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Abstract

Geometrical Shock Dynamics (GSD) is a simplified model for nonlinear shock wave
propagation for which the front evolution is governed by a local relation between the
geometry of the shock and its velocity, so-called A −M rule. Numerous studies have
proven the ability of the GSD model to estimate correctly the leading shock front in
interaction with obstacles. Nevertheless, a solution for the problem of diffraction over
a convex corner does not always exist, especially for weak shocks. To overcome this
limitation, we propose an ad-hoc modification of the A−M relation for two-dimensional
configurations: an extra term based on the transverse variation of the Mach number
is added. This new closure is fitted against experimental observations, which ensures,
by construction, a correct behaviour for expansive shocks. A Lagrangian numerical
solver is developed, for which this new term is activated only on specific parts of
the front. Results of this new model are compared with the original GSD model,
experiments, and Eulerian simulations for several cases of increasing complexity. A
noticeable improvement of the solution is observed.

Keywords. Shock wave, Geometrical Shock Dynamics, Shock diffraction, Lagrangian
scheme

1 Introduction
The problem of determining the motion of shock waves has received considerable attention
over the last several decades. The development of simplified models, able to estimate the
position, shape, and strength of a shock, is of prime importance in several domains such
as the pyrotechnics industry, explosion hazards, or noise annoyance among others. In 1957,
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Whitham published a hyperbolic model called Geometrical Shock Dynamics (GSD) [32, 33,
34] able to estimate at a moderate cost, but with reasonable accuracy, the propagation of
a shock interacting with geometrical elements. This model is based on the decomposition
of the shock front into elementary ray tubes. Assuming small changes in the ray tube area
and neglecting the influence of the post-shock flow on the shock, a simple relation linking
the local curvature and velocity of the front, known as the A−M rule, is obtained [4].

It is well known that GSD is quite accurate for sustained shock propagation problems. It
has been investigated by numerous authors in the past, for cases of converging flows [25, 24],
propagation through nonuniform media [5], but also for outdoor propagation [3] among
others. Nevertheless, the model suffers from a limitation for the problem of shock diffraction
over a convex wall. For sufficiently weak shocks, no solution of GSD model exists up to the
wall above a given deflection angle. This is in contradiction with experimental studies [29]
showing that the diffracted shock front should still exist at the wall, even for weak shocks and
at large deflection angles. Some modifications of GSD, such as its extension to post-shock
flow [4], or another treatment of the wall condition [1], are able to recover the inflection
point experimentally observed for strong shocks, but do not remove the limitation. The
more recent Kinematic model [26, 27, 16], is no more efficient to remove this restriction [18].
Oshima et al. [15] studied several extensions of Whitham’s A−M rule to improve the GSD
model. They concluded that all these modifications, based on one-dimensional flow analysis,
are unable to reproduce the experimental behaviour for the diffraction of a weak shock over
a convex wall. These authors suggested that this difference could be caused by a kind of
interaction between ray tubes. He thus proposed a correction of the A−M relation by taking
into account the shear stress in the Euler equations holding in each ray tube, with a closure
similar to a turbulent viscosity. Although no physical reason justifies this approach, the
gap between a linearized solution from this theory and experiments is reduced for incident
Mach numbers ranging from 1.5 to 2.8. Another derivation with the only assumption of
interaction between ray tubes is presented in [14]. In both cases, the modified A −M rule
involves complex terms describing some transverse variation along the shock curve. The
relation seems difficult to solve and requires an in-depth study which has never been carried
out. Moreover, there is no indication that the restriction is removed.

From a numerical point of view, many algorithms have been developed for the GSD model.
They are based on front-tracking methods [7, 20], Eulerian conservative schemes [22, 23],
level set methods [31], or a fast-marching like approach [12].

The objective of this paper is to present an ad-hoc extension of the GSD model, much
simpler than Oshima’s one, and designed to systematically remove the limitation of the
model. For this purpose, the derivation of the GSD model in a two-dimensional configuration
is first reviewed in section 2. Using experimental data, we give in section 3 an empirical law
for the planar shock diffraction over a convex corner under the assumption that the solution is
self-similar. We then propose a modification of the A−M rule by modeling a transverse flow
with this law. Following [7], but with a different integration method for the A−M relation,
a 2D conservative Lagrangian scheme is developed and validated in section 4. Finally, results
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are discussed in section 5.

2 Problem set up
In this paper, we consider the propagation of a two-dimensional shock wave in a uniform,
quiescent, and calorically perfect gas. We denote by ρ, p, and v the density, pressure, and
fluid velocity respectively. For a perfect gas, the speed of sound c reads

c =
√
γp

ρ
,

with γ the specific heat ratio of the gas, supposed constant and equal to 1.4 for air. These
variables are indexed by 0 for the initial state of the gas at rest.

We introduce the shock Mach number:

M = U

c0
≥ 1,

where U denotes the shock velocity. The shock position, x, is then a solution of the Ordinary
Differential Equation (ODE):

dx

dt = Un = c0Mn, (1)

where t is the arrival time of the shock, and n is the unit outward normal vector at the front.

2.1 Geometrical Shock Dynamics model in a two-dimensional con-
figuration

In this section, we recall the classical derivation of the Geometrical Shock Dynamics (GSD)
model in two dimension (2D) [32], which will be useful for our model extension.

The key idea behind the GSD model consists in splitting the shock front into elementary
areas, A, propagating along ray tubes in which the cross-flow is neglected. The model of
shock propagation is thus reduced to the 1D problem of a planar shock moving into a channel
with varying cross section.

The successive positions of the shock are given by a set of curves α = cst, shown as full
lines in figure 1. The orthogonal trajectories of this set of curves, called rays, are represented
by curves β = cst and are drawn as dashed lines. The coordinate α and the arrival time
of the front, t, are related by α = c0t for a single pass front. Since c0 is constant, α is also
called a pseudo-time for the sake of simplicity. Geometrical relations in the local coordinates
of the shock, (α, β), are straightforward [32]:

∂θ

∂β
− 1
M

∂A

∂α
= 0 (2a)

∂θ

∂α
+ 1
A

∂M

∂β
= 0, (2b)
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Figure 1: 2D shock wave propagation in the Geometrical Shock Dynamics theory. The solid
black lines are the successive shock positions and correspond to α coordinates. The dashed
blue lines are the rays and correspond to β coordinates. θ is the direct angle between the
(Ox) axis and rays. Rays delimit ray tubes of area A.

where θ is the direct angle between the (Ox) axis and rays. Two neighbouring rays delimit
a ray tube of cross-sectional area A. It is worth noticing that, since A measures the distance
between rays, the curvilinear abscissa along the shock, s, is determined by the differential
relation: ds = Adβ. By considering a ray tube as a channel with rigid walls, a simple law
linking A to M closes the system. This relation, called A−M rule, is obtained from the 1D
Euler system with varying cross-section [4]:

1
A

dA
dα + Mλ(M)

M2 − 1
dM
dα + h(M)Q = 0, (3)

where
λ(M) =

(
1 + 2

γ + 1
1− µ2

µ

)(
1 + 2µ+ 1

M2

)
,

h(M) = γ + 1
2

µ(µ− 1)
M2 − 1 ,

and µ is the post-shock Mach number:

µ =
√

(γ − 1)M2 + 2
2γM2 + 1− γ .

The term Q =
(∂tp+ ρc∂tv)−

p0c3
0

, indexed by − for quantities just behind the shock, contains
all the post-shock flow terms. Q is an unknown of the problem. As

lim
M→1

h(M) = −0.6 and lim
M→+∞

h(M) = 0,

Whitham chose to neglect this term under the assumption of the smallness of post-shock
effects Q. The resulting equation,

1
A

dA
dα + Mλ(M)

M2 − 1
dM
dα = 0, (4)
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appears to work remarkably well in a large number of configurations [34, 7, 18]. Finally, the
GSD model is composed of the geometrical system (2) and the A−M relation (4).

The function λ is bounded and increasing from 4 at M = 1 to

λ∞ = 1 + 2
γ

+
√

2γ
γ − 1 ≈ 5.074, for γ = 1.4, (5)

as M → +∞.
From (4), A depends only on M and can be considered as dimensionless:

A(M) = exp

− M∫
M0

mλ(m)
m2 − 1 dm

, (6)

with M0 a reference Mach number. It is straightforward to prove the hyperbolicity of the
system (2) provided that A′(M) < 0, which is verified as λ(M) > 0 and M ≥ 1. Some
waves may thus develop on the shock front. They are responsible for the modification of the
intensity, shape, and orientation along with front evolution. In particular, discontinuities,
called shock-shocks, appear. They correspond to the triple point position on the shock when
a Mach stem arises. These perturbations travel at velocity

Adβ
dα = ±Au(M), (7)

with

Au(M) = A(M)u(M) =

√√√√M2 − 1
λ(M) . (8)

The characteristic form of the GSD system (2) is expressed as:{
∂

∂α
± u(M) ∂

∂β

}
(θ ± ω(M)) = 0, (9)

where

ω(M) =
M∫
1

dm
Au(m) =

M∫
1

√
λ(m)
m2 − 1dm < +∞.

Finally, relations (9) provide the Riemann invariants:

θ ± ω(M) = cst, on C± : dβ
dα = ±u(M). (10)

The Cartesian coordinates (x, y) can be expressed from the local coordinates (α, β):
∂x

∂α
= M cos θ ; ∂y

∂α
= M sin θ (11a)

∂x

∂β
= −A sin θ ; ∂y

∂β
= A cos θ. (11b)
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Considering (11) and (7), one has along the characteristics C±:
dx
dα = M cos θ ∓ Au(M) sin θ

dy
dα = M sin θ ± Au(M) cos θ.

(12)

The characteristics C± can be rewritten as

C± : dy
dx = tan (θ ± ν), with tan (ν) = Au(M)

M
. (13)

In the presence of an obstacle, wall boundaries coincide with rays in Whitham’s theory.
Consequently, the front is orthogonal to the wall.

2.2 Radial solutions for GSD
For a planar (d = 1), cylindrical (d = 2) or spherical (d = 3) shock wave, the solution
depends only on the radial coordinate r. The Mach number, M , and the arrival time, α, are
solution of the one-dimensional ODE:

dα(r)
dr = 1

M(r) (14a)

dM(r)
dr = − M2(r)− 1

M(r)λ(M(r))
d− 1
r

. (14b)

For a given initial condition, α(r0) = α0 and M(r0) = M0 where r0 is the initial shock
position, this system can be solved numerically with a high-order algorithm. However,
analytical solutions are easily obtained in the strong shock limit (M � 1):∣∣∣∣∣∣∣∣∣∣∣

αa(r) = α0 + r0
M0( d−1

λ∞
+1)

((
r
r0

) d−1
λ∞

+1
− 1

)

Ma(r) = M0
(
r0
r

) d−1
λ∞ ,

where λ∞ is given by (5). These solutions can be expressed in terms of α:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ra (α) = r0

(
(α− α0)M0

r0

(
d− 1
λ∞

+ 1
)

+ 1
)1/( d−1

λ∞
+1)

Ma(α) = M0

(
r0

r(α)

) d−1
λ∞

,

(15)

which is helpful for the mesh convergence studies reported in section 4.5.
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α = 0 α > 0

M0 , θ0=0 M0 , θ0=0

M
w  , θ

w

incident shock

rarefaction
wave

diffracted shock

π+θw

(xw,yw)

(a)

α = 0 α > 0

M0 , θ0=0 M0 , θ0=0

Mw
 , θw

θw

χ

incident shock

shock-shock

Mach stem

(xw,yw)

(b)

Figure 2: Scheme of a planar shock diffraction over a convex corner (Fig. (a), expansion
wave) and over a concave corner (Fig. (b), shock-shock occurrence). The deflection angle of
the corner is denoted θw.

2.3 Riemann problem
The elementary Riemann problem corresponds to the diffraction of a planar shock over a
corner as illustrated in figure 2. The shock travels from the left to the right at an initial Mach
number M0 and diffracts over the corner at time α = 0. The first state for the Riemann
problem is given by the incident shock: (M0, θ0 = 0). After diffraction, the wall Mach
number, Mw, and the deflection angle, θw, represent the second state. As these quantities
are independent of α, the point of interaction between the shock and the wall is given by

xw = x0 + αMw cos θw, yw = y0 + αMw sin θw, (16)

using (11a), where (x0, y0) = (0, 0) is the coordinate of the corner. For a convex corner, a
simple wave links the states (M0, θ0) to (Mw, θw), while, for a concave corner, a shock-shock
appears on the shock front. These problems are well detailed in [34, 12].

Continuous case. For the convex corner case, all C− characteristics cross the initial shock.
The solution is a simple wave and is self-similar [34]. The shock front is then split in three
parts (see Fig. 2(a)) from top to bottom:

• the unperturbed, incident straight shock;

• then a smooth transition under the form of a curved shock front, which plays here the
role of an expansion fan for the Riemann problem of the GSD model;

• and finally a straight shock, orthogonal to the wall, with a constant Mach numberMw.
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The rarefaction fan takes its origin at the corner. On each C+ characteristic of the fan, the
Mach number, M , and the orientation of the ray, θ, are linked by the differential expres-
sion (9):

dθ
dα =

√
λ(M)
M2 − 1

dM
dα on C+ : dy

dx = tan (θ + ν) . (17)

By integrating (17) from the initial time α = 0, where θ = θ0 = 0 and M = M0, to time α,
one gets:

θ − θ0 = ω(M)− ω(M0) =
M∫

M0

dm
Au(m) . (18)

Finally, as θ and M are constant along each characteristic, the solution can be expressed
as:

M = M0 for θ = θ0 (19a)

M∫
M0

dm
Au(m) = θ − θ0 for θw ≤ θ ≤ θ0 (19b)

M = Mw for θ = θw, (19c)

where (8) gives the expression of Au. From (19) and (12), the form of the shock in the
rarefaction fan at pseudo-time α is determined by∣∣∣∣∣∣∣

x = x0 + α (M cos θ ∓ Au(M) sin θ)

y = y0 + α (M sin θ ± Au(M) cos θ) ,
(20)

for θw ≤ θ ≤ θ0. For example, we present in figure 3 the solutions at α = 1 for M0 = 1.5 and
several deflection angles, θw, obtained with (19)-(20). The integral in (19b) is approximated
with a Simpson method. For each θ in the set {θi ∈ [θw, θ0], i = 1, . . . , N}, the nonlinear
equation is solved with a Newton algorithm. The relation (13) gives the first and last
characteristics with (M, θ) = (M0, θ0) and (M, θ) = (Mw, θw) respectively. As the solution
is self-similar, we observe that the shock fronts describe the same curve for any θw. This
property will be used later on in this paper.

Shock-shock occurrence. For a concave corner, a shock-shock immediately appears on
the shock front as sketched in figure 2(b). Corresponding Rankine-Hugoniot relations must
be developed in consequence [34]. We denote χ the direct angle between the (Ox) axis and
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θ
w=-10°

θ
w =-30°

θ
w =

-5
0
°

θ
w
=
-7

0
°

θ
w

=
-9

0
°

First characteristic

Last characteristic

Figure 3: Diffraction of a planar shock at Mach number 1.5 over a convex corner of angle
θw < 0. Color solid lines: shock front position for the GSD model (eqs. (19), (20) and (13)) at
α = 1 for different deflection angles, θw. Dash-dotted line: first characteristic (identical for
all angles). Dashed color lines: last characteristic of the expansion fan (same color code as
for shock fronts). Thin black lines: rigid wall position. Value of deflection angle is reported
on the figure with same color code as shock front.

the shock-shock trajectory. The solution (Mw, χ) is given implicitly by

tan(θw) =

√√√√((Mw
M0

)2
− 1

)(
1−

(
Aw
A0

)2
)

1 + Aw
A0

Mw
M0

(21a)

tan(χ− θw) = Aw
A0

√√√√√√√√
1−

(
M0
Mw

)2

1−
(
Aw
A0

)2 , (21b)

where Aw

A0
= A (Mw) is defined by (6). Mw is obtained from the first relation by using a

Newton algorithm, χ is then calculated with the second one.

2.4 Limitation of the GSD model
In the case of diffraction over a convex corner, θ − θ0 < 0. Then, from (18), the Mach
number decreases along the shock from M0 to Mw, the value at the wall. Since θw − θ0 and
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M0 are known, the wall Mach number is calculated with the expression holding on the last
characteristic:

Mw∫
M0

√
λ(m)
m2 − 1dm = θw − θ0 < 0. (22)

From (22), one can easily show that a solution such that Mw ≥ 1 exists if and only if
M0 ≥Mlim > 1, with Mlim the minimal reachable value of the incident Mach number:

Mlim∫
1

√
λ(m)
m2 − 1dm = −θw. (23)

Let us remark that this problem is not encountered for the compressive problem. Indeed,
in this case we have Mw ≥ M0 ≥ 1 and (21a) always provides a solution according to the
intermediate value theorem.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  20  40  60  80  100  120  140  160  180

1.310

90.0 113.7

M
0

-θw (deg)

No solution
up to the wall

Figure 4: Minimal value for the initial Mach number, M0, with respect to θw in order for a
solution to exist for the planar shock diffraction problem over a convex wall (relation (23)).
There is no solution up to the wall if (M0, θw) is strictly below the curve. Two particular
cases discussed in text are indicated as examples by red and blue dotted lines.

The restriction (23) is plotted in figure 4. For any pair of variables (M0, θw) in the area
below the curve, there is no solution up to the wall for the diffraction of a planar shock over
a convex corner. For instance, we have Mlim ≈ 1.310 for θw = −π/2, and if M0 = 1.1, the
solution exists up to a deflection angle of approximately −49◦ as shown in figure 5.

Skews [29] has shown experimentally that, contrary to the GSD prediction, the diffracted
shock front still exists at the wall, even for weak shocks (M0 = 1.2) and at large deflection
angles (θw up to −165◦), as shown in figure 6. Indeed, for M0 = 1.5 for example, we see that
GSD does not have a solution for θw < −113.7◦, whereas experiments show that the wall
Mach number Mw keeps larger than unity up to −150◦ at least. The extension of the GSD
model with post-shock flow effects [4] does not seem to correct this default as Mw is further
reduced in this case in comparison to the classical GSD form. Alternative approaches, such
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 0  0.2  0.4  0.6  0.8  1  1.2
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θlim ≈ -48.991
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x

Figure 5: Shock position for the GSD model for the planar shock diffraction of a shock at
M0 = 1.1 over a convex corner at θw = −π/2 (eqs. (19)-(20)). The GSD model has no
solution in the area between the wall and the red dotted line.

as the Kinematic model [18], or theoretical modifications of the A−M relation [15, 14], do
not seem much more efficient to remove this restriction.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  20  40  60  80  100  120  140  160

M0=4.0

M0=3.0

M0=2.0

M0=1.5

113.7

M
w

−θw (deg)

Exp. data
GSD model
FIT

Figure 6: Diffraction of a planar shock over a convex corner. Wall Mach number, Mw,
with respect to deflection angle, θw in degrees, for different incident Mach numbers M0.
Comparison between experimental data [29] (black dots), the GSD model (22) (black solid
line), and our analytical fit (24)-(25) (red dashed line).
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3 Taking into account transverse flow in Whitham’s
A−M rule

Oshima et al. [15, 14] proposed a generalized theory of GSD which includes shear effects.
The correction of the A−M relation suggests a kind of interaction between ray tubes which
transposes into a transverse variation along the shock curve. The study of this extension is
limited to only a linearized solution which shows some improvement of the solution. Indeed,
the correction increases the wall Mach number, which in the range from M0 = 1.5 to 2.8, is
in better agreement with experiment. Nevertheless, the modified A−M relation is complex
to solve in general and there is no indication that the limitation is removed. Furthermore,
the transverse terms will modify the behaviour of the model for compressive waves (concave
corner), which may lower the quality of the model.

Here, we propose a simpler closure than previous works [15, 14], based on the experiments
of Skews [29]. It is designed so as to remove the limitation of the GSD model for all expansive
shocks and do not affect compressive parts.

3.1 Empirical law for the rarefaction fan
For a given deflection angle θw, Skews’ experimental data [29], presented in figure 6, can be
gathered along curves starting from the point (M0,Mw) = (1, 1) and having the expression:

M2
w − 1

M2
0 − 1 = p (θw) , θw < 0 in rad,

as shown in figure 7(a), or equivalently

Mw (θw,M0) =
√

1 + p (θw) (M2
0 − 1). (24)

We define an analytical approximation for p and use a nonlinear regression to obtain

p (θw) = exp (kθw) , with k = 0.985. (25)

The choice of this simple form will be explained in section 3.2. The fit p (θw) is plotted in
figure 7(b) and leads to only a slight difference with calculated slopes. The expression (24)-
(25) is drawn in figure 6. A much better agreement with experimental data is found for
M0 ≤ 2 and −θw < 60◦ in comparison to GSD. An overestimation of the wall Mach number
is observed for strong shocks (M0 ≥ 2) and large deflection angles (−θw > 80◦), nevertheless
results appear acceptable in regard to the difference between the GSD model and Skews’s
data. In this configuration, the law (24)-(25) predicts a wall Mach number with the same
order of accuracy as Whitham’s theory.

Function (25) is established from experimental data between 1.5 ≤M0 ≤ 4 and −140◦ ≤
θw ≤ 0, but is used for all θw ≤ 0 and M0 ≥ 1 in practice.

From a modelling point of view, it is desirable that the wall Mach number, and a fortiori
the last characteristic of the rarefaction fan, verify the law (24)-(25). Since the GSD solution
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Figure 7: Fig. (a): M2

w with respect to M2
0 from Skews’ experimental data [29]. Fig.

(b): Function p(θw) from curves M2
w − 1 = p(θw)(M2

0 − 1). Red dashed line is analytical
approximation (25).

is self-similar for planar shock diffraction over convex corner, then for a given incident Mach
number M0 and a pseudo-time α, the front shocks share the same rarefaction fan for any
deflection angles θw as shown in figure 3. Consequently, we propose that relation (24) holds
on each C+:

M (θ,M0) =
√

1 + p (θ) (M2
0 − 1). (26)

This expression is written under the following differential form between θ and M , available
in the rarefaction fan:

2M
M2 − 1

dM
dα = p′ (θ)

p (θ)
dθ
dα on C+. (27)

For the p law (25), the relation (27) yields:

2M
M2 − 1

dM
dα = k

dθ
dα on C+. (28)

3.2 Ad-hoc modification of the A−M rule
We propose an ad-hoc modification of Whitham’s A −M relation by taking into account
the variation of the Mach number along the shock (variation with respect to the curvilinear
abscissa, s). We recall that s and β are linked by ds = Adβ. We choose to generalize (4) as:

1
A

∂A

∂α
+ Mλ(M)
M2 − 1

∂M

∂α
+H (κ) f(M)

∣∣∣∣∣ ∂MA∂β
∣∣∣∣∣ = 0. (29)

Notice that there is no transverse variation for the radial configuration and consequently (29)
reduces to the classical A−M rule in this case.
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Since the GSD model works well in compressive zones [18], the additional term has to be
active only in expansive regions of the shock front, where the curvature, κ, is positive. In
this way, the function H is introduced:

H(κ) =
{

0 if κ ≤ 0
1 if κ > 0.

The function f depends only on M . It is modeled using the empirical law (28), which leads,
after calculus detailed hereafter, to

f(M) = kλ(M)
2 − 2M2

k(M2 − 1) , with k = 0.985. (30)

The proof of (30) starts by injecting the modified A−M relation (29) in the system (2).
One obtains 

∂M

∂α
+ M2 − 1
λ(M)A

∂θ

∂β
+ η

f(M) (M2 − 1)
Mλ(M)A

∂M

∂β
= 0 (31a)

∂θ

∂α
+ 1
A

∂M

∂β
= 0, (31b)

where η = H(κ) sign
(
∂M
∂β

)
. The eigenvalues of the system (31), u±, are given by:

Au±(M) = η±f(M) (M2 − 1)
2Mλ(M) ± 1

2

√√√√M2 − 1
λ(M)

√√√√(η±)2 f(M)2(M2 − 1)
M2λ(M) + 4,

with η+ and η− the values of η following respectively the characteristic C+ and C−. The
absolute value on the transverse term in (29) ensures the symmetry of the waves: u+(M) =
−u−(M). The case of the interaction of two shocks at Mach numberM0, shown in figure 8, is
thus identical to the planar diffraction of a shock over a convex corner presented in figure 2(a).
Provided the function M 7→ f(M) is real, the eigenvalues u± are real and the system (31) is
hyperbolic. In particular, if ηf(M) is zero, this system reduces to the GSD model.
The characteristic form of (31) is:

dθ
dα ±

1
Au+(M)

dM
dα = 0 on C± : dβ

dα = ±u+(M),

giving the Riemann invariants:

θ − θ0 ±
M∫

M0

dm
Au+(m) = cst on C±.

Let us now consider the diffraction of a planar shock over a convex corner as explained
in section 2.3. The solution is a simple wave (all C− characteristics cross the initial data
θ = θ0 = 0 and M = M0) and is completely defined by:

dθ
dα = 1

Au+(M)
dM
dα on C+. (32)
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Mw

(Ox) axis

Figure 8: Interaction of two planar shocks at Mach numberM0 with a direct angle of θw and
−θw with respect to the (Ox) axis. This problem is identical to the planar shock diffraction
over a convex corner sketched in figure 2(a).

In order to model the function f , (32) is identified with the empirical law (28):

k
M2 − 1

2M = Au+(M) = f(M) (M2 − 1)
2Mλ(M) + 1

2

√√√√M2 − 1
λ(M)

√√√√f(M)2(M2 − 1)
M2λ(M) + 4, (33)

as η+ = 1 for this problem. After some calculation, the expression (30) follows. Another
choice of closure, using a more complicated p law than (25), implies to consider the orientation
of the ray, θ, in the A −M relation. Such an expression is not considered here in order to
keep a simple expression between A and M .
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 0
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0.468385

2.63

f(
M

)

MFigure 9: Representation of M 7→ f(M) (eq. (30)).

The graph of M 7→ f(M) is drawn in figure 9. For a strong shock (M � 1), f tends to
a finite value:

f(M) ∼ kλ∞
2 − 2

k
≈ 0.468385,
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while in the weak shock limit (M ∼ 1), f is not bounded:

f(M) ∼ − 1
k(M − 1) .

This is a desirable property for overcoming the limitation of the GSD model for weak shocks.
For a Mach number lower than Mc ≈ 2.631, the correction accelerates the shock front in
comparison to the original model. Conversely, the shock is slowed down with a Mach number
up to Mc. The GSD model with the A −M relation (29) will be referred as GSDT model

−1
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 0.2

 0.4

 0.6

−0.2  0  0.2  0.4  0.6  0.8  1  1.2  1.4

M0=1.1

θlim ≈ -48.991
°

y

x

Eulerian simulation

GSD   model

GSDT model

(a)
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 1.04

 1.06
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 1.1

−90 −75 −60 −45 −30 −15  0

Mw=1.022

-48.991

M

θ (deg)

GSD   model
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(b)

Figure 10: Diffraction of a planar shock at Mach number M0 = 1.1 over a convex corner of
angle θw = −π/2. The solution is given by (19)-(20) with (8) for the GSD model and (33)
for the GSDT model. Fig. (a): Shock front at α = 1. Fig. (b): Mach number along the
shock.

(T for Transverse) in the remainder of this article.
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3.3 A first analytical example
As a first example, the results for the diffraction of a planar shock at Mach numberM0 = 1.1
over a convex corner of angle −90◦ are shown in figure 10. In comparison to figure 5,
the solution with GSDT now exists up to the wall. In particular, the Mach number at
the wall is around 1.022, calculated with the expression (24)-(25). We can observe the
difference of the expansion wave between both models. In this example, the diminution
of the Mach number along the shock is smaller with GSDT compared to the GSD model
(see Fig. 10(b)). In figure 10(a), we observe a better estimation of the shock front with
GSD up to the deflection angle of −48.991◦ compared to an Eulerian simulation (Eulerian
simulations characteristics are described in [18]). However, the modified GSDT model does
predict a solution with reasonable accuracy beyond this limit angle. The small difference with
the Eulerian simulation results is marginal in regard to the gain in terms of new potential
applications.

More examples will be presented in section 5.1.

4 Numerical scheme
In this section, the numerical scheme aimed at solving the GSDT model for two-dimensional
problems is detailed. It is a natural approach for GSD, inspired from Henshaw et al. [7],
based on the Lagrangian motion of the shock and on its decomposition in ray tubes. The
algorithm dynamically manages the number of points on the front through a process called
regularization. Points are inserted in expansive regions to maintain acceptable surface res-
olution, and are deleted in compressive zones in order to avoid intersecting rays and to fit
shock-shocks.

In the original scheme, the shock front is interpolated with a global cubic spline to
estimate unit normal vectors at the front. Points are then evolved by integrating the discrete
version of (1) with a Leap-Frog scheme initialized with an explicit Euler step. A centered
scheme is used to calculate the ray tube area, and a smoothing procedure, called filtering, is
applied to dampen the high-frequency errors in the position of points. The Mach number is
estimated by integrating the A−M rule in each discrete ray tube from the reference position.
This ensures the scheme to be conservative, especially after the regularization step.

We propose some modifications of this Lagrangian scheme in order to improve its ro-
bustness and to deal with the transverse term. The global spline interpolation produces
oscillations, particularly in regions of large gradient such as the vicinity of a shock-shock.
Furthermore, such an interpolation implies a global dependency of data. We substitute this
procedure with a local monotone cubic spline [8] which prevents these difficulties. Second,
points are propagated with a Total Variation Diminishing (TVD) third order Runge-Kutta
scheme [6], which avoids the reinitialization of the scheme after regularization or filtering.
Moreover, this method is compatible with a centered scheme and limits oscillations. Last
but not least, we adapt the discrete version of the A −M relation in order to integrate it
step by step but still keeping the scheme conservative. This allows an easy integration of
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the transverse term (29).
The main steps of the algorithm are described below and are summarized in subsec-

tion 4.4.

4.1 Algorithm description
Let us consider an initial shock front, at time α0, with Cartesian coordinates denoted by:

x(α0, β) = (x(α0, β), y(α0, β))T .

The initial Mach number distribution is M0 = M(α0, β). It has not to be uniform along the
shock. As β and the curvilinear abscissa, s, are linked by ds = Adβ, we can equivalently
consider the curvilinear abscissa.

Figure 11: Scheme of the shock front evolution discretization in the Lagrangian scheme.

Let (βi)i=1,...,N be a discretization of the β coordinate. The shock front at time α ≥ α0
is approximated by a finite set of points:

x (α, βi) = xi (α) = (xi, yi)T for i = 1, . . . , N.

We introduce the discrete curvilinear abscissa along the shock:

si =
{

0 if i = 1
si−1 + ‖~xi − ~xi−1‖ if i = 2, . . . , N, (34)

where ‖ ~X‖ =
√
x2 + y2 for ~X = (x, y)T , and the space step: ∆si = si−si−1, for i = 2, . . . , N .

The initial shock discretization is uniform and is defined by:

∆s = 1
N

N∑
i=2

(
si(α0)− si−1(α0)

)
= sN(α0)

N
.

Each point xi(α) is associated to a ray tube of local area Ai(α), a Mach number Mi(α),
and a unit outward normal vector ni(α). Once all that information are known, points are
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moved to time α + ∆α by integrating the discrete version of (1), that is
dxi

dα = Mini for i = 1, . . . , N, (35)

with a TVD third order Runge-Kutta scheme [6]:

x
(1)
i = xi(α) + ∆αMi(α)ni(α) (36a)

x
(2)
i = 3

4xi(α) + 1
4x

(1)
i + ∆α

4 M
(1)
i n

(1)
i (36b)

xi(α + ∆α) = 1
3xi(α) + 2

3x
(2)
i + 2

3∆αM (2)
i n

(2)
i . (36c)

The quantities Mi and ni are evaluated after each substep using the procedures described
hereafter. Figure 11 sketches the discrete shock front propagation.

The time step, ∆α, is restricted by the stability condition of the algorithm, and by the
limit on the number of points interacting with a material boundary.
Proposition 1 The scheme is stable under the Courant-Friedrichs-Lewy (CFL) condition:

∆α ≤ ∆αs = dmin∆s min
i=1,...,N


√√√√ λ(Mi)
M2

i − 1 ,
2Mi

k(M2
i − 1)

,
where dmin is a parameter introduced after.

Proof 1 This inequality is a consequence of the velocity of the perturbations on the shock
front (7):

ds
dα = ±Au(M).

It is given by (8) for compressive regions and (33) for expansive regions.
�

Proposition 2 Rays do not cross under the condition:

∆α ≤ ∆αc = min
i∈I

(
li−1

Mi−1
,
ki
Mi

)
, (37)

where

li−1 =
−−−−→xi−1xi · ~ni−1 −

(−−−−→xi−1xi · ~ni
)

(~ni−1 · ~ni)
1− (~ni−1 · ~ni)2 (38a)

ki =−
−−−−→xi−1xi · ~ni −

(−−−−→xi−1xi · ~ni−1
)

(~ni−1 · ~ni)
1− (~ni−1 · ~ni)2 , (38b)

and
I = {i = 2, . . . , N / li−1 > 0, ki > 0 and |~ni−1 · ~ni| 6= 1} .
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Proof 2 Let us consider two neighbouring points on the front, xi−1 and xi, moving in the
direction ~ni−1 and ~ni respectively. The possible cross point of the associated lines, Q, exists
if and only if |~ni−1 · ~ni| 6= 1. We then find li−1 and ki two strictly positive real numbers such
that −−−→

xi−1Q = li−1~ni−1 and −−→
xiQ = ki~ni. (39)

We have −−−−→xi−1xi = li−1~ni−1−ki~ni, and by contracting this relation with ~ni−1 and ~ni, (li−1, ki)
is solution of the linear system:

−−−−→xi−1xi · ~ni−1 = li−1 − ki (~ni−1 · ~ni)

−−−−→xi−1xi · ~ni = −ki + li−1 (~ni−1 · ~ni) .

This system is invertible provided that |~ni−1 · ~ni| 6= 1, for which (38a)-(38b) is solution.
Finally, the inequalities (37) come from a step of Euler integration for i = 2, . . . , N .

�

Finally, the time step is chosen as

∆α = δmin (∆αs,∆αc) , (40)

where δ ∈]0, 1[ is a safety coefficient chosen equal to 0.5 in practice.
An interpolation of the shock surface is performed over the data (si, xi)i=1,...,N , (si, yi)i=1,...,N

using a monotone cubic method [8] in order to avoid the creation of new extrema. The in-
terpolates are denoted s 7→ X(s) and s 7→ Y (s) and are C1 at least. The unit normal vector
is calculated accordingly:

~ni = (Y ′(si),−X ′(si))T√
X ′(si)2 + Y ′(si)2

for i = 1, . . . , N. (41)

The local area is obtained with a centered scheme for the interior points and a one-sided
scheme at the endpoints:

Ai = πν

2



∆s2 (x2 + x1)ν if i = 1

∆si+1 (xi+1 + xi)ν
+∆si (xi + xi−1)ν if i = 2, . . . , N − 1

∆sN (xN + xN−1)ν if i = N,

(42)

with ν = 0 for a 2D planar configuration and ν = 1 for a 2D axisymmetrical flow with (Oy)
the axis of rotation. The Mach number at time α+ ∆α and at node xi, Mi(α+ ∆α), is then
obtained by integrating numerically the A −M relation (29) along each ray tube between
times α and α + ∆α:

log
(
Ai(α + ∆α)

Ai(α)

)
+

Mi(α+∆α)∫
Mi(α)

mλ(m)
m2 − 1 dm+

α+∆α∫
α

H (κ) f(M)
∣∣∣∣∣∂M∂s

∣∣∣∣∣dτ = 0. (43)
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The resolution of (43) will be presented in subsection 4.2.
After the step of propagation to time α + ∆α, points are inserted in expansive regions

to maintain acceptable surface resolution, and are deleted in compressive regions in order to
avoid the excessive accumulation of points and fit shock-shocks. For i = 2, . . . , N , we require
that the point spacing verifies:

dmin∆s ≤ ∆si ≤ dmax∆s, (44)

where dmin = 1
2 and dmax = 3

2 as in the original scheme. If ∆si < dmin∆s, the point xi is
removed. If ∆si > dmax∆s, a new point, xi− 1

2
, is added using the cubic spline interpolation

evaluated at 1
2 (si−1 + si). In such cases, the same points are added or removed on the initial

shock front in order to preserve the area ratio Ai(α+∆α)
Ai(α0) . This step implies to rewrite (43) to

ensure the conservativity of the scheme and will be detailed in subsection 4.2.
Finally, a simple smoothing procedure is applied to dampen the high-frequency errors in

xi as proposed by Henshaw et al. [7]. After ns iterations (between 10 and 50 in practice),
we let for i = 2, . . . , N − 1:

xi ←
hr

hl + hr
xi−1 + hl

hl + hr
xi+1, (45)

with
hl = ‖~xi − ~xi−1‖ and hr = ‖~xi+1 − ~xi‖,

where we start with i-even, and then i-odd. The smoothing procedure (45) is a first order
approximation of the discrete system of equations:

d2xi

ds2 ≡ 0 for i = 1, . . . , N,

for a non-uniform distribution of points, and a second order approximation otherwise.
In the presence of obstacles, wall boundary conditions must be applied to keep the shock

locally normal to the wall. This is achieved by clamping the spline interpolation at the
boundary:

X ′(sbound) = Nx and Y ′(sbound) = Ny,

where sbound defines the shock boundary and N = (Nx, Ny)T is the unit normal vector to
the wall. In our implementation, the shock can not split and so sbound = 0 or sbound = sN .
The normal vector at sbound is then defined by:

n (sbound) = (Ny,−Nx)T ,

which forces the point x(sbound) to move along the wall. For free boundary at the edge of
the shock, the spline is natural:

X ′′ (sbound) = 0 and Y ′′ (sbound) = 0.
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Figure 12: Redefinition of the ray tubes after deletion of the point xj.

4.2 Integration of the A−M relation
The addition or deletion of some points on the shock front can lead to a loss of conservativity
of the scheme. Let us explain this point for the GSD model, that is with H ≡ 0 in (29).

In the original algorithm [7], this difficulty is avoided by integrating the A−M relation (4)
from the initial time α0 to α + ∆α:

log
(
Ai(α + ∆α)
Ai(α0)

)
+
Mi(α+∆α)∫
Mi(α0)

mλ(m)
m2 − 1 dm = 0, (46)

as all the information is known at α0. As long as there is no regularization, (46) is similar
to the integration of (4) from α0 to α, followed by the integration from time α to α + ∆α.
Knowing the information at time α, the Mach number at time α + ∆α can be calculated
with

log
(
Ai(α + ∆α)

Ai(α)

)
+
Mi(α+∆α)∫
Mi(α)

mλ(m)
m2 − 1 dm = 0. (47)

However, this is no longer the case after regularization.
Let us assume that the front is regularized for the first time at α + ∆α, and suppose

that the point xj is removed. The ray tubes indexed by j − 1 and j + 1 are then modified
as sketched in figure 12, and consequently Aj−1 and Aj+1 have changed. Let us denote ψ̃ a
quantity before regularization, and ψ this quantity after. Both quantities are equal for the
initial data: ψ(α0) = ψ̃(α0). At node xj+1, the Mach number at α+∆α should be evaluated
with

log
(
Aj+1(α + ∆α)

Aj+1(α)

)
+
Mj+1(α+∆α)∫
M̃j+1(α)

mλ(m)
m2 − 1 dm = 0, (48)
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using (47). Its value must be the same with an integration from the initial time (46):

log
(
Aj+1(α + ∆α)
Aj+1(α0)

)
+
Mj+1(α+∆α)∫
Mj+1(α0)

mλ(m)
m2 − 1 dm = 0. (49)

The Mach number at time α is known before regularization and can be calculated with:

log
(
Ãj+1(α)
Ãj+1(α0)

)
+
M̃j+1(α)∫

Mj+1(α0)

mλ(m)
m2 − 1 dm = 0. (50)

Applying (50) and then (48) yields:

log
(
Aj+1(α + ∆α)
Aj+1(α0)

)
+
Mj+1(α+∆α)∫
Mj+1(α0)

mλ(m)
m2 − 1 dm+ log

(
Ãj+1(α)
Aj+1(α)

Aj+1(α0)
Ãj+1(α0)

)
= 0,

which differs from (49) due to the modification of local areas. We have thus a loss of infor-
mation which leads to a loss of conservativity of the scheme. The reasoning is similar for
inserted points. Therefore, the integration of the A−M relation from α to α+ ∆α needs a
modification.

The following properties ensure the conservativity of the scheme for an A −M relation
with the general form:

1
A

∂A

∂α
+ Mλ(M)
M2 − 1

∂M

∂α
+R(α, β) = 0. (51)

The relation (29) is found with

R(α, β) = H (κ) f(M)
∣∣∣∣∣∂M∂s

∣∣∣∣∣ .
Proposition 3 (For the deleted points) Let Ãi and M̃i be the area and Mach number
associated to the point xi before regularization, and let Ai and Mi be these same quantities
after. For each point except the inserted points, the information in ray tubes is conserved
with the relation:

log
(
Ai(α + ∆α)

Ãi(α)
Ãi(α0)
Ai(α0)

)
+
Mi(α+∆α)∫
M̃i(α)

mλ(m)
m2 − 1 dm+

α+∆α∫
α

R(τ, βi)dτ = 0. (52)

Proof 3 The conservativity of the scheme is ensured integrating the A −M relation (51)
from initial time:

log
(
Ai(α + ∆α)
Ai(α0)

)
+
Mi(α+∆α)∫
Mi(α0)

mλ(m)
m2 − 1 dm+

α+∆α∫
α0

R(τ, βi)dτ = 0. (53)
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The Mach number at time α is known before regularization:

log
(
Ãi(α)
Ãi(α0)

)
+
M̃i(α)∫

Mi(α0)

mλ(m)
m2 − 1 dm+

α∫
α0

R(τ, βi)dτ = 0. (54)

Relation (52) comes from subtracting (54) to (53).
�

For an inserted point xi+1/2, the relation (52) can not be used asMi+1/2(α) is unknown. The
information at points xi and xi+1 is then considered.

Proposition 4 (For the inserted points) Let us denote Ai and Mi the area and Mach
number associated to the point xi after regularization. If xi+1/2 is inserted on the shock
front at time α + ∆α, the Mach number Mi+1/2(α + ∆α) can be estimated at first order of
truncation with the following relation:

I +
Mi+1/2(α+∆α)∫
Mi(α+∆α)

mλ(m)
m2 − 1 dm+

Mi+1/2(α+∆α)∫
Mi+1(α+∆α)

mλ(m)
m2 − 1 dm = 0, (55)

where

I = 2 log
(
Ai+1/2(α+ ∆α)
Ai+1/2(α0)

√
Ai(α0)

Ai(α+ ∆α)
Ai+1(α0)

Ai+1(α+ ∆α)

)

+
Mi(α0)∫

Mi+1/2(α0)

mλ(m)
m2 − 1 dm+

Mi+1(α0)∫
Mi+1/2(α0)

mλ(m)
m2 − 1 dm. (56)

Proof 4 At time α+ ∆α, the Mach number at nodes xi, xi+1/2 and xi+1 verifies exactly the
relation, denoted Rk:

log
(
Ak(α + ∆α)
Ak(α0)

)
+

Mk(α+∆α)∫
Mk(α0)

mλ(m)
m2 − 1 dm+

α+∆α∫
α0

R(τ, βk)dτ = 0, (57)

for k = i, k = i + 1/2 and k = i + 1. The weighted sum Ri+1/2 − 1
2Ri − 1

2Ri+1 gives (55)
with the supplementary term:

α+∆α∫
α0

{
R(τ, βi+1/2)− R(τ, βi) +R(τ, βi+1)

2

}
dτ.

As R(τ, βi+1/2) = R(τ, βi) +R(τ, βi+1)
2 +O (∆β2), this term can be neglected at order 1.

�
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Finally, the Mach number at time α + ∆α is estimated with the following procedure which
ensures that the scheme is conservative:

1. First, (52) is applied to all points except newly added points.

2. Secondly, we use (55) for these inserted points.

This procedure is similar to the integration from the initial time. If no regularization has
been made, we find the original integration:

log
(
Ai(α + ∆α)

Ai(α)

)
+

Mi(α+∆α)∫
Mi(α)

mλ(m)
m2 − 1 dm+

α+∆α∫
α

R(τ, βi)dτ = 0, for i = 1, . . . , N.

This section then discusses the numerical integration of (43). The transverse term is
rewritten as:

f(M)
∣∣∣∣∣ ∂MA∂β

∣∣∣∣∣ = sign (f(M))
∣∣∣∣∣∂F (M)

∂s

∣∣∣∣∣,
where sign (x) = 1 if x > 0 and −1 otherwise, and with F (M) =

∫
f(m)dm. This one is

approximated at first order with a monotone upwind scheme inspired from the numerical
Godunov Hamiltonian [13]:

f(M)
∣∣∣∣∣∂M∂s

∣∣∣∣∣
|M=Mi

≈ sign (f(Mi)) max (∆lFi,−∆rFi, 0), (58)

where ∆lFi and ∆rFi are approximate slopes of F (M) at left and right from Mi:

∆lFi = F (Mi)− F (Mi−1)
si − si−1

, ∆rFi = F (Mi+1)− F (Mi)
si+1 − si

.

For the interaction with an obstacle, a rigid wall condition is applied at the shock bound-
ary. We suppose that the shock is locally plane at the edges of the front. Consequently, we
impose that the transverse variation of the Mach number at a shock boundary is equal to
zero:

∂F (M)
∂s

∣∣∣∣∣
s=sbound

= 0.

On each ray tube, the integration of the A−M relation (29) from time α to α + ∆α is
written as:

log
(
Ai(α + ∆α)

Ai(α)

)
+
Mi(α+∆α)∫
Mi(α)

mλ(m)
m2 − 1 dm+

α+∆α∫
α

ηi max (∆lFi,−∆rFi, 0)dτ = 0, (59)

with ηi = H (κi) sign (f(Mi)). In fact, this integration should be rewritten in order to
preserve areas as explained in properties 3 and 4. The first integral is calculated with a
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Simpson’s rule and the second one with a trapezoidal rule. Finally, knowing log
(
Ai(α+∆α)
Ai(α)

)
,

κi and Mi(α), for i = 1, . . . , N , the vector (Mi (α + ∆α))i=1,...,N is solution of a nonlinear
system which is solved with a Newton algorithm. The estimation of the local curvature of
the front is detailed in subsection 4.3. Let us remark that without the transverse flow in the
A−M relation (29), equations in (59) are independent from one other, and we just need to
solve N nonlinear equations.

4.3 Estimation of the local curvature of the shock front
The resolution of (59) requires the knowledge of the sign of the shock local curvature κi at
point xi. It can be estimated for 2D planar configuration through geometrical considera-
tion [19]:

κi = 4 sin(ϕi/2)
‖−−−−→xi−1xi‖+ ‖−−−−→xixi+1‖

, (60)

where ϕi is the direct angle between −−−−→xi−1xi and −−−−→xixi+1. The discrete local curvature (60)
is zero if points xi−1, xi and xi+1 are aligned, positive if the points arrangement is convex
(expansive area of the shock) and negative otherwise (compressive area of the shock), as
illustrated in figures 13. As only the sign of the local curvature is necessary, expression (60)

Figure 13: Concave (figure at left) and convexe (figure at right) points arrangement.

can be used for 2D axisymmetrical flow as well.
Formula (60) is sensitive to the small local oscillations of the scheme. Therefore, the sign

of κi can be locally negative in expansive regions of the front, and positive for compressive
areas, whereas a global inverse behaviour is expected.

To overcome this weakness, we define a temporary coarse distribution of points on the
shock front in order to evaluate the curvature. For this purpose, we use a line simplification
like algorithm [28], and the intermediate points are interpolated with a monotone quadratic
spline [10]. This method has the advantage to preserve the local sign of the curvature,
contrary to a cubic spline for example. The local curvature at xi is then estimated using (60)
at temporary points.

In the vicinity of a discontinuity like an inflection point (see Fig. 14), the activation of
the transverse term can lead to a non-convergence of the numerical solution. The Mach
number variation along the shock is indeed very large in such a region. Consequently, we
found necessary to deactivate the transverse closure in this area. In such a region, we identify
the point where the Mach number variation is the highest, noted Xc. The transverse term
at node xl at a distance dc from Xc are then deactivated: H (κl) = 0. The parameter dc
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Figure 14: Zones of activation of the transverse term (red dots) in expansive regions of the
shock front for the planar shock diffraction over a mound at Mach number 2, ∆s = 0.02,
dc = 0.05.
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Figure 15: Diffraction of a planar shock at Mach number 1.05 over a mound. Numerical
solution for ∆s = 0.00125 and for different values of parameter dc.

must be chosen carefully: large enough to ensure numerical convergence of the solution but
small enough to still activate the transverse term. In practice, the numerical solution slightly
depends on this parameter as can be seen in figure 15. This parameter is taken equal to 0.05
for the examples considered in this paper.

Figure 14 materializes the regions on the shock front where the closure is active for the
diffraction of a planar shock over a mound at Mach number 2.

4.4 Summary of the algorithm
The numerical scheme we designed to solve the GSDT model from time α0 to αend is now
summarized, see Algorithm 1. The algorithm can also be applied to GSD by setting H ≡ 0.
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Algorithm 1: Summary of the Lagrangian scheme.
Function dataShock():

Calculus of si and Ai, (34) and (42);
Spline interpolation → (ni)i=1,...,N , (41);
Evaluation of (Mi(α + ∆α))i=1,...,N (section 4.2);

Initial shock:
Given: xi(α0) and Mi = M0 (βi) , for i = 1, . . . , N ;
Calculated: si, Ai and ni, for i = 1, . . . , N ;

it = 0 ; α = α0;
while (α < αend) do

it = it+ 1;
Step 1: Estimation of ∆α, (40);
Step 2: Propagation of each point to α + ∆α, (36);

dataShock() for the substeps (36a) and (36b);
Step 3: Check points spacing, (44);

if (regularization) then
New points distribution on initial shock curve;
Reevaluation of initial areas;

Step 4: Smoothing procedure;
if (mod(it, ns)=0) then

Points filtering, (45);

Step 5: Taking into account obstacles;
Step 6: Evaluation of shock parameters;

dataShock();

α = α + ∆α;

4.5 Validation of the algorithm for GSDT
The Lagrangian algorithm is now validated on a set of test cases of increasing complexity.
For each of them, a reference solution is known in sections 2.2 and 2.3. For the elementary
expansive case, the velocity of the perturbations, Au, is defined by (33) for GSDT.

The mesh convergence is first observed for a cylindrical expanding shock. As underlined
previously, GSDT is reduced to GSD in this case. The numerical solutions are obtained with
the full A−M relation (29). Then, we present an example of a planar shock diffraction over
a convex corner and a concave corner. In this last elementary case, we recall that solutions
for GSDT are identical to GSD ones. We finish this section with the numerical verification
of the conservativity of the scheme.
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Figure 16: Successive positions of a cylindrical expanding strong shock (d = 2, Fig. (a)) and
Mach number along the direction of direct angle π/4 (Fig. (b)). Comparison between the
analytical solution (15) and the numerical results for ∆s = 0.1. Initial data: r0 = 0.5 and
M0 = 10.

Order of the scheme. We consider the cylindrical expanding shock (d = 2). The ana-
lytical solution is available in the strong shock limit (15). At initial time α0 = 0, the radius
is r0 = 0.5 and the Mach number is M0 = 10. The Lagrangian algorithm is stopped when
the shock reaches r = 10, namely αend ≈ 0.147. The successive shock positions and the
Mach number decreasing in the radial direction are shown in figure 16. We can observe the
periodical insertion of points on the shock front in figure 16(a). The distance to the center
of symmetry, r, and the Mach number, M , are extracted from numerical data at different
times α and constant direction of direct angle π/4. Figure 17 presents the error of the
scheme in the l2 norm for several discretization steps, ∆s. As expected, we denote that the
order of convergence is 1 owing to the smoothing procedure and the approximation of the
transverse term (58). We can notice that the error decreases with the filtering frequency,
fs, but the convergencce of the scheme is no more monotonous. Results are similar for a
spherical shock (d = 3) in a 2D-axisymmetrical configuration. In the sequel, the shock front
is filtered every 10 iterations.

Planar shock diffraction over a convex wedge. Let us consider the diffraction of
a planar shock at Mach number M0 = 3 over a convex corner of deflection angle θw =
−π/2. The abrupt variation of geometry renders the numerical approximation of the solution
difficult near the wall. Nevertheless, one can notice the good agreement of the numerical
solution, obtained for ∆s = 0.0025, with the analytical solution (19)-(20) in figure 18.

Conservativity of the scheme. To finish, let us study the diffraction of a planar shock
at Mach number M0 over a concave corner of deflection angle θw > 0. We recall that the
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Figure 17: Mesh convergence in the l2 norm for the cylindrical expanding strong shock
solution with filtering every 10 and 30 iterations.

problem is sketched in figure 2(b) and the solution is given by (21). An example for M0 = 3
and θw = π/4 is presented in figure 19. We can see the good restitution of the solution
in spite of some oscillations of the scheme observed in figure 19(b) near the shock-shock.
In figure 20, one can observe the excellent agreement between results given by the scheme
and the analytical solution (21). The wall Mach numbers and shock-shock trajectories are
compared for a large range of deflection angles, and for a strong shock (M0 = 10) as well as
a weaker one (M0 = 1.5). The Lagrangian simulations are computed with ∆s = 0.01. This
discretization step is small enough to estimate correctly the shock-shock velocity. Conse-
quently, the method catches the discontinuity of the model which proves the conservativity
of the GSDT algorithm.

5 Results
In this section, we present some comparisons between GSD and GSDT models. We start
with the elementary problem of the planar diffraction over a convex wall, for which analytical
solutions are available. The analysis follows with the diffraction of a planar shock over a
turned mound in the second subsection, and over a mound in the last subsection. For these
last cases, the Lagrangian scheme presented in section 4 is used to solve GSD and GSDT.
The results are compared with experimental data or Eulerian simulations. The latter are
provided by the HERA Computational Fluid Dynamics software [9, 18]. During a simulation,
the first arrival time of the shock front is recorded in each computational cell. The leading
front at time t is then extracted with a marching square algorithm [11]. The process and a
grid convergence study are presented in [18].
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Figure 18: Diffraction of a planar shock at Mach number M0 = 3 over a convex corner of
angle θw = −π/2. Comparison between the analytical solution (eqs. (19)-(20) and (33)) and
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Figure 19: Diffraction of a planar shock at Mach number M0 = 3 over a concave corner of
angle θw = π/4. Comparison between the analytical solution (21) and the numerical solution
for ∆s = 0.0025. Fig. (a): Successive shock positions. Fig. (b): Mach number along the
shock.

5.1 Diffraction over a convex corner
Let us consider the planar shock diffraction at Mach number M0 over a convex corner of
deflection angle θw < 0 as presented in section 2.3. The solution is determined by (19)-(20)
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Figure 20: Results for the planar shock diffraction at Mach number M0 = 1.5 and 10 over
a concave corner for any deflecion angles θw. The analytical solution is defined by (21) and
the numerical results are obtained for ∆s = 0.01. Fig. (a): Wall Mach number. Fig. (b):
Direct angle between the (Ox) axis and the shock-shock trajectory.

with Au(M) =
√

M2−1
λ(M) for GSD (eq. (8)) and Au(M) = k

M2 − 1
2M2 for GSDT (eq. (33)).

Figure 21 displays the analytical solutions and the experimental data from [34] for θw =
−π/2. We denote a better estimation of the shock front with GSDT, especially for weak
shocks. At higher Mach numbers, one notes the existence of an inflection point on the front
near the wall on experimental data as seen in figures 21(a) and 21(b). As detailed in [4],
the post-shock effects, not taken into account in GSD and GSDT, are responsible for this
behaviour.

In figure 22, the wall Mach number after diffraction is compared between GSD, GSDT
and experimental data taken from [29]. Results for GSD and GSDT are obtained with
relations (22) and (24)-(25) respectively. As expected, for M0 ≤ 2.5 the GSDT model is in
good agreement with experimental data contrary to Whitham’s original model. A solution
exists for all cases with the GSDT model. For stronger shocks and larger deflection angles
(−θw > 60◦) both models overestimate the wall Mach number. Notice that, for M0 > 2.5,
the post-shock flow has a significant influence over the shock propagation. The front is
further slowed down near the wall resulting in the formation of an inflection point [4, 17].
This phenomenon is not taken into account in the present models, which could explain, at
least in part, the overestimation of the wall Mach numbers in comparison to experimental
data.

5.2 Combination of expansion waves
Let us now study the planar shock diffraction at Mach number 2 over a rotated mound as
experimented by Skews [30]. The initial shock evolves from the left to the right and diffracts
over three successive convex corners. The solution is then a combination of expansion waves
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Figure 21: Diffraction of a planar shock at Mach number M0 over a convex corner of angle
−90◦. Experimental data taken from [34]. The solution is given by (19)-(20), where the
velocity of the perturbations is defined by (8) for the GSD model and (33) for the GSDT
model.

and requires the use of the Lagrangian scheme introduced in section 4. The shock front
positions at three different times are compared with experimental data from [30]. We observe
that taking into account transverse flow significantly improves the solution near the wall.
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Figure 22: Diffraction of a planar shock at Mach numberM0 over a convex corner of angle θw.
Wall Mach number after diffraction, Mw, with respect to M0, for different θw. Comparison
between experimental data (black circles) from [29], the GSD model (22) (blue dashed curve),
and the GSDT model (24)-(25) (red dash dotted curve).

5.3 Diffraction over a mound
To finish, let us consider a more complex problem for which the solution is a combination
of expansion waves and shock-shocks. This problem is the planar shock diffraction at Mach
number M0 = 4 over a mound. The different faces of the mound and the ground behind it
are numbered from 1 to 4 (see Fig. 24(a)). The shock interaction with the obstacle results
in four successive diffractions. The problem is compressive on faces 1 and 4 leading to the
formation of two shock-shocks. On the contrary, the shock is expansive when it reaches faces
2 and 3 resulting in expansion waves on the front.

For a strong shock, M0 = 4 here, the shock is planar near the wall in such a way that
each diffraction is locally similar to the elementary Riemann problems. Diffractions then
correspond locally to planar shock diffraction over a concave corner of deflection angle 45◦
on faces 1 and 4, and a convex corner of deflection angle −45◦ for faces 2 and 3. The wall
Mach number, Mw, can thus be estimated with (21a) for faces 1 and 4 for the GSD and
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Figure 23: Diffraction of a planar shock at Mach number 2 over a rotated mound. The
shock travels from the left to the right. Numerical simulation are obtained for ∆s = 0.0025.
Experimental data are taken from [30].

GSDT models. For faces 2 and 3, Mw is calculated with (22) for GSD and (24)-(25) for
the GSDT model. The theoretical values determined with these relations are presented in
table 1. For weaker values of M0, the reflection on part 4 may become regular which is not

Mw/Face 1 2 3 4
GSD 6.158 4.361 3.102 4.762
GSDT 6.158 4.247 2.976 4.567

Table 1: Theoretical wall Mach numbers for GSD and GSDT models after diffraction on
each face for the planar shock diffraction at Mach number M0 = 4 over the mound shown in
figure 24(a)

compatible with Whitham’s theory where a Mach stem is always present, and explains our
choice.

As compressive problems are not affected for the GSDT model, results on face 1 are
similar to GSD. This is no longer the case when the shock interacts with face 2, the front
being expansive. The modification of GSD results in a slightly smaller value of Mw in
comparison to the original model. This difference is more pronounced for the diffraction
over face 3 as the incoming shock is weaker for GSDT than for GSD (Mach 4.247 instead
of Mach 4.361, see table 1). Finally, the Mach stem behind the mound is slowed down for
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Figure 24: Diffraction of a planar shock at Mach number M0 = 4 over a mound. Fig.
(a): Successive shock positions. Fig. (b): Wall Mach number. Numerical simulation with
Lagrangian scheme: ∆s = 0.0025, dc = 0.05, Eulerian simulation: ∆x = ∆y = 0.00125.

GSDT in comparison with GSD. This differences lead to solutions which significantly differ
between both models on face 4. Successive numerical shock positions and wall Mach number
are presented in figure 24. In this example, note the improved agreement between the GSDT
model and Eulerian results. The Eulerian simulation is performed with a cell size of 1/800
to achieve grid convergence. Here, the post-shock flow has a discernable influence on the
leading shock due to a double Mach reflection [2]. Oscillations of the Mach number are
observed and it gets difficult to extract the velocity of the shock as seen in figure 24(b). The
duration of these simulations is a few hours for the Eulerian case and only a few minutes
with the GSDT model.

6 Conclusion and perspectives
In this paper, an ad-hoc extension of the GSD model to transverse flow is presented in order
to remove its limitation for expansive shocks. The correction is only active in expansive
regions of the front and does not change the hyperbolicity of the model. This new approach
is called GSDT, T standing for Transverse. For expansive cases considered here, results
with GSDT are in better agreement with experimental data. The modification of expansion
waves in the GSD model has an influence on the solution for more complex problems as
shown for the interaction of a planar shock over a mound. For the cases presently treated in
the paper, the GSDT model gives better results than GSD compared to Eulerian simulation
or experimental results.

The new 2D conservative Lagrangian algorithm inspired from Henshaw et al. [7] has been
detailed and fully validated. In the original scheme, the A −M relation is integrated from
the initial time to ensure the conservativity of the scheme. Our main contribution is its step
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by step integration written with an additional general term in the A −M relation. This
allows an easy integration of the transverse term, or any source term. Let us underline that
the resolution of GSD for inhomogeneous but at rest media is now direct with this algorithm,
contrary to the original one [21].

In the future, GSD and GSDT models may be compared on more complex configurations.
A monotone algorithm should also be developed in order to avoid oscillations which compli-
cate the estimation of the local curvature of the shock. At last, it is worth mentioning that
the GSD model, and so the GSDT model, always restitute a Mach stem for compressive prob-
lems. Some additional mechanisms should be considered to account for regular reflection,
especially for weak shocks. These issues could be addressed in further investigations.
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