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ABSTRACT
This article proposes a new layout of electrical network

based on two negative capacitance circuits, aimed at increasing
the performances of a traditional resistive piezoelectric shunt
for structural vibration reduction. It is equivalent to artificially
increase the modal electromechanical coupling factor of the
electromechanical structure by both decreasing the short-circuit
natural frequencies and increasing the open-circuit ones. This
leads to higher values of the modal electromechanical coupling
factor with respect to simple negative capacitance configura-
tions, when the same margin from stability is considered. This
technique is shown to be powerful in enhancing the control
performance when associated to a simple resistive shunt, usually
avoided because of its poor performances.

INTRODUCTION
Piezoelectric materials are often used in control applications

for their ability to convert the mechanical energy of the structure
they are bonded on into electrical and conversely. If a proper
electrical network is defined and connected to the actuator, it
is possible to reduce the vibration level of the structure. This
practice is known as piezoelectric shunt damping. The best ob-
tainable performance using an optimized electrical network de-
pends on the characteristics of the Electro Mechanical Structure

∗Address all correspondence to this author.

(EMS): its intrinsic damping and its modal Electro Mechanical
Coupling Factor (MEMCF) [1]. The MEMCF is function of
the mechanical, electrical and geometrical characteristics of the
piezo-actuator and the structure, for a particular vibration mode.
It is also related to the distance between the natural frequencies
of the EMS in short (SC) and open circuit (OC) [1, 2].
The MEMCF can be maximised to improve the performances
by a proper sizing and placement of the piezo-actuator on the
structure [3]. Once the piezo-actuator characteristics and its po-
sition are optimized and the electrical network is properly tuned,
the maximum obtainable performance is fixed. A way to fur-
ther improve the control performance is to artificially increase
the MEMCF. This can be obtained using a Negative Capacitance
(NC) [4] connected to the piezo-actuator. A circuit including an
operational amplifier is used to synthesize the NC. A NC con-
nected in series is able to decrease the SC natural frequencies,
while a NC in parallel can increase the OC ones [4]. This leads
to an increased distance between the SC and OC natural frequen-
cies and therefore to a higher MEMCF, which results in better
performances. This technique is really effective but suffers of in-
stability problems. The closest the circuit is to the stability limit,
the highest the achievable performance is [5]. This paper pro-
poses a new layout of the shunting electrical network based on
two NCs, aimed at increasing the MEMCF by both decreasing
the SC and increasing the OC natural frequencies at the same
time. This leads to higher values of MEMCF with respect to
simple NC configurations when the same margin from stability
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is considered. This technique is shown to be powerful in en-
hancing the control performance when associated to a simple re-
sistive shunt, usually avoided because of its poor performances.
The present study proposes analytical models to understand the
working principle and predict the theoretical tuning. Those theo-
retical results are validated by experimental tests on a cantilever
beam.

ELECTRO-MECHANICAL MODEL
Governing equations

Ext. forcing

Elastic structure

Piezoelectric patch

V

Q̇

Q

Zsh

FIGURE 1. A GENERIC STRUCTURE WITH A PIEZOELECTRIC
PATCH CONNECTED TO A SHUNT IMPEDANCE Zsh

The model used in this paper to describe the behaviour of the
EMS is that presented in the paper of Thomas et al. [1], which
was used by its authors to find the optimal tuning of R and LR
impedances shunted to a piezoelectric actuator and the associ-
ated vibration attenuation performances. We consider a generic
elastic structure with one piezoelectric patch, shown in Fig. 1.
U(x, t) is the displacement of any point x of the structure at time
t. An arbitrary shunt impedance Zsh is connected to the piezo-
electric patch and V is the voltage between the electrodes of the
piezoelectric actuator, which is also the shunt terminal voltage.
Q is the electric charge in one of the electrodes, and considering
the convention of sign for V in Fig. 1, Q is precisely the charge
in the upper electrode. A reduced order model can be obtained
by expressing the displacement U in modal coordinates and con-
sidering N vibration eigenmodes:

U(x, t) =
N∑
n=1

Φi(x)qi(t) (1)

Where Φi is the i-th eigenmode of the structure and qi is the i-th
modal coordinate. The modal coordinates qi(t) are solutions of

a problem of the form [3, 6]:


q̈i + 2ξiωiq̇i + ω2

i qi − χiV = Fi ∀i ∈ 1...N

CpV −Q+
N∑
j=1

χjqj = 0

(2a)

(2b)

In the above equations, ωi denotes the i-th natural frequency of
the EMS in short circuit, ξi is the i-th structural damping factor,
Cp is the electrical capacitance of the piezoelectric patch and χi
is the modal coupling coefficient, which represents the energy
transfer between the i-th mode shape and the piezoelectric patch.
Those χi coefficients can be computed with either an analytical
model [3] or by a finite element model [6]. It must be noted that
Φi are the eigenmodes of the EMS with the piezo patch in short
circuit (SC) (with V = 0) and that Cp is the patch capacitance of
the blocked structure (with U(x, t) = 0 ∀x ⇒ qi = 0 ∀i).

The EMS is thus described by N modal equations, corre-
sponding to the balance law of mechanical forces, which de-
scribes the equations of motion of the EMS. These equations
(2a) are coupled by the term χiV to Eq. (2b), which represents
the electrical behaviour of the system. Eq. (2b) is related to the
balance of electric charges on the piezoelectric electrodes.

According to [1], the following changes of variables can be
applied:

V̄ = V
√
Cp Q̄ =

Q√
Cp

(3)

Substituting Eq. (3) into Eq. (2a) and Eq. (2b), a normalised for-
mulation of Eq. (2a) and Eq. (2b) can be obtained:

q̈i + 2ξiωiq̇i + ω2
i qi − ωiki

N∑
j=1

ωjkjqj − ωikiQ̄ = Fi, (4a)

V̄ − Q̄+
N∑
j=1

ωjkjqj = 0, (4b)

where:

ki =
χi

ωi
√
Cp
. (5)

The above non dimensional parameter ki is defined as the
MEMCF. By imposing Q̄ = 0 in Eq. (4a) and reducing the model
to a single degree-of-freedom, the following approximated ex-
pression of the OC natural frequencies of the EMS is obtained:

ω̂i = ωi

√
1 + k2 (6)
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FIGURE 2. RESITIVE SHUNT WITH ADDITION OF A NC: PAR-
ALLEL (a) AND SERIES (b) CONFIGURATION

which shows that the MEMCF ki is close to the i-th effective
coupling factor [1]:

|ki| =

√
(ωoc
i )2 − (ωsc

i )2

(ωi)2
. (7)

where the open and short circuit frequencies are ωoc
i = ω̂i and

ωsc
i = ωi.

The EMS with a negative capacitance
When a NC is used together with a resistive shunt R,

two shunt circuits can be considered: a parallel configuration
(Fig. 2(a)) or a series configuration (Fig. 2(b)). Both schemes
are characterised by the presence of an additional negative ca-
pacitance−C1 or−C2. This element is defined by the following
relation (Fig. 3(a)):

Vc = −Qc
Cn

(8)

Since a NC does not exist in nature, it is simulated in practice by
means of a circuit including an operational amplifier [7]. Such
a circuit is depicted in Fig. 3(b). If the operational amplifier is
assumed ideal and if its input/output are not saturated, one has:

Cn = Ĉ
R2

R1
(9)

For the parallel configuration (Fig. 2(a)), the charge Q is the
sum of the charges in the negative capacitance −C1 branch and

(a) (b)

Ĉ
VCVC

−Cn

Q̇C

R1 R2

Q̇C

FIGURE 3. DEFINITION OF A NC (a); ELECTRICAL CIRCUIT
BASED ON AN OPERATIONAL AMPLIFIER USED TO BUILD A
NC TO BE EMPLOYED IN PARALLEL CONFIGURATION (THE
PINS OF THE OPERATIONAL AMPLIFIER ARE EXCHANGED
FOR THE SERIES CONFIGURATION) (b)

the resistor R branch, so that Eq. (2b) is replaced by:

(Cp − C1)V −Qsh +

N∑
j=1

χjqj = 0 (10)

For the series configuration, voltage V is the sum of that at the
terminals of the negative capacitance −C2 and the shunt resis-
tance R, so that Eq. (2b) is replaced by:

Vsh −
(

1

Cp
− 1

C2

)
Q+

N∑
j=1

χj
Cp
qj = 0 (11)

In the above equations, Vsh and Qsh denotes the terminal voltage
and the charge that flows into the resistive shunt branch.

In the following, we limit our attention to the response of the
i-th vibration mode (qj = 0 ∀j 6= i) of the EMS. A full model
can be equally considered with a more complex writing of the
equations. It is first convenient to define the following equivalent
capacitances:

Ceqp = Cp − C1, Ceqs =
CpC2

C2 − Cp
. (12)

for Cp in parallel to −C1 and in series to −C2 respectively. By
applying the same change of variables than Eq. (3):

V̄sh = Vsh
√
Ceq Q̄sh =

Qsh√
Ceq

(13)
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TABLE 1. PARAMETERS OF THE EMS ENHANCED BY A SIN-
GLE NEGATIVE CAPACITANCE, IN PARALLEL OR SERIES CON-
FIGURATION

Parallel config. Series config.

ωsc
i SC freq. ωi

√
ω2
i −

χ2
i

C2−Cp

ωoc
i OC freq.

√
ω2
i +

χ2
i

Cp−C1
ω̂i =

√
ω2
i +

χ2
i

Cp

k̃i EMEMCF
ki√

1− C1

Cp

ki√
1− Cp

C2

rewritten under the following form:


q̈i + 2ξiωiq̇i + (ωsc

i )2qi − ωik̃iV̄sh = Fi,

q̈i + 2ξiωiq̇i + (ωoc
i )2qi − ωik̃iQ̄sh = Fi,

V̄sh − Q̄sh + ωik̃iqi = 0

(14a)

(14b)

(14c)

The above set of equations defines the dynamics of the EMS
viewed from the resistive shunt since the electrical unknowns
are now Vsh and Qsh. The following parameters have been de-
fined: ωsc

i and ωoc
i are respectively the natural frequency of the

EMS with the shunt short-circuited (Vsh = 0) or in open circuit
(Qsh = 0). k̃i is the enhanced modal electromecanical coupling
factor (EMEMCF), defined as in Eq. (7) with the new values of
ωsc
i and ωoc

i . Those parameters, that take different values in the
parallel and series configurations, are gathered in table 1.

Model with a resistive shunt
Considering the resistive shunt, Vsh can be expressed as

Vsh = −RQ̇sh so that Eq. (14c) becomes:

τe
˙̄Q+ Q̄sh − ωik̃iqi = 0. (15)

with the electrical time constant τe = RCeq. Consequently, rely-
ing on Eqs. (1), (14b) and (15), the frequency response function
(FRF)H(Ω) between a harmonic force of frequency Ω applied at
a point xf of the mechanical structure and its response at a point
xm is:

H(Ω) =
Φi(xm)Φi(xf )(1 + jτeΩ)

(ωsc
i )2 − (1 + 2ξiωiτe)Ω2 + jΩ [τe(ω

oc
i )2 + 2ξiωi − τeΩ2]

(16)

Effect of the Negative Capacitance
As mentioned in the previous sections and in other works

[4], the use of a NC allows to artificially increase the value of
the MEMCF and thus to increase the control performances. As
introduced in Eqs. (14a-c), it is convenient to analyze the sys-
tem’s behaviour by (i) gathering the EMS and the NC and (ii) by
varying the value of the shunt impedance R. At its extrema 0
(Vsh = 0) and +∞ (Qsh = 0), one obtains the natural frequen-
cies of the system in short circuit (SC) ωsc

i and open circuit (OC)
ωoc
i .

In the case of a parallel configuration (Fig. 2(a)), in the SC
condition (R = 0), the influence of −C1 is null since the current
is free to flow in the resistor branch. This means that ωsc

i = ωi:
it does not change with respect to its value without −C1. On
the contrary, in OC, when R tends to +∞, Tab. 1 shows that the
value of ωoc

i increases with respect to the value of ω̂i (i.e. without
−C1).

In the case of the series layout, Fig. 2(b) shows that ωoc
i does

not change with respect to its value without −C2 (no current
flows in the shunt), while ωsc

i is decreased with respect to ωi (i.e.
without −C2).

As a consequence, the effect of the NC in both configura-
tions is to increase the distance between ωsc

i and ωoc
i so that the

value of the MEMCF is enhanced, and consequently the attenua-
tion performance of the shunt [1]. The EMEMCF k̃i (defined by
Eq. (7) with the new SC and OC frequencies and given in Tab. 1)
is greater than ki and it is a measure of this effect.

Stability
When a NC is employed, the stability of the EMS cou-

pled to the shunt must be checked because in this case an ac-
tive component is used. Relying on Eq. (16) and applying the
Routh-Hurwitz criterion [8], the following stability conditions
are achieved:

parallel configuration: C1 < Cp (17a)

series configuration: C2 > Cp(1 + k2
i ) (17b)

If all the modes of the EMS are taken into account (by using the
full model (Eq. (4), see e.g. [4]), condition 17 becomes:

parallel configuration: C1 < C∞ (18)
series configuration: C2 > C0 (19)

where

C∞ = Cp, C0 = Cp

(
1 +

N∑
k2
i

)
. (20)
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C0 is the capacitance of the piezoelectric patch at zero frequency
(Ω = 0) and C∞ is the capacitance of the piezoelectric patch at
infinite frequency (Ω→ +∞). If the EMS is free of external me-
chanical loading (Fi = 0 ∀i), Eqs. (2(a,b)) enables to compute
the piezoelectric patch capacitance C(Ω) = Q(Ω)/V (Ω) as a
function of frequency Ω (it is the time integral of its admittance).
One can show (see e.g. [4]) that C(0) = C0 as defined above and
C(+∞) = C∞ = Cp.

The stability limits can also be related to the effects of the
negative capacitance on the values of the SC and OC frequencies.
In the parallel configuration, if C1 → Cp (see Eq. 17a), ωOC

i

tends to +∞ (see Tab. 1). The destabilization process in this case
thus comes from a high frequency mode whose OC frequency
reaches +∞. In the series configuration, if C1 → C0 (see Eq.
17b), ωSC

i tends to zero. The destabilization thus comes from a
low frequency mode whose SC frequency reaches 0 (see [4] for
further details).

NEW NEGATIVE CAPACITANCE LAYOUT

Piezo. patch

−C1

V = Vsh

R

−C2

Q

Q̇ Q̇sh

FIGURE 4. EQUIVALENT ELECTRICAL CIRCUIT OF THE NEW
SHUNT CONFIGURATION

The previous section explained how the presence of a NC
can increase the EMEMCF and thus the attenuation performance
by shifting either ωsc

i or ωoc
i . The idea of this paper is to use a

new shunt circuit able to shift at the same time both ωsc
i and ωoc

i .
This would allow to achieve a further increase of the EMEMCF
with respect to the traditional parallel and series configurations.
This new circuit is presented in the this section.

Analytical formulation
The new layout for the shunt impedance relies on the use of

two NCs together. This circuit is shown in Fig. 4, where the two
NCs are named −C1 and −C2. Then, a third element is inserted
within the circuit, which is the resistance R. Therefore, the two
NCs are coupled to a resistive shunt and the new layout can be
seen as the superimposition of a parallel and a series configura-
tion so that it will be named series+parallel (SP) configuration
from here on.

Using the same approach than for the traditional parallel and
series configurations, the model of Eqs. 14(a-c) is obtained with
the following parameters:

equivalent capacitance Ceqsp =
(Cp − C1)C2

C1 + C2 − Cp
(21a)

SC frequency : ωsc
i =

√
ω2
i −

χ2
i

C1 + C2 − Cp
(21b)

OC frequency : ωoc
i =

√
ω2
i +

χ2
i

Cp − C1
(21c)

EMEMCF: k̃i =
ki√(

1− C1

Cp

)(
1 + C1

C2
− Cp

C2

)
(21d)

When R tends to zero (i.e. SC), the total capacitance of the cir-
cuit is C−C1−C2 and the value of ωsc

i is decreased with respect
to ωi (see Eq. (21b) and Fig. 4). Otherwise, if R tends to +∞
(i.e. OC), the total capacitance of the circuit is C − C1 and the
value of ωoc

i is increased with respect to ω̂i (see Eq. (21c)). This
means that, as announced, the SP layout allows to change at the
same time ωsc

i or ωoc
i , making their distance greater than in the

case of a pure series or parallel configuration. This provides the
mentioned increase of ki, that is replaced by k̃i of Eq. (21d).

Stability analysis
An analogous stability analysis is carried out for the SP con-

figuration by means of the Routh-Hurwitz criterion applied to
H(s) (Eq. (16)). The stability conditions are:

C1 < Cp and C1 + C2 > Cp(1 + k2
i ) (22)

Again, if all the modes of the structure are taken into ac-
count, the first stability condition becomes C1 < C∞ and the
second stability condition becomes C1 + C2 > C0, with C0 de-
fined by Eq. (20). Again, the same destabilization process hold:
if the first condition is not fulfilled, the system is destabilized by
a high frequency mode whose OC frequency tends to +∞; if the
second condition is not fulfilled, a low frequency mode destabi-
lizes the system with its SC frequency that tends to zero.

Enhanced Modal Electro Mechanical Coupling factor
The previous sections explained qualitatively why the use of

the SP configuration allows to reach a value of the EMEMCF
higher than in the case of both the series and parallel layouts.
This section will give numerical data about the EMEMCF value
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TABLE 2. DATA OF THE SINGLE-DEGREE-OF-FREEDOM SYS-
TEMS USED FOR SIMULATIONS

System ωi/(2π) [Hz] ξi ki

1 39.72 0.0045 0.2716

2 986.42 0.0028 0.1222

which can be achieved using the SP configuration and will show
some comparisons with respect to the series and parallel lay-
outs. First a safety margin α is defined, as the distance between
the values of NCs and the stability limit, normalised over the
value of the stability limit. Hence, considering a single-degree-
of-freedom structure and recalling Eq. (17(a,b)), α is defined as:

parallel configuration: α =
Cp − C1

Cp
(23a)

series configuration: α =
C2 − Cp(1 + k2

i )

Cp(1 + k2
i )

(23b)

As for the SP configuration, two values α1 and α2 must be de-
fined because two stability conditions (Eq. (22)) must be ful-
filled:

α1 =
Cp − C1

Cp
, α2 =

C1 + C2 − Cp(1 + k2
i )

Cp(1 + k2
i )

(24)

It is noticed that the closer to zero α, α1 and α2 are, the closer
to the stability limit the shunt circuit is. Two different single-
degree-of-freedom systems are used here to show the benefits
provided by the SP layout in terms of EMEMCF. Their charac-
teristics are shown in Table 2 (these data are chosen because they
match with the modal data of two modes of the structure used
for experiments; see further in the paper). Fig. 5 shows the value
of the EMEMCF, k̃i, achieved with the SP, series and parallel
configurations for different values of α (α1 = α2 = α in such
a figure) for the two systems considered. Here the capacitance
value used is Cp = 30.5 nF and will remain the same for all
the numerical simulations from here on. The SP layout allows
to reach values of k̃i higher than the series and the parallel with
the same safety coefficient, as expected. Hence, the attenuation
performance is improved by the SP layout.

OPTIMISATION
This section aims at explaining how to optimise the values

of C1, C2 and R (see Fig. 4).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

k̃
i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

α

k̃
i

k
i

Parallel
Series
SP

FIGURE 5. TREND OF k̃i: SYSTEM 1 (UP) AND SYSTEM 2
(DOWN) OF TABLE 2

Optimal Negative Capacitance
Fig. 5 clearly shows that the closer to the stability limit C1

and C2 are, the higher the value of k̃i is, as expected. Therefore,
the best performance is achieved with a NC values as close as
possible to the stability limit.

Optimal Resistance

34 36 38 40 42 44 46
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency [Hz]

|H
| [

dB
]

 

R=0 Ω
R=∞
R

opt

R>R
opt

R<R
opt

ω
F

FIGURE 6. TREND OF |H(Ω)| (WITH SP) FOR DIFFERENT
VALUES OF R, FROM EQ. (16). THIS SYSTEM HAS ωi = 2π39.72

rad/s, ξi = 0.001, ki = 0.2716, C1 = 6.1 nF, C2 = 52.85 nF,
Ropt = 88.1 kΩ. THE VALUE OF R < Ropt IS 0.5Ropt AND THE
VALUE OF R > Ropt IS 2Ropt.

Eq.(16) shows that the FRF of the system depends on the
value ofR through τe. The optimal value of this last variable can
be found by applying the following procedure based on consid-
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erations on the shape of the FRF. As suggested in [1, 2, 9, 10],
the optimization problem is solved by neglecting the structural
damping ξi. Under such a hypothesis, there exists a point F
common to all FRFs H(Ω) when R is varied (see Fig. 6). The
frequency value ωF associated to point F can be obtained by re-
marking that among all possible FRFs, this point is common to
two particular ones: the one in SC (R = 0) (denoted as H0(Ω))
and the one in OC (R → +∞) (denoted as H∞(Ω)), for which
H(ω) assumes simple mathematical forms. The frequency ωF
where H∞(Ω) and H0(Ω) cross each other has the following
form:

ωF =

√
(ωsc
i )2 + (ωoc

i )2

2

= ωi

√
1 +

k2
iCp

2(Cp − C1)

(
1− Cp − C1

C2 + C1 − Cp

)
(25)

Then, since F is common to all gain curves, the optimum one
(the one which has the lowest peak amplitude) has its peak at
point F . The associated optimal value for R (called Ropt) can be
calculated by solving the following equation as a function of R:

∂|H(Ω)|2

∂Ω

∣∣∣∣
Ω=ωF

= 0 (26)

Finally, the expression of Ropt is:

Ropt =
1

ωF Ceqsp
=

1

ωF

(
1

C − C1
− 1

C2

)
(27)

Fig. 7 (which refers to the first system of Table 2) shows that
the SP configuration tuned with the optimal value Ropt is able to
provide a higher vibration attenuation if compared to the parallel
and series layouts (the optimal resistance values for these two
configurations were computed numerically) when α = α1 = α2

(thus with the same safety margin values), as expected.

EXPERIMENTAL RESULTS
Test set-up description

The analytical and numerical results shown previously were
validated by a series of experiments. The test set-up was an alu-
minium cantilever beam (length of 178.8 mm, width of 3.05 mm
and thickness of 1.1 mm) with two piezoelectric patches bonded
as depicted in Fig. 8. The modes considered for the tests were the
first four flexural modes, whose characteristics are given in Ta-
ble 3 (the shapes of these modes are the usual ones for cantilever
beams). The two piezoelectric patches were electrically linked

36 37 38 39 40 41 42 43 44
−30

−25

−20

−15

−10

−5

0

|H
| [

dB
]

Frequency [Hz]

SP+R
opt

Parallel +R
opt

Series +R
opt

OC
SC

FIGURE 7. |H| FOR THE SC AND OC (WITHOUT NC; SEE THE
CURVES NAMED OC AND SC) AND WITH SERIES, PARALLEL
AND SP CONFIGURATIONS WITH THE OPTIMAL RESISTANCE.
HERE, α = α1 = α2 = 0.4. THE FRFS HAVE BEEN DERIVED
USING THE THEORETICAL MODEL OF EQ.(16)

TABLE 3. MODAL DATA OF THE EXPERIMENTAL SET-UP

Mode ωi/(2π) [Hz] ξi ki

1 39.72 0.0045 0.2716

2 187.34 0.0030 0.1037

3 509.00 0.0026 0.0710

4 986.42 0.0028 0.1222

in series and the capacitance value associated to this series is Cp,
estimated as 30.5 nF (a mean value was used averaging the values
of Cp measured with a multimeter at different frequency values;
indeed, the Cp values for the four modes were very close to each
other). Table 3 shows that the value of ki is high for the first
mode and lower for the other three modes. The cantilever beam
was excited by a contactless electro-magnetic actuator [11]. The
use of such an actuator required to bond a magnet on the beam,
close to its tip (see Fig. 8). The vibrational response of the beam
was measured by a laser Doppler velocimeter. Finally, the NCs
were built with the scheme proposed in Fig. 3. Particularly, C1

was built as a parallel NC (Fig. 3) while C2 as a series NC (i.e.
with the pins of the operational amplifier exchanged with respect
to the configuration of Fig. 3). The operational amplifiers em-
ployed were OPA445.
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FIGURE 8. EXPERIMENTAL SET-UP

Experimental validation
The SP circuit was built with different values of C1, C2 and

R and the resulting FRFs were compared to the analytical expec-
tations. In all the cases the FRFs are expressed in decibels (where
the reference is the maximum of the FRF in SC without NCs for
the mode considered) in order to have a quick understanding of
the attenuation performances. Fig. 9 shows the FRFs for the first
mode of Table 3 for the piezoelectric actuator shunted to a SP
circuit where three different values for R were chosen: 0 Ω (i.e.
the new SC), +∞ (i.e. the new OC) and the optimal value of R
fixed by means of Eq. (27). In this test case, C1 = 19.825 nF,
C2 = 29.954 nF and Ropt = 237.24 kΩ. The figure shows that
the maximum of the FRF with Ropt is close to the intersection
point of the two further FRFs related to the SP configuration (i.e.
point F ), which is in accordance with the procedure described
previously to find the value of Ropt. The three FRFs do not cross
each other precisely in the same point due to the non-zero me-
chanical damping ξi = 0.0045, as explained in [1]. Furthermore,
Fig. 9 also shows that the SP configuration is able to shift both the
SC and the OC eigenfrequencies at the same time, as described
previously. Fig. 10 and 11 show two comparisons between ex-
perimental and analytical FRFs for the first and fourth modes of
Table 3 respectively, when using Ropt. The values of the elec-
trical components used for the SP layout for the first mode were
C1 = 19.825 nF, C2 = 17.837 nF and Ropt = 157.89 kΩ, while
for the fourth mode Ropt = 6.212 kΩ (the values of C1 and C2

are the same). For the series configuration, the negative capaci-
tance value was equal to C1 +C2. For the parallel configuration,
the negative capacitance value was equal to C1. The agreement
between analytical results (dashed lines) and experiments (solid
lines) is very good, proving the reliability of the theoretical ap-
proach described previously. The SP configuration shows better
performances with respect to the traditional configurations (see
Fig. 10 and Fig. 11). The attenuation provided by the SP on the
first mode increases of about 3 dB compared to the series and
of about 8 dB compared to the parallel. As for the fourth mode,
the improvement achieved with the SP is of about 2.5 and 8 dB
respectively.
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FIGURE 9. |H| FOR THE SC AND OC (WITHOUT NC; SEE THE
CURVES NAMED OC AND SC) AND |H| FOR DIFFERENT VAL-
UES OF R (EXPERIMENTAL).

CONCLUSION
This paper dealt with vibration damping by means of piezo-

electric patches shunted to electric impedances based on nega-
tive capacitances. The paper proposes a new layout for the shunt
impedance, which use the properties of negative capacitances in
order to increase the attenuation performance with respect to
the traditional way of using the negative capacitance together
with resistive shunt. This result is achieved by changing at the
same time the short and open circuit resonance frequency of the
electromechanical system by designing an impedance where two
negative capacitances are present at the same time. Analytical
expressions are derived in order to optimally tune the electric
elements of the shunt impedance. Furthermore, the numerical
simulations confirm that the use of this new impedance allows
to increase the modal electromechanical coupling factor with re-
spect to the traditional layouts and thus the vibration attenuation.
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FIGURE 10. |H| FOR THE SC AND OC (WITHOUT NC; SEE
THE CURVES NAMED OC AND SC) AND WITH SERIES AND
PARALLEL NC WITH THE OPTIMAL RESISTANCE, AND |H|
WITH SP AND WITH Ropt FOR THE FIRST MODE OF TABLE
3. THE NUMERICAL (DASHED LINES) AND EXPERIMENTAL
(SOLID LINES) CURVES ARE ALMOST SUPERIMPOSED.
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FIGURE 11. |H| FOR THE SC AND OC (WITHOUT NC; SEE
THE CURVES NAMED OC AND SC) AND WITH SERIES AND
PARALLEL NC WITH THE OPTIMAL RESISTANCE, AND |H|
WITH SP AND WITH Ropt FOR THE FOURTH MODE OF TABLE
3. THE NUMERICAL (DASHED LINES) AND EXPERIMENTAL
(SOLID LINES) CURVES ARE ALMOST SUPERIMPOSED.

Experiments with a system composed of a cantilever beam and
a couple of piezoelectric patches electrically connected in series
showed a very good agreement with the analytical and numerical
expectations.
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