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Modeling Cellular Networks in Fading
Environments with Dominant Specular Components

Ahmad AlAmmouri, Hesham ElSawy, Ahmed Sultan-Salem, Marco Di Renzo, and Mohamed-Slim Alouini

Abstract—Stochastic geometry (SG) has been widely accepted
as a fundamental tool for modeling and analyzing cellular
networks. However, the fading models used with SG analysis
are mainly confined to the simplistic Rayleigh fading, which
is extended to the Nakagami-m fading in some special cases.
However, neither the Rayleigh nor the Nakagami-m accounts
for dominant specular components (DSCs) which may appear in
realistic fading channels. In this paper, we present a tractable
model for cellular networks with generalized two-ray (GTR)
fading channel. The GTR fading explicitly accounts for two
DSCs in addition to the diffuse components and offers high
flexibility to capture diverse fading channels that appear in
realistic outdoor/indoor wireless communication scenarios. It also
encompasses the famous Rayleigh and Rician fading as special
cases. To this end, the prominent effect of DSCs is highlighted
in terms of average spectral efficiency.

I. INTRODUCTION

Modern cellular networks have evolved from the ubiquitous
hexagonal grid to irregular multi-tier structure that randomly
changes from one geographical location to another [1]–[3].
To cope with such evolution, efforts are spent to develop
tractable stochastic geometry (SG) models that account for
large-scale spatial randomness as well as different sources of
uncertainties that emerge in modern cellular networks, such as
multipath fading, shadowing, and power control [4]. The last
decade witnessed significant progress developing all aspects
of the SG models, except for the fading environments. In the
context of multi-path fading, the Rayleigh fading assumption
is almost a common factor in the literature. In addition to the
Rayleigh fading case, there are some proposals that incorporate
Nakagami-m fading into tractable SG analysis [5], [6].

Both the Rayleigh and Nakagami-m assumptions are fa-
vorable because they lead to a desirable exponential ex-
pressions for the conditional (i.e., conditioned on network
geometry) signal-to-interference-plus-noise-ratio (SINR) per-
formance metrics, which enables averaging via the moment
generating function (MGF) of the interference. Although [4,
Sec.III], [7], [8] show alternative techniques to circumvent the
necessity of such representation, there are yet no SG mod-
els including state-of-the-art fading models that may include
individually resolvable multipath components, which are de-
noted as multiple dominant specular components (DSCs) [9].
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As argued in [9]–[13], both the Rayleigh and Nakagami-m
models may fail to capture realistic fading environments. The
Rayleigh fading ignores the line-of-sight (LOS) component in
the received signal, which is prominent in outdoor cellular
communication. It is also a single parameter fading model
that is not flexible enough to model complex indoor fading
environment. The Nakagami-m fading can neither aptly cap-
ture fading with LOS component nor accurately model indoor
fading environment as argued in [9]–[12]. Furthermore, the
tractability of SG analysis with Nakagami-m fading necessities
an integer value for m, which decreases the model’s flexibility
to capture complex fading environments.

In order to develop SG models in terms of multipath fading,
it is required to incorporate a flexible fading model that can
span different fading channels including those with multiple
DSCs. The state-of-the-art studies in multi-path fading (see
[9]–[13] and the references therein) show that fading channels
with a finite number of DSCs with dominant powers in
addition to a diffuse component appear in several practical
indoor/outdoor scenarios. A simple example with single DSC
appears cellular networks where one LOS path exists between
the BS and a mobile user. In this case, the resulting fading
environment follows the well-known Rician fading model.
Furthermore, multiple DSCs may be created by reflections
from metal objects (e.g., light-posts, cars) in close proximity
to the BSs and/or user, in which the reflections would have
comparable amplitude to the dominant LOS path due to
the negligible power absorption factor of metals. A fading
channel with a small number of specular components without
a diffuse component may appear in millimeter wave (mmW)
communication where high directional antennas are used for
short-range communication [14]. Also, severe NLOS fading
environments can be modeled via a small number of specular
components without diffuse components [11]–[13]. Last but
not least, field measurements for indoor multipath fading
channels confirm the existence of multiple DSCs in addition
to the diffuse component [15]. Therefore, there is a need to
incorporate new flexible fading models that capture realistic
multipath fading environments with multiple DSCs.

As a step forward to account for fading channels with
multiple DSCs, this paper incorporates the generalized two-
ray (GTR) fading model into tractable stochastic geometry
analysis. The GTR model is adopted due to its mathematical
elegance and practical significance1. The GTR fading channel
is characterized by four tunable parameters that explicitly

1Models with more than two dominant specular components are not likely
to appear in practice [11], [13].



account for two DSCs plus the diffuse component, which
gives high flexibility to capture a diverse spectrum of fading
channels. With the proper adjustment of the GTR parameters,
it captures several fading channels as special cases such as
deterministic, Rician, Rayleigh, hyper-two ray, and hyper-
Rayleigh [12], [13]. Hence, accounting for GTR fading in a
SG model leads to unified analysis for a diverse spectrum
of fading channels. It is worth noting that the two DSCs,
which are explicitly accounted for by the GTR model, are
not necessarily LOS components. However, they may also
be considered as two NLOS paths that experienced favorable
propagation when compared to the others in the diffuse part.
Using this interpretation, the severe multi-path fading channels
captured by the GTR model can be justified [12], [13].

To the best of the authors’ knowledge, this work is the first
to incorporate such a flexible fading model into a tractable
SG analysis. It is worth mentioning that we incorporate the
GTR fading model into a simplistic network setup to observe
its explicit effects. Analyzing more advanced network setups
with GTR fading is postponed to future work.

II. SYSTEM MODEL

We consider a downlink single-tier cellular network with
single-antenna BSs that are deployed according to the PPP
Ψ with intensity λ. Each element xi ∈ Ψ belongs to R2 and
denotes the location of the ith BS. Single-antenna users’ equip-
ment (UEs) are spatially distributed according to a stationary
point process Φ with intensity U such that U � λ. All BSs
transmit with a constant transmit power of P. Users associate
to the BSs according to the average radio signal strength (RSS)
rule. Universal frequency reuse is adopted with no intra-cell
interference.

It is assumed that the signal power decays according to the
power-law r−η with the distance r, where η is the path-loss
exponent. We focus on the performance of a test UE located
at the origin. According to Slivnyak’s theorem, there is no
loss of generality with this assumption. For the sake of simple
exposition, we define the set Ψ̃ ∈ R that contains the ordered
distances from the test user to the BSs in Ψ. Following the
RSS rule, r0 and ri are the distance between the test UE and,
respectively, his serving BS and the ith nearest interfering BS.

A. The GTR Fading Model

We consider a GTR model with two specular components
plus a diffuse component. The received baseband signal can
be represented as:

y(r) =

√
P

rη0

(
V{0,1}e

jφ{0,1} + V{0,2}e
jφ{0,2} +X0 + jY0

)
︸ ︷︷ ︸

g0

s0

+
∑

ri∈Ψ̃\r0

√
P

rηi

(
V{i,1}e

jφ{i,1} + V{i,2}e
jφ{i,2} +Xi + jYi

)
︸ ︷︷ ︸

gi

si + n,

(1)

where s0 and si are respectively the intended and ith BS
interfering symbols which are assumed to be drawn from

Gaussian codebooks, (V0,1, φ0,1) and (V0,2, φ0,2) are the
(amplitude, phase) of the two DSCs of the intended signal,
X0 ∼ N (0, σ2

0) and Y0 ∼ N (0, σ2
0) are the zero mean Gaus-

sian distributed intended signal diffuse components with total
power of 2σ2

0 , (Vi,1, φi,1) and (Vi,2, φi,2) are the (amplitude,
phase) of the two DSCs of the interfering signal from the
ith BS, Xi ∼ N (0, σ2

i ) and Yi ∼ N (0, σ2
i ) are the zero

mean Gaussian distributed ith BS interfering signal diffuse
components with total power of 2σ2

i , and n ∼ CN (0, N0

2 )
is the complex Gaussian noise. Let αi = φi,1 − φi,2 be the
phase difference between the two DSCs and fαi(.) denotes
the probability density function (PDF) of αi, then according to
[13], the GTR model is defined by four parameters, namely the
diffuse power (DP) 2σ2

i , the specular-component-to-diffuse-
power-ratio (SDPR) Ki =

V 2
i,1+V 2

i,2

2σ2
i

, peak-to-average-specular-

component-power-ratio (PASPR) ∆i =
2Vi,1Vi,2
V 2
i,1+V 2

i,2
, and fαi(.).

Observing Ki and ∆i, we notice that the GTR model
reduces to Rayleigh fading for K = 0 and reduces to Rician
fading for ∆ = 0. It also captures the two-ray, hyper-two ray,
and hyper-Rayleigh by letting K →∞, σ2 → 0, and properly
choosing fα(.). The distribution function fα(.) discriminates
between different types of GTR fading models. Particularly,
α is uniformly distributed in the range of [0, 2π] in the GTR-
U model, whereas α is uniformly distributed in the truncated
range of [π(1 − p), π(1 + p)] in the GTR-T model. In the
GTR-V model, α follows the Von Mises distribution. Note that
the GTR-T and GTR-V capture the cases when the angles of
the two specular components are correlated, which appears in
some practical scenarios [13].

B. Methodology of Analysis

For a given realization of network geometry and channels’
gains, the interference term in (1) has a Gaussian distribution.
Hence, treating interference as noise, the instantaneous SINR
for the test user can be expressed as:

SINR(r0) =
P |go|2r−ηo∑

i∈Ψ̃\r0
P |gi|2r−ηi +No

=
S(r0)

I(r0) +No
,

(2)

where r0 is excluded from Ψ̃ in (2) because the serving BS
does not contribute to the interference. In SG analysis, we are
interested in spatially averaged performance metrics, which
requires the conditional (i.e., conditioning on r0) PDFs of
S(r0) and I(r0), in addition to the PDF of r0. In a PPP
network with RSS association, the PDF of r0 is known to
be fR(ro) = 2πλro exp(−πλr2

o), 0 ≤ ro < ∞ [1]. Also, the
conditional PDF of S(r0) is straightforward to obtain from
the PDF of |g0|2. However, the aggregate interference I(r0) is
usually characterized via its Laplace transform (LT)2. Hence,
only performance metrics that are expressed in terms of the
LT of I(r0) can be evaluated.

2With slight abuse of notation, LT is used to denote the LT of a probability
density function (PDF) of a random variable, which is equivalent to the
moment generating function with negative argument.
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LI(ro)(s)= exp

(
πλ

(
2σ2sP (1− yo)

yo

) 2
η

(1− (1− yo)ζ1 (Kyo))−
2π2

η
ζ2λ csc

(
2π

η

)(
2σ2sP

) 2
η

)
. (6)

For the sake of organized presentation, we devote Sec-
tion III to derive the conditional LT of the aggregate in-
terference with different GTR fading environments. In Sec-
tion IV, we first express the averaged spectral efficiency (i.e.,
E [ln (1 + SINR(r0))]) in terms of the conditional LTs derived
in Section III. Then, the averaging step over r0 is done to
obtain the spatially average spectral efficiency.

III. INTERFERENCE CHARACTERIZATION IN GTR FADING
ENVIRONMENT

We assume that all fading channels are independent from
the BSs’ locations, independent from each other, and are
identically distributed (i.i.d.) according to the GTR model with
parameters: K, ∆, σ2, and fα(.). Let Ω = V 2

1 + V 2
2 + 2σ2

represents the expected power gain of the fading channel, then
from the definition of K, we have Ω = (K + 1)2σ2. For
general fα(.), the LT of the aggregate interference in GTR
fading environment is given by the following lemma.

Lemma 1. In a GTR fading environment with parameters
K, ∆, σ2, and fα(.), the LT of the conditional aggregate
interference (conditional on ro) in a PPP cellular network with
intensity λ is given by equation (3), where yo(s) = 2σ2sP

rηo+2σ2sP
,

and

ζ1 (y) =

2π∫
0

e−y(1+∆ cos(α))fα (α) dα, (4)

ζ′1 (Ky) =
ζ1 (Ky)

dy
. (5)

Proof. Refer to Appendix A.

The expression in (3) contains two integrals, which may
increase the computational complexity. Therefore, we obtain
a simpler lower-bound on (3) which is given by the following
lemma.

Lemma 2. The LT given in equation (3) is lower bounded
by (6), where 1F1(.) is the confluent hypergeometric function,
ζ1(.) is given by equation (4), and

ζ2 =

2π∫
0

fα (α)

[
1F1

(
1− 2

η
; 2;−K(1 + ∆ cos(α))

)
+

K(1 + ∆ cos(α))
η + 2

2η
1F1

(
1− 2

η
; 3;−K(1 + ∆ cos(α))

)]
dα.

(7)

Proof. Refer to Appendix B.

It is worth emphasizing that ζ2 is independent of the LT
variable and is a function of the fading parameters only.
Hence, for a known fading parameters, ζ2 is a constant w.r.t.
the interference LT. The accuracy of the lower-bound in (6)
is validated in Section V. Based on Lemma 1 and Lemma
2, the interference for different GTR fading models can be
characterized. For instance, the interference with Rician faded
channels is characterized by the following corollary,

Corollary 1. In a Rician fading environment with parameters
K and σ2, the LT of the conditional aggregate interference in
a PPP cellular network with intensity λ is given by equation
(3), and lower-bounded by (6), where yo(s) = 2σ2sP

rηo+2σ2sP
and,

ζ1(x) = e−x, (8)

ζ2 = K
η + 2

2η
1F1

(
1− 2

η
; 3;−K

)
+ 1F1

(
1− 2

η
; 2;−K

)
. (9)

Proof. The corollary is obtained from Lemma 1 and Lemma
2 by setting ∆ = 0.

Interestingly, ζ1(.) and ζ2 for Rician fading is obtained
in closed forms. The interference in GTR-U fading case is
characterized via the following corollary,

Corollary 2. In a GTR-U fading environment with parameters
K, ∆, and σ2, the LT of the conditional aggregate interference
in a PPP cellular network with intensity λ is given by equation
(3), and lower-bounded by (6), where yo(s) = 2σ2sP

rηo+2σ2sP
and,

ζ1(x) = e−xIo (x∆) , (10)

ζ2 =

2π∫
0

[
1F1

(
1− 2

η
; 2;−K(1 + ∆ cos(α))

)
+

K(1 + ∆ cos(α))
η + 2

2η
1F1

(
1− 2

η
; 3;−K(1 + ∆ cos(α))

)]
dα

2π
.

(11)

Proof. The corollary is obtained from Lemma 1 and Lemma
2 by setting fα(α) = 1

2π .

The GTR-U assumes that the phases of the two DSCs (i.e.,
φ1 and φ2) are independent, and hence, the value of the phase
difference α is uniformly distributed from [0, 2π]. In some
cases, correlation between φ1 and φ2 may exist, which limits



the range that α spans. The scenarios where φ1 and φ2 are
correlated are captured via the GTR-T and GTR-V cases. In
the GTR-T, the distribution of α is assumed to be uniformly
distributed in the range of [π(1 − p), π(1 + p)], where p ∈
[0, 1] is the truncation parameter that can be manipulated to
capture different correlation scenarios. In the GTR-V case, α
is assumed to follow the Von Mises, given by

fα (α) =
exp (−δ cos (α))

2πIo (δ)
, α ∈ [0, 2π] (12)

where δ is the phase difference distribution parameter that can
be manipulated to concentrate the PDF of α around a certain
value in the [0, 2π] range. It is worth mentioning that both the
GTR-T and GTR-V reduce to the GTR-U for p = 1 and δ = 0,
respectively. The LT of the conditional aggregate interference
in the cases of GTR-T and GTR-V is given by the following
corollaries

Corollary 3. In a GTR-T fading environment with parame-
ters K, ∆, σ2, and p, the LT of the conditional aggregate
interference in a PPP cellular network with intensity λ is
given by equation (3), and lower-bounded by (6), where
yo(s) = 2σ2sP

rηo+2σ2sP
and,

ζ1 (x) =

π(1+p)∫
π(1−p)

e−x(1+∆ cos(α))

2πp
dα, (13)

ζ2 =

π(1+p)∫
π(1−p)

dα

2pπ

[
1F1

(
1− 2

η
; 2;−K(1 + ∆ cos(α))

)
+

K(1 + ∆ cos(α))(η + 2)

2η
1F1

(
1− 2

η
; 3;−K(1 + ∆ cos(α))

)]
.

(14)

Proof. The corollary is obtained from Lemma 1 and Lemma
2 by setting fα(α) = 1

2πp for π(1− p) < α < π(1 + p), and
fα(α) = 0 otherwise.

Corollary 4. In a GTR-V fading environment with parame-
ters K, ∆, σ2, and δ, the LT of the conditional aggregate
interference in a PPP cellular network with intensity λ is
given by equation (3), and lower-bounded by (6), where
yo(s) = 2σ2sP

rηo+2σ2sP
and,

ζ1(x) =
Io (x∆ + δ) e−x

Io (δ)
. (15)

ζ2 =

2π∫
0

exp (−δ cos (α))

2πIo (δ)

[
1F1

(
1− 2

η
; 2;−K(1 + ∆ cos(α))

)
+

K(1 + ∆ cos(α))
η + 2

2η
1F1

(
1− 2

η
; 3;−K(1 + ∆ cos(α))

)]
dα.

(16)

Proof. The corollary is obtained from Lemma 1 and Lemma
2 by using (12) for the distribution of α.

The cases provided in Lemma 1, Lemma 2, and Corollaries
1 to 4 represent the case in which the DSCs arrive in addition

to a diffuse component. This implicitly implies that inter-
ference signals have experienced favorable fading channels.
Another case of special interest is when interference links
experience severe fading, which can be captured via a two
ray model without a diffuse component [13]. In this case, we
set K → ∞ and 2σ2 → 0 such that Ω = (K + 1)2σ2 is
kept constant. For a general fα(α) the LT of the aggregated
interference in severe fading environment is given in the
following lemma,

Lemma 3. The LT of the aggregate interference in a GTR
fading environment with K → ∞ and σ2 → 0 such that
(K + 1)2σ2 is constant, is given by

LI(ro)(s)= exp

(
πλ
(
r2
oζ1(sPΩr−ηo )− (sP )

2
η ζ3(sPΩr−ηo )

))
,

(17)

such that,

ζ3(x) =

2π∫
0

γ

(
1− 2

η
, x(1 + ∆ cos(α))

)
fα (α) dα. (18)

where γ(., .) denotes the lower incomplete gamma function
and ζ1(.) is given by equation (4).

Proof. Refer to Appendix C.

For each of the special cases of GTR fading, ζ3(.) in (18)
can be evaluated via the appropriate fα(.). For GTR-U, GTR-
T, and GTR-V, expressions for ζ3(.) are given, respectively,
by

ζ3(x) =

2π∫
0

γ

(
1− 2

η
, x(1 + ∆ cos(α))

)
dα

2π
. (19)

ζ3(x) =

π(1+p)∫
π(1−p)

γ

(
1− 2

η
, x(1 + ∆ cos(α))

)
dα

2pπ
. (20)

ζ3(x) =

2π∫
0

γ

(
1− 2

η
, x(1 + ∆ cos(α))

)
exp (−δ cos (α))

2πIo (δ)
dα.

(21)

It is worth highlighting that the severe fading channels are
captured by the constructive and destructive interference of
the two rays. Consequently, the two DSCs should be explicitly
consider to account for such severe fading cases. In contrast,
the Rician fading accounts only for one specular component
plus the diffuse component, and hence, setting K → ∞ and
σ2 → 0 leads to a deterministic channel gain.

IV. PERFORMANCE ANALYSIS

In this section, the conditional LTs of the aggregate inter-
ference obtained in Section III are utilized to evaluate the
spatially averaged spectral efficiency.



LS(ro)(s) =
1

1 + 2σ2sP̄ (r0)
exp

(
−K2σ2sP̄ (r0)

1 + 2σ2sP̄ (r0)

)
Io

(
−∆K2σ2sP̄ (r0)

1 + s2σ2P̄ (r0)

)
. (22)

LS(ro)(s) =
1

2πp

∫ π(1+p)

π(1−p)

1

1 + s2σ2P̄ (r0)
exp

(
−K(1 + ∆ cos(α))2σ2sP̄ (r0)

1 + s2σ2P̄ (r0)

)
dα. (23)

LS(ro)(s) =
1

Io(δ)(1 + s2σ2P̄ (r0))
exp

(
−K2σ2sP̄ (r0)

1 + s2σ2P̄ (r0)

)
Io

(
δ − ∆K2σ2sP̄ (r0)

1 + 2σ2sP̄ (r0)

)
. (24)

A. Average Spectral Efficiency

Starting form the Lemma introduced in [16], which states
that

E
[
ln

(
1 +

X

Y + 1

)]
=

∫ ∞
0

LY (z)− LX,Y (z)

z
exp{−z}dz.

(21)

where LX,Y (z) = LX(z)LY (z).
Exploiting (21) the spectral efficiency can be directly ex-

pressed in terms of the LT of interfering and useful links.
Following [13], the LT of the desired signal power while
conditioning on ro is given by equations (22), (23), and (24)
for GTR-U, GTR-T, and GTR-V fading channel, respectively,
where P̄ (r0) = Pr−ηo .

Theorem 1. The average spectral efficiency for a PPP cellular
network with intensity λ in a GTR fading environment with
parameters

{
Ko,∆o, σ

2
o , fαo(.)

}
and

{
K,∆, σ2, fα(.)

}
for

the desired and interfering fading channels is given by the
following equation

Ā =∫ ∞
0

∫ ∞
0

LI(ro)

(
z

No

)(
1− LS(ro)

(
z

No

))
e−z

z
fr0(r)drdz.

(25)

where LI(.) is given by equation (3) for a general K, lower
bounded by equation (6) and when K → ∞ it reduces to
equation (17).

Proof. Follows from substituting (2) in (21) and averaging
over ro.

V. RESULTS

This section presents numerical results for the spectral
efficiency for GTR fading environments. All results are val-
idated by independent system level simulations. The match
between the analysis and simulation of all cases confirms
the validity of our expressions. Unless otherwise stated, we
used the following parameters’ values: No = −80 dBm,
λ = 3 BSs/Km

2, P = 3 W, ∆ = 1, σ2 = 1, and Ωo = 2.
Fig. 1 shows the spectral efficiency obtained via Theorem 2

for GTR-U fading on the interfering links and different fading
models on the useful link. For the sake of fair comparison, we
keep a constant Ω for both links. For GTR-T on the useful link,
the performance is highly affected by the value of p. Lower
p implies higher correlations between the DSCs phases which

0 0.2 0.4 0.6 0.8 1
p

0

0.5

1

1.5

Ā
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Fig. 1: Average spectral efficiency vs. truncation parameter (p)
assuming GTR-T, Rician and Rayleigh for the desired channel and
GTR-U for interfering channels. Solid lines, the diamonds and the
X’s represent the results obtained analytically, by simulations and
by simulations assuming Rayleigh fading for all the fading channels
except the nearest 5 BSs. The chosen values are the same for the
two ray model where K → ∞, ∆ = 1, and σ2 → 0 such that the
average received power is kept constant for all cases.

lead to a high probability of destructive interference, and vice
versa. The figure also shows that Rician fading on the useful
link has higher performance than the Rayleigh fading due to
the LOS path, and higher performance than the GTR-T fading
due to the absence of destructive DSCs interference.

In Fig. 2, we show the explicit effect of fading on the
interfering links by fixing GTR-U fading on the useful link.
Note that we fix the diffuse power 2σ2 for both the useful
and interfering channels. In consistence with the previous
results, Fig.2 manifests the effect of the interference fading
model on the spectral efficiency. The Rayleigh fading contains
the diffuse power only, and hence, has the highest spectral
efficiency. In contrast, the Rician fading has the strongest
channel gain due to the LOS connection, and hence, it repre-
sents the worst interference and lowest spectral efficiency. The
GTR fading with multiple DSCs performance lies between the
Rayleigh and Rician cases due to the probability of destructive
DSCs interference. By decreasing (increasing) p, the GTR-T
approaches the Rayleigh (Rician) fading performance due to
the higher (lower) probability of destructive interference. Last
but not least, the figure confirms the tightness of the lower
bound obtained by Lemma 2.
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Fig. 2: Ergodic rate assuming Rayleigh fading for the desired
channel and GTR-T for the interferes channel. Solid lines, dashed
lines, and the diamonds represent the rate obtained by the exact
expression, the lower bound, and simulations.

A. Discussion

These results emphasize the prominent effect of multiple
DSCs on the network performance in terms of spectral effi-
ciency. The results also show the flexibility of GTR-T model
to capture different DSCs destructive interference scenarios, in
which the correlation between the phase differences is captured
by manipulating p to control the range that α spans.

While applying the GTR model to the useful link is quite
intuitive, it might not be as much obvious why do we need to
apply the GTR model to the interference links. To elaborate
this point, we give the following justifications:

• The interference is dominated by nearby interferers that
may have LOS channels with the receivers especially in
outdoor communication with macro BSs. As shown in
Fig. 1, assuming GTR-U fading for the nearest 5 BSs only
and Rayleigh fading for the other interferes does not have
a noticeable effect on the averaged spectral efficiency.

• In suburban and rural areas with parks and open spaces,
LOS interference is most likely to happen.

• The developed model is not restricted to LOS commu-
nication and may also model NLOS communication in
which one or two of the NLOS paths have dominant
powers.

• For indoor environments, the specular component that go
through doors and windows may have dominant powers
w.r.t. the components that penetrate through walls with
high attenuation coefficients. Hence, interfering signal
coming from adjacent rooms/corridors may have multiple
DSCs.

• Beside the solid physical foundation of the GTR model,
it offers a mathematically elegant and flexible model
that spans different LOS and NLOS fading environments.
For instance, it can capture extreme fading environments
such as Rayleigh, the κ − µ, hyper-Rayleigh and other
channels [12], [13].

It is worth highlighting that the developed model parameters
can be tuned to be a function of the interfering BS distance.

More particularly, the fading severity can be adjusted to
increase with the propagation distance, which complies with
practice. Such modification is postponed to future work.

VI. CONCLUSION

This paper presents a tractable stochastic geometry (SG)
model with GTR fading channels that explicitly accounts for
two dominant specular components (DSCs). Exact and lower
bounds for the spectral efficiency are obtained. Depending on
the phase difference between the two DSCs at the receiver,
constructive/destructive interference may occur leading to high
variability in the fading channel gains. To this end, the explicit
effect of GTR models on the interference and useful links are
investigated. The results confirm the prominent effect of DSCs
fading models on the network performance in terms of spectral
efficiency. As special case of the GTR, we consider the GTR-
T in which the phase correlation between the two DSCs is
captured by controlling the range that the phase difference
spans. Finally, the model flexibility to capture several fading
conditions, ranging from deterministic and favorable Rician
to severe hyper-Rayleigh and hyper-two ray, in large-scale
cellular networks is also highlighted.

APPENDIX

Due to space constraints, only the outlines of the proofs are
highlighted.

A. Proof of Lemma 1

Following the same methodology in [1] and using the MGF
of GTR fading in [13], the LT of I(r0) is obtained as

LI(s)= exp

{
−2πλ

∫ ∞
r0

EK̂

[
1− rη

rη + 2σ2sP
e
−K̂2σ2Ps

rη+2σ2sP

]
rdr

}
.

(26)

where K̂ = K(1 + ∆ cos(α)). By change of variables, y =
2σ2s

rη+2σ2sP , integration by parts, and some manipulations, (3)
in Lemma 1 is obtained.

B. Proof of Lemma 2

The integration in (3) can be only evaluated when the upper
limit is 1. By definition, yo(s) is always less than one. Since
the integrand in (3) is positive, setting the integral upper limit
to 1 and using [17, Eq.(3.383)], the lower bound in (6) is
obtained.

C. Proof of Lemma 3

Setting K → ∞ and σ → 0 the average channel power
is given by Ω = 2σ2K Starting form (26) and substituting
K̂ by K(1 + ∆ cos(α)), 2σ2K by Ω, setting σ2 = 0. Then,
by change of variables and integration by parts Lemma 3 is
obtained.
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