular value λNe (14). With increasing the
number of selected inputs of G, λNe and Φmin are getting
smaller. Therefore, SVD precoding, in medium to high SNR
range, may not select the inputs (i.e., columns) of G that
provide the smallest Φmin among RX-side GSM symbols,
and total number of GSM symbols for SVD precoding may
be smaller than its counterparts that adopt other precoding
schemes. At the same time, the number of used GSM symbols
becomes a very significant factor for cut-off rate as SNR
increases. Due to these two effects, SVD precoding offers a
worse cut-off rate, even compared to conventional GSM, in
medium to high SNR regime. In contrast to SVD and SVD-
DFT precoding, the precoding scheme based on TX antenna
grouping offers only a negligible cut-off rate improvement in
low to medium SNR regime, which is justified in Appendix
A.

In general, TX antenna grouping, SVD and SVD-DFT
precoding transmit the TX signal from more than Na physical
antennas per symbol interval, with the aim of improving cut-
off rate by realizing a large array gain, which is especially
important in the low SNR regime [10], [18]. Hence, in very
low SNR regime it may occur that SVD and SVD-DFT
precoding schemes select only Na active inputs, and the TX
antenna grouping scheme has only Na virtual TX antennas.
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Fig. 2. Cut-off rate of conventional GSM and GSM with the proposed
precoding schemes in an i.i.d. Rayleigh fading channel.

This setup ensures, in fact, that the largest array gain is
obtained but at the cost of having no signal transmission
in the spatial domain. DFT precoding, on the other hand,
is based on a fundamentally different operating principle. Its
performance is predominately determined by the order of the
IQ constellation, i.e., M . By using DFT precoding, the largest
improvement of cut-off rate is obtained by decreasing M . If
high-order IQ modulation alphabets are used, the minimum
Euclidean distance between different RX-side GSM symbols
is determined by the minimum Euclidean distance of the IQ
constellation. So, a large gain in cut-off rate is usually not
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Fig. 3. Cut-off rate of conventional GSM and GSM with the proposed
precoding schemes in a pure LOS channel.

expected. If low-order modulation alphabets are utilized, on
the other hand, the DFT precoding scheme is expected to
provide a larger gain because it aims to maximize the mini-
mum Euclidean distance between RX-side GSM symbols with
different TX antenna activation patterns, disregarding the array
gain. Thus, it can not improve cut-off rate at low SNR and
it is more suitable for environments with correlated channels.
So, it provides only a limited cut-off rate improvement in i.i.d.
Rayleigh fading channels.

2) Cut-Off Rate in Pure LOS Channels: In Fig. 3, the
cut-off rate of conventional GSM systems and the proposed

precoding schemes over a pure LOS channel is illustrated.
In low SNR regime, we observe that the cut-off rate of
conventional GSM increases by increasing Na. This is due
to the fact that in correlated fading channels, e.g., pure LOS
channels, the activation of several TX antennas that emit
the same IQ symbol increases the array gain, which in turn
increases cut-off rate. In medium to high SNR regime, on
the other hand, channel models with high spatial correlation
cause a reduction of the cut-off rate of conventional GSM
systems as a function of Na. The first three precoding schemes
offer a linear increase of cut-off rate up to log2M in low
SNR regime. While SVD and SVD-DFT precoding schemes
operate with Na active inputs and the TX antenna grouping
precoding scheme has Na virtual antennas, no bits are encoded
into the spatial domain in order to achieve higher array gain.
In low SNR regime, SVD-DFT precoding provides always
equal or better cut-off rate than SVD precoding, because of
its ability to balance the power gains of the selected inputs,
i.e., subchannels (see Lemma 2). It is worth noting that, in
medium SNR regime, SVD-DFT precoding may give lower
cut-off rate than SVD precoding, which can be explained
by the following argumentation. At medium SNR, SVD-DFT
precoding (same as SVD and TX antenna grouping precoding)
starts to transmit data in spatial domain and therefore we
have Ne > Na. While this happens at almost the same
SNR range for all Na, it is safe to state that the number
of the selected precoding matrix inputs Ne for SVD-DFT
precoding increases with Na at fixed SNR value. Due to high
correlation of H, we have λ1 � λ2, . . . , λNe and after a
few derivation steps we can show that all columns of Ge are
equal to Ge(:, i) = (λ1U(:, 1) + ri)/

√
Ne, i ∈ {1, . . . , Ne},

where U(:, 1) is a left-singular vector of H and ri ∈ CNr×1

is a column vector, whose elements have absolute values
close to 0. Hence, if Na, and consequently Ne, increases, the
Euclidean distance between different columns of Ge, which
is equal to

∥∥Ge(:, i)−Ge(:, j
∥∥2 =

∥∥ri − rj
∥∥2 /Ne, (i 6= j),

generally decreases, making it harder to detect the activated
inputs (i.e., columns) of Ge correctly. As a result, SVD-DFT
precoding can offer a slightly lower cut-off rate than SVD
precoding for Na = 3 in medium SNR regime. Another
thing worth noting is that in high SNR regime (> 20 dB),
SVD precoding provides a cut-off rate that is even worse
than conventional GSM systems. This effect also occurs in
i.i.d. Rayleigh channel and it is caused by the limited number
of the selected precoding matrix inputs, i.e., the number of
GSM symbols. Moreover, in medium to high SNR regime,
TX antenna grouping precoding offers a larger cut-off rate
than SVD and SVD-DFT precoding. DFT precoding, on the
other hand, provides the largest improvement of cut-off rate
in high SNR regime. This is obtained thanks to its capability
of increasing the minimum Euclidean distance between GSM
symbols with different TX antenna activation patterns, which
is particularly affected by the large channel correlation. The
resulting improvement is inversely proportional to M and it
is greater than 3 bpcu if M = 4. Similar to the i.i.d. Rayleigh
fading case, on the other hand, DFT precoding in unable to
provide good cut-off rate in low SNR regime because it is not
conceived for achieving a large array gain. More precisely, an
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increase of the minimum Euclidean distance between GSM
symbols can reduce the array gain in a pure LOS channel and
thus GSM with DFT precoding achieves even lower cut-off
rate than conventional GSM in low SNR regime.

B. Comparison With the Mutual Information of SM/GSM

As discussed in Section I, cut-off rate constitutes a lower-
bound of channel capacity. Thus, it is important to analyze to
what extend improving cut-off rate results into a corresponding
improvement of mutual information. The mutual information
of GSM, based on the system model (1), can be calculated by
using the analytical framework in [24], [25], as follows:

I(sm, ei; y) = log2NGSM −
1

NGSM

∑
m,i

×

En

log2

∑
n,j

exp

�
−

∥∥∥dn,j
m,i + n

∥∥∥2 − ‖n‖2
N0

�
 (35)

where m,n = 1, . . . ,M and i, j = 1, . . . , Nc. The differ-
ence vector of two GSM symbols at the RX is equal to
dn,j
m,i = H(smei − snej)/

√
Na. It is worth mentioning that

the mutual information in (35) corresponds to the channel ca-
pacity of GSM systems over a discrete-input continuous-output
memoryless channel (DCMC) with uniformly distributed GSM
symbols [35]. Hence, (35) can be used to calculate and
compare the mutual information of conventional GSM systems
and GSM systems with the proposed precoding schemes.

Mutual information is illustrated in Fig. 4. Similar to the
previous case study, i.i.d. Rayleigh fading and pure LOS chan-
nel models are studied by keeping the same simulation setup.
In low SNR regime, for both channel models, SVD and SVD-
DFT precoding schemes outperform, conventional GSM sys-
tems. TX antenna grouping offers a substantial improvement of
mutual information in pure LOS channels and almost no gain
in i.i.d. Rayleigh fading channels. DFT precoding improves
mutual information in medium to high SNR regime, especially
for LOS channels. We observe that mutual information and
cut-off rate provide similar performance trends. Quantitatively,
the gains are similar as well, but the gains observed for mutual
information are slightly smaller than those observed for cut-off
rate. This similarity can be justified with the aid of the lower-
bound expression of the mutual information of GSM systems
that is obtained by correcting the previous derivation in [40]
(see Appendix B). The final result is as follows:

ILB = Nr(1− log2 e) +R0(N0/2), (36)

where R0(N0/2) corresponds to the cut-off rate in (4) by
reducing the noise power by half (thus doubling SNR). Of
course, the expression of the mutual information in (36) is
well defined for values of the SNR for which it is positive.
Equation (36), even though it may be considered a very crude
approximation for mutual information, distinctly and explicitly
highlights the dependency between cut-off rate and mutual
information. In particular, it shows that an increase of cut-off
rate results in an increase of mutual information as well. In
summary, (36) and the numerical illustrations in Fig. 4 justify
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Fig. 4. Mutual information of conventional GSM systems and GSM systems
with the proposed precoding schemes in an i.i.d. Rayleigh channel and a pure
LOS channel. The setup of parameters is: Nt = Nr = 8, Na = 2 and
M = 8.

the choice of cut-off rate as a meaningful metric for optimizing
the mutual information of GSM systems with precoding.

C. Channel Capacity of GSM With Gaussian Signaling

In this section, we analyze channel capacity gains achieved
by using the proposed precoding schemes when discrete IQ
signaling is substituted by continuous Gaussian signaling.
More precisely, after determining the best precoding scheme
configuration for GSM with discrete IQ signaling, channel
capacity is computed by assuming that IQ symbols are dis-
tributed according to CN (0, 1), i.e., Gaussian signaling. The
channel capacity analytical expression is presented in [10] and
it is the sum of IQ domain and spatial domain capacities.

The simulation results of the channel capacity of conven-
tional GSM and GSM with the proposed precoding schemes
are shown in Fig. 5. In a i.i.d. Rayleigh channel, the achieved
gains in channel capacity are similar to the gains achieved
for mutual information and cut-off rate. On the other hand,
capacity gains in pure LOS channels are not very predictable.
The channel capacity curves of the first three precoding
schemes exhibit non-linear changes, when they start encoding
information in spatial domain. In that situation, the number of
the selected inputs for SVD and SVD-DFT precoding schemes
is more than Na, and TX antenna grouping precoding uses
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more than Na virtual TX antennas. So the maximum array
gain is not achieved for every GSM symbol. As a result, IQ
domain capacity may just slightly increase or even decrease,
and spatial domain capacity is not large enough to maintain
linearity of the channel capacity curves. SVD and SVD-DFT
precoding schemes offer capacity gains in almost the whole
SNR range, except in high SNR regime, where SVD precoding
does not provide any gain. This is particularly visible for SVD-
DFT precoding schemes, which provides the best capacity
performances among all the proposed precoding schemes. As
expected, TX antenna grouping provides capacity gains over
the whole SNR range. Because performance gains of DFT
precoding are inversely proportional to the order of the IQ
constellation [38] and Gaussian signaling can be viewed as an
IQ constellation with infinite order, DFT precoding is unable
to achieve any capacity gain in Fig. 5.

D. Comparison to Spatial Multiplexing (SMX)

In this section, we focus our attention on comparing the
cut-off rate of GSM systems with and without the proposed
precoding schemes against its counterpart for SMX systems.
To make the comparison fair and meaningful, the same precod-
ing schemes used for GSM systems are applied to conventional
SMX systems as well. More precisely, the RX signal vector
of a Nt × Nr conventional SMX system can be written as
follows:

y =
1√
Nt

Hsm + n, (37)

where the SMX symbol sm = [s1 . . . sNt ]
T is a column vector

consisting of Nt IQ symbols that are chosen from a symbol
alphabet of M elements. We assume a normalized symbol
alphabet, i.e., E{|si|2} = 1. By using the same reasoning
as for GSM systems, the cut-off rate of a SMX system with
equiprobable IQ symbols can be formulated as follows:

R0 = −log2

 1

M2Nt

∑
m,n

exp

�
−
∥∥H (sm − sn)

∥∥2
4N0Nt

� ,
(38)

where m,n = 1, . . . ,MNt . The cut-off rate of SMX systems
employing the precoding schemes introduced in Section III can
be obtained in a similar manner as for GSM systems. Due to
space limitations, the details are omitted for brevity. The only
exception is DFT precoding, which cannot be used for SMX
systems. This is due to the fact that it is not possible to change
the TX antennas that are activated for different SMX symbols.

We consider an 8 × 8 SMX-MIMO system. In order to
obtain the same bpcu as for GSM systems, i.e., 8 bpcu,
M = 2 is considered. The numerical results in Fig. 6 show
that conventional SMX outperforms conventional SM in i.i.d.
Rayleigh fading channels, because different IQ steams can
be easily resolved at the RX. This confirms early results
on the performance of SMX systems about the suitability
of this modulation scheme for uncorrelated fading channels.
In highly correlated channels, i.e., pure LOS channels, the
situation is opposite and conventional SM shows an advantage.
In addition, we observe that the proposed precoding schemes
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Fig. 5. Channel capacity of conventional GSM and GSM with the proposed
precoding schemes, assuming Gaussian signaling. The setup of parameters is
the same as in Fig. 4.

enable cut-off rate increases which are, in general, larger
for SM, especially in pure LOS channels. A reason for this
performance trend lies in a larger reduction of the number of
TX symbols for SMX systems as opposed to SM systems. For
example, the largest reduction of the number of TX symbols
occurs when SVD and SVD-DFT precoding schemes have
only one active column in the precoding matrix, and just one
virtual antenna is used for the TX antenna grouping precoding
scheme. Then, the number of SM symbols is 16 times larger
than the number of SMX symbols.

E. Cut-off rate Optimization vs. SEP Optimization

By direct inspection of (2), we note that the analytical
expression of cut-off rate resembles the upper-bound of the
SEP of GSM systems, which can be formulated as follows:

SEP ≤ 1

NGSM

∑
m,n,i,j

(m,i) 6=(n,J)

exp

�
−

∥∥∥H (eism − ejsn
)∥∥∥2

4N0Na

�
(39)

where m,n = 1, . . . ,M and i, j = 1, . . . , Nc. This similarity
motivates us to study the effectiveness of maximizing cut-off
rate for increasing the mutual information of GSM systems
as opposed to minimizing the SEP. To this end, we optimize
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Fig. 6. Cut-off rate comparison between SMX and SM systems (both systems
employ the proposed precoding schemes).

the proposed precoding schemes based on the minimization of
SEP rather than on the maximization of cut-off rate. In other
words, Algorithms 1, and 2 still apply and the only modi-
fication consists of replacing the argument of the logarithm
function of cut-off rate with (39). The only scheme that is not
considered is DFT precoding, since in this case maximizing
cut-off rate and minimizing SEP are equivalent. This is not
the case, on the other hand, for the other precoding schemes.

The results are illustrated in Fig. 7. We observe that, in the
medium to high SNR regime, optimizing cut-off rate results
in a larger mutual information compared to optimization by
SEP. The reason for this performance trend lies in the larger
number of GSM symbols that results from optimizing cut-off
rate as opposed to optimizing SEP (Appendix C). In a nutshell,
the following approximation holds true in high SNR regime∥∥∥dn,j

m,i + n
∥∥∥2 − ‖n‖2 ≈ ∥∥∥dn,j

m,i

∥∥∥2 and the mutual information
in (35) can be re-written as follows:

I(sm, ei; y) ≈ log2NGSM −
1

NGSM

∑
m,i

log2

∑
n,j

exp

�
−
∥∥∥dn,j

m,i

∥∥∥2 /N0

� . (40)

In (40), in high SNR regime, the exponential terms that satisfy
the condition (m, i) 6= (n, j) approach 0. This implies that the
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Fig. 7. Mutual information of GSM with the proposed precoding schemes
based on cut-off rate (CR) and SEP optimization. The setup of parameters is
the same as in Fig. 4.

minimum Euclidean distance between different GSM symbols
is a less important factor for maximizing mutual information
as opposed to the number of GSM symbols available. Since
optimizing the systems based on cut-off rate usually provides
more GSM symbols, a better mutual information is expected
as well. This performance trend becomes evident in i.i.d.
Rayleigh fading channels at medium to high SNR, where
the optimization of SEP results in a very small number of
TX antenna activation patterns. Fig. 7 shows that optimizing
SEP may lead to a mutual information that is worse than
the benchmark that does not use precoding. In a pure LOS
channel, the proposed precoding schemes based on either cut-
of rate or SEP as a utility function for optimization use only
a subset of all the available TX antenna activation patterns
(except in the very high SNR regime). This is due to the
larger channel correlation between the columns of the channel
matrix. As a result, the differences in mutual information are
smaller. In low SNR regime, there is almost no difference
between optimizing SEP and cut-off rate because they both
result in maximizing the array gain. Hence, a small (usually
minimum) number of TX antenna activation patterns is used.

Furthermore, it is worth noting that SEP optimization as
shown in Fig. 7 may experience a sudden increase of mutual
information in high SNR regime, due to a rapid increase of
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the number of GSM symbols. The increase of the number
of GSM symbols also enlarges the sum of the exponential
terms in (4) and (39), which has a negative influence on
SEP and cut-off rate, and is inversely proportional to SNR.
As the argument of the logarithm function of cut-rate rate is
proportional to 1/N2

GSM and SEP is proportional to 1/NGSM,
SEP optimization requires a larger SNR than cut-off rate
optimization, so that the increase of the number of GSM
symbols has a “more decisive” influence than the proper
increase of the sum of the exponential terms. Hence, the
number of GSM symbol obtained by SEP optimization starts
to increase rapidly only at high SNR, which results in sharply
rising mutual information curves.

F. Application to QSM Systems

In this section, we extend our study to apply the proposed
precoding schemes, which are originally designed for GSM,
to QSM. The RX signal for QSM is given as follows [41]:

y = hi1sm,R + jhi2sm,I + n, (41)

where sm = sm,R+jsm,I (m ∈ {1, . . . ,M}) is the transmitted
IQ symbol. The TX antennas that transmit sm,R and sm,I

have impulse responses hi1 and hi2 (i1, i2 ∈ {1, . . . , Nt}),
respectively, and they determine the i-th QSM TX antenna
activation pattern. Following a similar derivation as in Section
II-A, we obtain the cut-off rate expression for QSM as follows:

R0 = −log2

 1

N2
QSM

∑
i1,i2,j1j2,m,n

exp

�
− Φ

4N0

� , (42)

where i1, i2, j1, j2 ∈ {1, . . . , Nt} and m,n ∈ {1, . . . ,M}.
The Euclidean distance between two QSM symbols is com-
puted as

Φ =
∥∥(hi1sm,R + jhi2sm,I)− (hj1sn,R + jhj2sn,I)

∥∥2
and the number of QSM symbols is NQSM = MN2

t . In our
analysis we assume that the number of TX antennas for the
transmission of sm,R is always equal to the number of TX
antennas for the transmission of sm,I

5. The same is valid
for virtual TX antennas (TX antenna grouping precoding) and
selected precoding matrix inputs (SVD and SVD-DFT precod-
ing). The first three precoding schemes can be directly applied
to QSM, and the cut-off rate expression for QSM needs just a
minor adaptation in the argument of the logarithm function. On
the other hand, DFT precoding requires a larger modification,
in order to be applicable to QSM systems. The RX signal for
QSM with DFT precoding, when the i-th QSM TX antenna
activation pattern is used, is given by y = hi1P̃(1, i)sm,R +
jhi2P̃(2, i)sm,I +n, where the only addition in comparison to

(41) is the precoding matrix P̃ ∈ C
2×N2

t . Each column of P̃
is a precoding vector that contains two precoding coefficients

5We do not restrict the number of TX antennas for transmission of sm,R

and sm,I to be power of 2. While QSM can be viewed as a combination of two
independent SM systems (one that transmits sm,R and the other that transmits
sm,I ), an implementation of so-called fractional bit modulation method [31]
on both of them may enable the use of all available TX antennas (i.e., non-
integer data rate) in QSM systems.

−30 −25 −20 −15 −10 −5 0 5 10 15

1

2

3

4

5

6

7

8

Es/N0 [dB]

R
0
,M

U
[b

pc
u]

R0, conventional
MU, conventional
R0, grouping
MU, grouping
R0, SVD
MU, SVD
R0, SVD-DFT
MU, SVD-DFT
R0, DFT
MU, DFT

(a) I.i.d. Rayleigh channel.

−30 −20 −10 0 10 20 30

1

2

3

4

5

6

7

8

Es/N0 [dB]

R
0
,M

U
[b

pc
u]

R0, conventional
MU, conventional
R0, grouping
MU, grouping
R0, SVD
MU, SVD
R0, SVD-DFT
MU, SVD-DFT
R0, DFT
MU, DFT

(b) Pure LOS channel.

Fig. 8. Cut-off rate (R0) and mutual information (MU) of conventional QSM
systems and QSM systems with the proposed precoding schemes.

for the active TX antennas that transmit sm,R and sm,I , and
are determined by an appropriate QSM TX antenna activation
pattern. If one TX antenna transmits simultaneously sm,R and
sm,I for one QSM TX antenna activation pattern then both
precoding coefficients of an appropriate precoding vector have
the same value. Similarly as in Algorithm 3, matrix P̃ is
empty at the beginning and N2

t iterations are needed to form
its content. In each iteration, the candidate precoding vectors
tk ∈ C2×1 (k ∈ {1, . . . , Nt}) for the i-th QSM TX antenna
activation pattern are formed from the rows of the DFT matrix
W that have the same indices as the active TX antennas. After
constructing all P̃k matrices, as in Algorithm 3, we select the
one with the largest minimum Euclidean distance. Due to the
constant increase of the size of P̃, the Euclidean distances are
computed as Φ̃

′
= ||hi1P̃k(1, i)sm,R + jhi2P̃k(2, i)sm,I −

(hj1P̃k(1, j)sn,R + jhj2P̃k(2, j)sn,I)||2, where i1 and i2 are
the indices of the active TX antennas for the i-th QSM TX
antenna activation pattern, j1 and j2 are the indices of the
active TX antennas for the j-th (j = 1, . . . , i) QSM TX
antenna activation pattern, and m,n ∈ {1, . . . ,M}. After N2

t

iterations, the content of P̃ is determined and the cut-off rate
of QSM with DFT precoding can be calculated.

Performances of the proposed precoding schemes applied
to QSM systems are evaluated using cut-off rate and mutual
information. The mutual information expression for QSM
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presents just a slight modification of (35), where NGSM is
substituted by NQSM and the difference vector of two RX-side
QSM symbols is d = (hi1sm,R + jhi2sm,I) − (hj1sn,R +
jhj2sn,I). Also, repeating a derivation from [35], we can
easily show that the mutual information expression for QSM
corresponds to the capacity expression for QSM in DCMC
channels, when QSM symbols are uniformly distributed. While
QSM generally requires only one RF chain at the TX same
as SM, we evaluate the mutual information of QSM under the
same date rate of 8 bpcu, and for a balanced data rate in the
spatial and IQ domains as for SM (although the spatial and IQ
domain data rates are not exactly the same for SM). Hence,
the simulation setup consists of a 4 × 4 MIMO system with
16-QAM and the simulation results are presented in Fig. 8. The
simulation results show that the proposed precoding schemes
applied to QSM systems achieve mutual information gains
that are very similar to cut-off rate gains. This confirms the
applicability of cut-off rate as an optimization metric for QSM
as well.

V. CONCLUSION

In this paper, we proposed the use of cut-off rate as a
simple and meaningful utility function for optimizing the
channel capacity and mutual information of SM/GSM systems.
Also, we proposed four precoding schemes whose precoding
matrices are obtained by maximizing cut-off rate. Numerical
results confirmed that they provide a better mutual information
and channel capacity than conventional SM/GSM systems.
More precisely, we showed that the precoding schemes that
aim to maximize array gain are more suitable for application in
low to medium SNR regime. On the other hand, the precoding
schemes that aim to maximize the minimum Euclidean dis-
tance between SM/GSM symbols, when discrete IQ signaling
is utilized, are more suitable for application in medium to high
SNR regime. In summary, our study confirmed that cut-off
rate is a suitable metric for the design of precoding schemes
that optimize the channel capacity and mutual information
of SM/GSM. Depending on the operating SNR, different
precoding schemes need to be used in order to achieve the best
channel capacity and mutual information. Possible extension
of the present work may be a joint optimization of coding
and precoding, which due to space constrains, is postponed to
future research.

APPENDIX A
CUT–OFF RATE OF TX ANTENNA GROUPING PRECODING

In this appendix, we analyze the improvement cut-off rate
that TX antenna grouping precoding is capable of providing
in i.i.d. Rayleigh fading channels and pure LOS channels. For
ease of description, only groups of two antennas as considered.
Similar findings and trends hold for a large number of antenna
in each group. Let hi and hj (i, j ∈ {1, . . . , Nt}, i 6= j) be
the impulse responses of two physical TX antennas. Let us
denote by hg the virtual TX antenna after grouping them. The
following holds:

E
{∥∥hg

∥∥2} =
1

2
E
{
‖hi‖2 +

∥∥hj

∥∥2 + 2R
¦
hH
i hj

©}
. (43)

In i.i.d. Rayleigh fading channels, the mean value of the inner
product of two different columns of H is equal to 0, i.e.,
E{R{hH

i hj}} = 0. In addition, we have E{||hi||2} = Nr for
∀i ∈ {1, . . . , Nt}. Thus, (43) simplifies to

E
{∥∥hg

∥∥2} = Nr, (44)

and the average power gain is the same as without grouping the
physical antennas. This implies that the TX antenna grouping
precoding scheme provides, in general, a relatively small
improvement of cut-off rate in i.i.d. Rayleigh fading channels.

In pure LOS channels, on the other hand, we have
dt, dr � D, i.e., the columns of H are highly correlated. This
implies E{R{hH

i hj}} > 0. In this regime, the approximation
||hi||2≈ Nr for ∀i ∈ {1, . . . , Nt} holds true (cf. (34)) and
(43) simplifies to

E
{∥∥hg

∥∥2} > Nr. (45)

In pure LOS channels, therefore, the TX antenna grouping
precoding scheme increases the average power gain and, as a
result, it is expected to provide a large improvement of cut-off
rate as opposed to the i.i.d. Rayleigh fading case.

APPENDIX B
LOWER-BOUND OF MUTUAL INFORMATION

In this appendix, we present the corrected derivation of a
lower-bound of the GSM mutual information from [40]. The
mutual information of a GSM system is defined as follows:

I(sm, ei; y) = H(y)−H(y|sm, ei) = H(y)−H(n). (46)

By using Jensen’s inequality, we obtain:

H(y) = Ey

¦
− log2

(
p(y)

)©
≥ − log2

�∫
y

p(y)2dy

�
.

(47)

In addition, we have:

p(y) =
∑
m,i

p(sm, ei)p(y|sm, ei) =
1

NGSM

∑
m,i

p(y|sm, ei),

(48)

where p(y|sm, ei) is available in (3) and the GSM symbols
are uniformly distributed.

By plugging (48) in (47) and applying some algebraic
manipulations similar to the computation of the cut-off rate,
we obtain the following:

H(y) ≥Nr log2 (2πN0)−

log2

�
1

N2
GSM

∑
m,n,i,j

e−

∥∥H(eism−ejsn)
∥∥2

2N0Na

�
=Nr log2 (2πN0) +R0(N0/2) (49)

for m,n = 1, · · · ,M and i, j = 1, · · · , Nc. From [14], we
haveH(n) = Nr log2 (eπN0) and eventually obtain the lower-
bound reported in (36).
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APPENDIX C
NUMBER OF GSM SYMBOLS OF THE PROPOSED

PRECODING SCHEMES BASED ON CUT-OFF RATE AND SEP
OPTIMIZATION

In this appendix, we discuss the reason why the precoding
schemes that maximize cut-off rate instead of SEP result in
a larger number of TX antenna activation patterns. First of
all, we note that maximizing cut-off rate is equivalent to
minimizing the argument of the logarithm function of cut-off
rate, which is denoted as AG and related to SEP as follows:

AG =
1

NGSM
(1 + SEP) . (50)

Let us consider TX antenna grouping precoding. Let us assume
that the number of TX antenna activation patterns decreases
from NGSM to NGSM −4N at an iteration of the algorithm
and that the reduction of SEP is 4SEP > 0. Under these
assumptions, the argument of the logarithm function of cut-
off rate after optimizing SEP is given as follows:

AG1 =
1

NGSM −4N
(1 + SEP−4SEP) , (51)

while before optimizing SEP, we have AG0 in (50).
If, on the other hand, optimizing the SEP does not reduce

the argument of the logarithm function of the cut-off rate, we
obtain:

4 SEP <
4N
NGSM

(1 + SEP). (52)

By taking into account that the number of virtual TX
antennas at an iteration reduces by 1, i.e., from Nvt to Nvt−1,
we have:

4 SEP <
Na

Nvt
(1 + SEP). (53)

If inequality (53) holds true, the number of TX antenna
activation patterns obtained by optimizing cut-off rate is larger
than the number of TX antenna activation patterns that is
obtained by optimizing SEP. Otherwise, they result in the same
number of TX antenna activation patterns. What is left to prove
is to show that optimizing SEP cannot provide a larger number
of TX antenna activation patterns compared to its counterpart
that is obtained by maximizing cut-off rate. Assuming that
at an iteration of the TX antenna grouping algorithm SEP
increases by 4SEP > 0. Then, we have

AG1 =
1

NGSM −4N
(1 + SEP +4SEP) > AG0 (54)

and the argument of the logarithm function of cut-off rate
increases. Hence, the number of GSM symbols provided by
SEP optimization cannot be larger than the the number of
GSM symbols provided by cut-off rate optimization.

As far as SVD and SVD-DFT precoding schemes are
concerned, the result can be proved based on the following
argument. At each iteration of both algorithms, SEP is reduced
by adding an additional column to the precoding matrix. This
operation inherently decreases the argument of the logarithm
function in (50) and, thus, increases cut-off rate. The opposite,
on the other hand, is not always true. Therefore, optimizing
the cut-off rate of GSM systems by using SVD and SVD-DFT

precoding provides a larger (or the same in the worst case)
number of TX antenna activation patterns than minimizing
SEP.
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