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Abstract

In this paper, we study a two-way relaying system with Analog Network Coding (ANC) where both the relay

and the two sources are under the effect of erroneous Channel State Information (CSI) and network interference

originating from a Poisson field of interferers. Our contribution is twofold: 1) We characterize the interference

affecting the aforementioned nodes by presenting a general model that incorporates the expected correlation of the

interference process affecting the relay with the one affecting the two sources; 2) By deriving the interference statis-

tics, in particular its first moment, we derive analytical formulas for the distribution of the Signal-to-Interference-

plus-Noise Ratio (SINR) of the two sources in the high-SINR region, which reveal that in that region the amount

of correlation between the interference processes affecting the relay and the two sources does not affect the SINR

distribution. These statistics are subsequently used to derive analytical expressions of the average sum Symbol

Error Rate (SER) and achievable average sum rate of the system. Finally, the theoretical results are corroborated

by means of Monte Carlo simulations.

Index Terms

Analog Network Coding, Two-Way Relaying Channel, Channel Estimation Errors, Interference, Poisson Point

Process.

I. INTRODUCTION

Two-way relaying with Analog Network Coding (ANC) has received considerable attention over the

recent years due to its ability to reduce by half the amount of time slots needed for the end-to-end

communication between two sources, compared to the conventional store-and-forward approach [1]. In
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such a scenario, two sources that want to exchange packets simultaneously send them to an Amplify-

and-Forward (AF) relay at the first time slot, which forwards the combined analog signal to the sources

at the second time slot. In terms of complexity, using an AF relay is regarded as the simplest scheme

compared to other Network Coding approaches [2]-[4] (see also references therein), since it is the only

scheme where no further processing is required at the relay other than amplification and forwarding of the

incoming signal. Consequently, it is an attractive option for next generation relay-based wireless systems,

such as WiMAX and LTE-Advanced in which the operations at the relays should be maintained as low

as possible [5].

Up until now, there have been several works on the two-way relaying channel with ANC that deal with

different aspects. For instance, regarding coherent systems, as far its information-theoretic capabilities are

concerned, in [6] the authors study the optimal beamformers that maximize the achievable rate region in a

scenario with multiple relays and they also find the strategies with which the optimal diversity-multiplexing

tradeoff is achieved in a scenario with one relay. In addition, in [7] the case of a full-duplex AF relay is

studied and it is shown that this case achieves a higher rate than the half-duplex case when the residual

self-interference is kept under a certain threshold. Regarding precoding design, [8] studies the joint source

and relay precoding design based on the mean-square-error criterion with both the sources and the relay

equipped with multiple antennas and in [9] the same authors study a multi-pair of users scenario, which

exchange information though a multi-antenna relay with the aim of maximizing the minimum achievable

rate among all the users subject to a peak power constraint. For the case of multiple relays that can assist

the two-way communication, performance enhancement implementations compared to the single-relay

case can be found in the indicative works of [10] and [11] in which relay selection is considered. As far

as non-coherent systems are concerned, some indicative works for two-way or one-way relaying are the

works of [12]-[15].

All the aforementioned works related to coherent systems consider perfect channel state information

(CSI) knowledge at the source nodes, which means that they can perfectly cancel the self-interfering

part of the forwarded analog signal from the relay. However, in real world scenarios the CSI needs to

be estimated through the use of pilot signals prior to data transmission and, hence, estimation errors are

expected, which means that the two sources cannot perfectly eliminate the self-interference of the ANC

signal. To this end, the impact of CSI errors on the two-way relaying channel is considered in the work of

[16] in which the authors derive analytical frameworks for the outage probability and the bit error rate by
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considering multiple relays, where either maximum ratio combining [17] or relay selection is employed.

Moreover, the achievable information rate is derived in [18] by assuming imperfect CSI and, in addition,

power allocation based on long-term statistics is proposed, which alleviates its impact. In addition, in

[19] relay selection is considered where the relay that is selected is the one that corresponds to the

maximum of the worst Signal-to-Noise Ratio (SNR) value between the two source-relay links among all

the relays. Analytical error rate expressions are derived for the two sources, which closely match Monte

Carlo simulations in the high-SNR region.

Besides imperfect CSI, another performance limitation factor expected to exist in real-world scenarios is

co-channel interference. Indicative works of two-way relaying systems considering the impact of Gaussian

co-channel interference can be found in [20]-[23]. In particular, in [20] and [21] the outage probability is

analytically studied, whereas in [22] besides the outage probability the authors derive analytical expressions

for the error probability and the achievable rate. However, these works that consider the impact of co-

channel interference assume a perfect CSI knowledge. In contrast, the impact of both CSI errors and

co-channel interference is studied in [23] in which the authors derive analytical expressions for the system

outage probability, error rate, and achievable sum rate in a two-way multiple relaying system assuming

that either the relays dispatch their ANC signal sequentially to the two sources or the relay with the best

channel conditions is selected to assist the communication and forward the ANC signal.

Although the consideration of the effect of co-channel interference makes the system analysis more

practical, the previously mentioned co-channel interference related works rely on the assumption of

Gaussian interference resulting from a finite number of interference. For this to hold, the complex channel

coefficients of the interferers should be Gaussian and their position known a priori, which can occur only in

planned cellular systems. Consequently, the Gaussian interference assumption seems an implausible case

for next generation cellular systems, which are expected to be of heterogeneous nature [24], [25] with

several small cells, cognitive radios, and Wi-Fi access points, for instance, overlaid in the area covered by

a macro cell. These nodes can act as interferers to the macro-cell users and their number and position are

unknown a priori. Hence, the resulting interference is not expected to be Gaussian distributed. To model

it, the most common approach in the literature is the stochastic geometry approach in which the location

of the interferers and their number are distributed according to a Poisson Point Process (PPP) [26]-[28]1.

In light of an increasing amount of works investigating the impact of the PPP interference modeling

1Although it is not the most realistic stochastic geometry model to describe the expected interference in emerging heterogeneous networks,
PPP modeling is preferred due to its analytical tractability and the important insights that the system designer can obtain by its analysis [29].
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in future wireless networks, some papers have recently started investigating the performance of one way

relay-based systems in the presence of this interference type [30]-[35]. In [30], the outage probability of

optimal, maximum ratio, and selection combining [17] is investigated. In [31], the outage probability and

error rate of AF–based dual–hop relaying are studied without the inclusion of the direct link from the

source to the destination. In [32], the achievable spatial–contention diversity order of cooperative relaying

is computed. In [33], the error probability and diversity order of multi–hop relaying are studied assuming

that the interference processes affecting the nodes are independent. In [34], the analysis of [31] is extended

by considering also the direct link from the source to the destination where maximum ratio combining is

used to combine the direct and the relay-forwarded signal. Finally, in [35] the authors consider the same

system model as the one in [34], but the selection combining scheme is used at the destination. We note

that in [31], [34], and [35] it is assumed that the interference affects only the destination, but not the

relay, which would be a more realistic approach.

As aforementioned, these works consider one-way relay systems and to the best of our knowledge there

is no work in the literature considering the impact of co-channel interference in the two-way relaying

scenario that is characterized by a PPP.

Contribution: This work is motivated by the importance of the two-way relaying scenario, and, hence,

the need of the system designer to be in possession of accurate analytical frameworks that lead to insights

for importance performance metrics, such as the average error rate and achievable rate. By jointly taking

into account for the first time in this scenario practical aspects, such as imperfect channel estimates and

interfering nodes randomly distributed whose number and location are not known a priori, we provide the

following two-fold contribution:

1) Against the simplified assumptions of previous works on the two-way relaying channel with ANC that

they either consider perfect channel estimates or Gaussian-distributed interference statistics, which largely

deviate from the expected statistics of randomly deployed interfering nodes, in this work we take both

of these practical aspects into account. Regarding the interference, we consider PPP-based co-channel

interference affecting both the relay and the two sources, which incorporates the expected correlation

between the processes affecting these nodes. This correlation arises due to same interferers expected to

be active at both time slots that the communications lasts without changing their position.

2) High-SINR formulas are derived for the average sum SER and achievable average sum rate of the

two sources by first computing their SINR distribution in the specific region. This distribution involves
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the first moment of the interference processes that affect the relay and the two sources and it is not

dependent on the amount of correlation between them. These derived analytical formulas are validated

by means of Monte Carlo simulations, which exhibit a relatively close match with the analysis in the

high-SINR region. In addition, important insights are obtained based on the analytical expressions, which

are numerically validated in Section IV.

Organization: The remainder of this paper is organized as follows. In Section II, the system model under

study is presented and the network interference is characterized. Section III presents the performance

analysis that leads to closed-form expressions of the average sum SER and achievable average sum rate

of the two sources. Section IV validates the analytical results by comparing them with their Monte Carlo-

based counterparts and observing their relatively close match in the high-SINR region. Finally, Section V

concludes this work and presents guidelines for future work on this area.

Notation: The following notation is used throughout this paper. i) Ex {·} denotes the mean value of

the stochastic process x; ii) |·| is the absolute value of a complex number; iii)
(·
·

)
denotes the binomial

coefficient; iv) B (·, ·) is the beta function; v) ln (·) denotes the natural logarithm; vi) CN (µ, σ2) denotes

a complex Gaussian random variable with mean equal to µ and variance equal to σ2; vii) 2F (·, · , · , ·) is

the Gaussian hypergeometric function; viii) (r)k = r (r − 1) · · · (r − k + 1) denotes the falling factorial;

ix) Pr (·) denotes probability, and x) K1 (·) is the modified Bessel function of the second kind and first

order.

II. SYSTEM MODEL

In this section, we present the scenario under study and its signal model, characterize the interference

that affects the relay and the sources, and derive approximate expressions of the instantaneous SINR of

the two sources.

A. Scenario

We assume that two fixed single-antenna sources, which we denote as A and B, want to exchange

packets in a narrowband flat-fading environment via a fixed half-duplex, single-antenna, AF, and variable-

gain relay. Furthermore, we assume that the channel coefficients do not change during the channel

estimation and data communication phase. For a better utilization of the network resources, we allow

the two packets to be analog network-coded and, hence, the end-to-end communication occurs in two

phases: i) During the first phase, which has a duration of one time slot, the two sources simultaneously
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dispatch their packets to the relay. ii) During the second phase, which also has a duration of one time

slot, the relay amplifies the summed signal received from the two sources and dispatches it to them.

Subsequently, each source detects its intended packet after subtracting its self-interfering signal from the

received signal. For this, we assume that each source has an imperfect estimate of its corresponding

channel coefficient to the the relay. In addition, we also assume that the relay has imperfect channel

estimates of the channel coefficients from the sources to itself.

Moreover, we assume that both the relay and the sources are affected by PPP homogeneous interference2

with intensity λ
(
nodes
m2

)
at both time slots that the communication lasts and for simplification, without loss

of generality, that the relay is located at the origin of the network and sources A and B are at a distance dA

and dB from the relay, respectively. In addition, we consider that transmissions from interferers (nodes that

use the same frequency with the two-way system under consideration) located inside a circle with radius

Rexc > max (dA, dB) measured from the origin are inhibited. This assumption is made to eliminate the

possibility of having co-channel interferers arbitrarily close to any of the source nodes, which would result

in very strong interference (infinite in theory), and can be practically feasible through proper sensing and

resource allocation. Hence, we assume that there is an exclusion region regarding the interference. This

system model is depicted in Fig. 1, where the triangles represent the possible sources of the homogeneous

interference.

We further assume that the interferers have the same transmit power level, which we denote as PI .

These interferers affect the relay at the first time slot and at the second slot the two sources. Furthermore,

we denote the transmission power level of source A as PA and the one of source B as PB. Finally, we

consider an unbounded path-loss model where the received power at a node from another node that is

located at a distance d scales with 1/da, where a is the path-loss exponent3.

B. Signal Model

Let us now present the signal model of two communication phases of the system.

2In reality, the interferers can be of various types, such as macro and small-cell base stations, mobile terminals, and the AF relays, which
makes the interference heterogeneous. However, we make the assumption that the power level of the interfering base stations is much stronger
than the power level of the rest types of interferers (due also to the assumption of an exclusion region for the interference) and, hence, the
only interfering effect that can be considered is the one of the base stations. Consequently, the PPP interference becomes homogeneous by
assuming for simplicity that the power level of all the interfering nodes is the same.

3Although the unbounded path-loss model is unrealistic for very small distances between nodes, if a minimum distance between the
interferers and the relay and source nodes is maintained throughout the communication period (which can be the case due to the exclusion
region), both the unbounded and the bounded path loss models would tend to give the same values of the performance metrics [36].
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Fig. 1: System Model.

First phase: The signal received at the relay in the first time slot, which we denote as yR, is given by

yR =

√
PA
daA
hAsA +

√
PB
daB

hBsB + nR + iR, (1)

where sA and sB are the modulated packets of source A and source B, respectively, hk ∼ CN
(
0, σ2

hk

)
(Rayleigh fading assumption) denotes the channel coefficient of source k, where k = {A,B} (notation

that is used as throughout this paper) nR ∼ CN (0, 1) is the Additive White Gaussian Noise (AWGN) at

the relay, and iR represents the interfering signal at the relay. In addition, we assume that

hk = ĥk + ehk , (2)

where ĥk denotes the estimated channel coefficient of source k of which the relay and the sources are

aware and ehk ∼ CN
(

0, σ2
ehk

)
denotes the Gaussian distributed channel estimation error of the source

k-relay link, which we assume to be independent of ĥk4. Hence, ĥk ∼ CN
(

0, σ2
hk
− σ2

ehk

)
. One question

that arises is how it is possible that both the relay and the sources have exactly the same erroneous channel

estimates. For this to occur, we assume that the relay is the one that performs channel estimation, obtains

the erroneous ĥk channel estimates of the two sources, and subsequently forwards them to the sources

prior to data transmission.

Second phase: In the second phase, the variable-gain relay first amplifies yR after proper power scaling.

4This can be the case when ĥk is the minimum mean square error estimate of hk [16].
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By assuming that the relay is unaware of the interference statistics (including the long-term statistics), but

aware of σ2
ehk

, it employs the amplification factor that makes the instantaneous transmitted power from

the relay equal to PR in the absence of interference. We denote it by GR and it is given by [16, Eq. (3)]

GR =

√√√√√ PR

PA
daA

(∣∣∣ĥA∣∣∣2 + σ2
ehA

)
+ PB

daB

(∣∣∣ĥB∣∣∣2 + σ2
ehB

) . (3)

For simplicity, we have excluded the scaling of GR with the unit variance of the noise at the relay due to

the fact that its effect is negligible for high PA/daA and PB/daB values (high-SNR region). Subsequently,

after amplification, the relay dispatches the received signal to the sources.

The received signal of source k, which we denote as yk, is given by

yk = GRyR
hk√
dak

+ nk + ik, (4)

where nk ∼ CN (0, 1) and ik denote the AWGN and interference, respectively, that affect source k at

the second time slot. By having the channel estimate ĥk, source k performs imperfect self-interference

cancellation and, hence, the resulting signal, which we denote as y′k, is given by

y′k = yk −GR

√
Pk
dak

ĥ2
ksk. (5)

By substituting (4) into (5), we get

y′k = 2GR

√
Pk
dak

ĥkehksk +GR

√
Pk
dak

e2
hk
sk̄ +GR

√
Pk̄
dakd

a
k̄

ĥkĥk̄sk̄ +GR

√
Pk̄
dakd

a
k̄

ĥk̄ehksk̄

+GR

√
Pk̄
dakd

a
k̄

ĥkehk̄sk̄ +GR

√
Pk̄
dakd

a
k̄

ehkehk̄ +GR
nRĥk√
dak

+GR
nRehk√
dak

+GR
iRĥk√
dak

+GR
iRehk√
dak

+ nk + ik, (6)

where k̄ = B,A if k = A,B, respectively. According to (6), the useful signal is GR

√
Pk̄
dakd

a
k̄

ĥkĥk̄sk̄ and the

rest of terms constitute the interference plus the noise.

C. Interference Characterization

Now, let us discuss about the interference processes iR and ik that affect the relay and source k,

respectively. The most general assumption is that iR is correlated with ik since in real-world scenarios it

is expected that some interferers that are active at the first time slot are also active at the second time slot
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and their location remains the same in these two slots. In addition, some interferers that are active at the

first time slot are not at the second one and, in the same way, there are new interferers generated at the

second time slot that are not active at the first one. This scenario can be described by two probabilities,

m1, m2 ≤ 1, where m1 is the probability that the interferers are active at both time slots and m2 = 1−m1

is the probability that the interferers are only active either at the first time slot or at the second one. Based

on this and by considering the superposition and thinning property of a PPP [37], iR and ik can be modeled

by three pair-wise independent PPPs, i1, i2, and i3, as

iR = i1R + i2, ik = i1k + i3k (7)

where i1R and i1k correspond to the interferers that are active at both time slots (they belong to the same

PPP i1) and affect the relay and source k, respectively. i2 corresponds to the interferers that are active

only at the first time slot and, hence, they affect only the relay, and i3k to the ones that are active only

at the second time slot (they belong to the same PPP i3) and affect source k. Consequently, it holds that

i1R and i1k have intensity λ1 = m1λ and the intensity of i2 and i3k is λ2 = m2λ. Hence, from the above

we understand that iR is correlated with ik due to the correlation of i1R with i1k . In mathematical terms,

we have

i1R =
∑
i

√
PI
dai
hi, i2 =

∑
l

√
PI
dal
hl

i1k =
∑
i

√√√√ PI(√
d2
i + d2

k − 2didk cos θki

)ahki
i3k =

∑
p

√√√√ PI(√
d2
p + d2

k − 2dpdk cos θkp

)ahkp , (8)

where di, dl, and dp denote the distances between the corresponding interferers and the origin of the

network, where we have assumed that the relay is located, and the angles θA and θB are illustrated in

Fig. 1. In addition, we assume that hi, hl, hki , and hkp ∼ CN (0, 1) (Rayleigh fading) and that they are

pair-wise independent.

The instantaneous power effect that iR and ik exhibit on the relay and source k, respectively, which we
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denote as IRinst and Ikinst , respectively, is given by

IRinst = E {iRi∗R} = I1Rinst
+ I2inst

Ikinst = E {iki∗k} = I1kinst
+ I3kinst

, (9)

where

I1Rinst
=
∑
i

PI
dai
|hi|2, I2inst =

∑
l

PI
dal
|hl|2

I1kinst
=
∑
i

PI(√
d2
i + d2

k − 2didk cos θki

)a |hki |2
I3kinst

=
∑
p

PI(√
d2
p + d2

k − 2dpdk cos θkp

)a ∣∣hkp∣∣2. (10)

The correlation coefficient between the interference processes IRinst and Ikinst , which we denote as

ρR,k, is given by

ρR,k =
E {IRinstIkinst} − E {IRinst}E {Ikinst}√

E
{

(IRinst)
2}− (E {IRinst})

2
√
E
{

(Ikinst)
2}− (E {Ikinst})

2
. (11)

When m1 = 0, it holds that ρR,k = 0, since IRinst and Ikinst are independent.

Finally, we note that conditioned on di, dl, and dp, i1R , i2, i1k , and i3k are zero-mean Gaussian random

variables with respective variances I1R , I2, I1k , and I3k given by

I1R =
∑
i

PI
dai
, I2 =

∑
l

PI
dal

I1k =
∑
i

PI(√
d2
i + d2

k − 2didk cos θki

)a
I3k =

∑
p

PI(√
d2
p + d2

k − 2dpdk cos θkp

)a . (12)

D. Instantaneous SINR

Now, we are going to derive instantaneous approximate expressions of the SINR of source k.

Proposition 1. By considering that in practical cases it holds that σ2
ehk
, σ2

ehk̄
� 1 and due to the fact

that in this work we are interested in average metrics, such as the average sum SER and the achievable
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average sum rate, (6) can be approximated as

y′k ≈ 2GR

√
Pk
dak

ĥkehksk +GR

√
Pk̄
dakd

a
k̄

ĥkĥk̄sk̄ +GR

√
Pk̄
dakd

a
k̄

ĥk̄ehksk̄

+GR

√
Pk̄
daAd

a
k̄

ĥkehk̄sk̄ +GR
nRĥk√
dak

+GR
iRĥk√
dak

+GR
iRehk√
dak

+ nk + ik. (13)

Proof : See APPENDIX A.

From (13), we observe that conditioned on the distances between the interferers and the relay, between

the interferers and source k, and on ĥk and ĥk̄, the interference plus noise term is Gaussian, since we

have assumed that the fast fading channel coefficients from the interferers to the relay and source k are

Gaussian. Hence, by considering (3), the SINR of source k, which we denote as γk, that results from (13)

is given by

γk ≈
Pk̄PR|ĥk|2|ĥk̄|2

dakd
a
k̄(

4PkPRσ2
ehk

d2a
k

+
Pk̄PRσ

2
ehk̄

dakd
a
k̄

+ PR
dak

+ PRIR
dak

+ Pk
dak

+ PkIk
dak

) ∣∣∣ĥk∣∣∣2 +

(
Pk̄PRσ

2
ehk

dakd
a
k̄

+
Pk̄
da
k̄

+
Pk̄Ik
da
k̄

) ∣∣∣ĥk̄∣∣∣2 + µ

,

(14)

where IR = I1R + I2, Ik = I1k + I3k , and µ =
PRIRσ

2
ehk

dak
+ Pk

dak
σ2
ehk

+
Pk̄
da
k̄

σ2
ehk̄

+ Ik

(
Pk
dak
σ2
ehk

+
Pk̄
da
k̄

σ2
ehk̄

)
.

Proposition 2. By again taking into account that in practical cases it holds that σ2
ehk
, σ2

ehk̄
� 1, the factor

µ can be excluded from the denominator of (14) since the average value of each of its terms is much

smaller than the average value of other terms of the denominator. Hence, (14) can be further approximated

(after multiplying the enumerator and denominator with dakd
a
k̄
) as

γk ≈
Pk̄PR

∣∣∣ĥk∣∣∣2∣∣∣ĥk̄∣∣∣2
Ck

∣∣∣ĥk∣∣∣2 +Dk

∣∣∣ĥk̄∣∣∣2 , (15)

where

Ck = 4PkPRσ
2
ehk

da
k̄

dak
+ Pk̄PRσ

2
ehk̄

+ PRd
a
k̄ + PRIRd

a
k̄ + Pkd

a
k̄ + PkIkd

a
k̄ (16)

and

Dk = Pk̄PRσ
2
ehk

+ Pk̄d
a
k + Pk̄Ikd

a
k. (17)

Proof : See APPENDIX B.
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III. PERFORMANCE ANALYSIS

In this section, we derive high-SINR expressions of the average sum SER and the achievable average sum

rate of source k. Towards this, we first derive the Cumulative Density Function (CDF) of the instantaneous

SINR in that region and subsequently we use known literature formulas that involve the statistics of the

SINR to derive the corresponding performance metrics.

A. SINR Distribution

Proposition 3. In the high-SINR region, the CDF of (15), which we denote as Fk (x), can be approximated

as

Fk (x) = EI {Fk (x|I)} ≈ Nkx, (18)

where

Nk =
(
σ2
hk̄
− σ2

ehk̄

) da
k̄

Pk̄
EI {IR}+

[(
σ2
hk
− σ2

ehk

)
dak +

(
σ2
hk̄
− σ2

ehk̄

) Pk
Pk̄
dak̄

]
EI {Ik}
PR

+ Zk (19)

with

Zk =
(
σ2
hk̄
− σ2

ehk̄

)[
4
Pk
Pk̄
σ2
ehk

da
k̄

dak
+ σ2

ehk̄
+

(
1 +

Pk
PR

)
da
k̄

Pk̄

]
+
(
σ2
hk
− σ2

ehk

)(
σ2
ehk

+
dak
PR

)
, (20)

EI {IR} = EI {I1R}+ EI {I2} =
2πλPI
a− 2

R2−a
exc , (21)

and

EI {Ik} = EI {I1k}+ EI {I3k} = AIk (22)
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with

AIk



= 2λPI

a
2
−1∑

n=0

 a
2
− 1

n

B

(
1

2
, n+

1

2

)
(4dk)

n
n+1∑
w=0

 n+ 1

w

Rn+1−w
exc (Rexc + dk)

1−a

×(Rexc − dk)w−2nB (w + 1, a+ 2n− w − 1)

×2F1

(
a− 1, w + 1, a+ 2n,

2dk
Rexc + dk

)
, if a = 2m,m = 2, 3, 4, ....

= 2λPI

∞∑
n=0

(
a
2
− 1
)
n

n!
B

(
1

2
, n+

1

2

)
(4dk)

n
n+1∑
w=0

 n+ 1

w

Rn+1−w
exc (Rexc + dk)

1−a

×(Rexc − dk)w−2nB (w + 1, a+ 2n− w − 1)

×2F1

(
a− 1, w + 1, a+ 2n,

2dk
Rexc + dk

)
, if a 6= 2m,m = 2, 3, 4, ....,

and Rexc >
(

3 + 2
√

2
)
dk.

≈ πλPI
a− 2

[
(Rexc − dk)2−a + (Rexc + dk)

2−a] , if a 6= 2m,m = 2, 3, 4, ....,

and Rexc 6
(

3 + 2
√

2
)
dk.

(23)

Proof : See APPENDIX C.

Remark 1. By substituting (21) and (22) into (18), we observe that Fk (x) in the high-SINR region does

not depend on m1 and m2. This means that the amount of correlation between the interference processes

that affect the relay and source k does not affect Fk (x) in that region and, consequently, it does not

also affect the performance metrics that are derived based on Fk (x), such as the average error rate and

achievable rate.

B. Average Sum SER

The instantaneous SER of a coherent detection system, which we denote as PSinst , in AWGN (or

noise+interference that is Gaussian distributed) can be approximated as [17, Eq. (6.73)]

PSinst ≈
c

π

∫ π/2

0

e
− gγSINR

sin2 φ dφ, (24)

where γSINR is the instantaneous SINR and c and g are constants that depend on the modulation that is

used. For instance, for rectangular Mary-Quadrature Amplitude Modulation (MQAM) it holds that [17,

Table 6.1]

c =
4
(√

M − 1
)

√
M

, g =
3

M − 1
. (25)
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As we aforementioned in Section II-C, conditioned on the distances between the interferers and the

relay, between the interferers and source k, and on ĥk and ĥk̄, the interference plus noise term is Gaussian,

since we have assumed that the fast fading complex channel coefficients from the interferers to the relay

and source k are Gaussian (Rayleigh fading). Hence, (24) holds in our system model with γSINR given

by (15). From (24), the average SER of source k, which we denote as P̄Ek , can be approximated as [17,

Eq. (6.74)]

PEk ≈
c

π

∫ π/2

0

Mγk

(
g

sin2ϕ

)
dϕ, (26)

where Mγk (s) denotes the Moment Generating Function (MGF) of the instantaneous SINR of source k,

which is given by

Mγk (s) = Eγk
{
e−sγk

}
=

∫ ∞
0

e−sxfk (x) dx, (27)

where fk (x) is the pdf of the instantaneous SINR of source k. In the high-SINR region, we have

fk (x) =
dFk (x)

dx

(d)
≈ Nk, (28)

where in (d) we use (18).

By substituting (28) into (27), we get

Mγk (s) ≈ Nk

s
. (29)

Hence, the average sum SER of the two sources, which we denote as P̄Ssum , is given by

P̄Ssum = PEA + PEB ≈
c

π

(∫ π/2

0

MγA

(
g

sin2ϕ

)
dϕ+

∫ π/2

0

MγB

(
g

sin2ϕ

)
dϕ

)
(e)
=

c

4g
(NA +NB) , (30)

where in (e) we use (29).

C. Average Sum Rate

Since we have proved in Section II-D that conditioned on the distances between the interferers and

the relay, between the interferers and source k, and on ĥk and ĥk̄, the noise plus interference stochastic

process at source k (and, consequently, at source k̄ due to symmetry) is Gaussian distributed, Shannon’s

formula [42] holds for the instantaneous maximum achievable rate of sources A and B, which we denote
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as RA and RB, respectively. Consequently [43, Eq. (30)],

RA =
1

2
log2 (1 + γA) , RB =

1

2
log2 (1 + γB) , (31)

where the 1
2

multiplier is due to the fact that the duration of the communication is two time slots. Hence,

the achievable average sum rate of the system, which we denote as R̄sum, is given by

R̄sum = EγA {RA}+ EγB {RB} =
1

2
EγA {log2 (1 + γA)}+

1

2
EγB {log2 (1 + γB)}

(f)
=

1

2
log2 (e)

(∫ ∞
0

1− FA (x)

1 + x
dx+

∫ ∞
0

1− FB (x)

1 + x
dx

)
(g)
≈ 1

2
log2 (e)

(∫ 1
NA

0

1−NAx

1 + x
dx+

∫ 1
NB

0

1−NBx

1 + x
dx

)

=
1

2
log2 (e)

[
(1 +NA) ln

(
1

NA

+ 1

)
+ (1 +NB) ln

(
1

NB

+ 1

)
− 2

]
, (32)

where in (f) we use [23, Eq. (38)] and in (g) we use (18). In addition, in (g) we truncate the infinite

upper limit of the two integrals due to the fact that we are only interested in the range of values for which

FA (x) , FB (x) ≤ 1.

D. Insights Based on the Analytical Model

Since this work is focused on the effect of imperfect channel estimates and PPP-based interference on

the performance metrics of the two-way relaying channel with ANC, it is interesting to examine whether

some insights can be acquired from the analytical expressions regarding how these imperfect estimates

and this type of interference affect these metrics. Towards this, we examine the individual average error

probabilities of sources k and k̄ and we consider the following two scenarios: i) σehk < σehk̄
and dk = dk̄,

Pk = Pk̄ = PR, σhk = σhk̄ . ii) dk < dk̄ and Pk = Pk̄ = PR, σhk = σhk̄ , σehk = σehk̄
. Scenario i) shows

the impact of the imperfect channel estimates, whereas scenario ii) shows the impact of the PPP-based

interference.

Scenario i):

Proposition 4. In scenario i), it holds that PEk < PEk̄ .

Proof : By hypothesis testing and by considering that EI {Ik} = EI {Ik̄} since dk = dk̄, we have

PEk < PEk̄
(h)⇒Nk < Nk̄

(i)⇒σehk < σehk̄
, (33)
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which is true. In (h) we use (26) and (29), whereas in (i) we use (19).

Scenario i) simply tells us that if the variance of the estimation error is higher in the source k̄-relay

link than the one of the source k-relay link and all the other parameters of the system are the same for

both links, then source k̄ exhibits a higher average SER than the average SER of source k.

Scenario ii): To make the effect of PPP-based interference clearer, we consider two cases: a) There is

no network interference, which means that IR = Ik = Ik̄ = 0. b) There is network interference affecting

both the relay and the two sources, which means that IR, Ik, Ik̄ 6= 0.

Proposition 5. In scenario ii), it holds that PEk > PEk̄ for case a), whereas no conclusion can be drawn

for case b).

Proof : For case a), by hypothesis testing and considering that IR = Ik = Ik̄ = 0, we have

PEk > PEk̄
(h)⇒Nk > Nk̄

(i)⇒ dk < dk̄, (34)

which is true. (h) and (i) are defined in Proposition 4. The reason why this happens is because the

amplified noise at the relay is attenuated less in the source k-relay link than the source k̄-relay link, since

dk < dk̄. Hence, its effect is more significant at source k than source k̄.

For case b), no definite conclusion can be drawn regarding the relation between PEk and PEk̄ based on

the analytical expressions. Intuitively, this relation totally depends on the position of sources k and k̄ and

the values of the rest of the parameters. This is explained by the fact that although the amplified noise and

the network interference affecting the relay are attenuated less in the source k-relay link than the source

k̄-relay link, if source k̄ is close to the border of the exclusion region the total effect of interference plus

noise might be greater at source k̄ than source k, which is verified in Section IV.

IV. NUMERICAL RESULTS

Our aim in this section is twofold: i) To validate the theoretical results regarding the average sum SER

and the achievable sum rate of the system by comparing them against Monte Carlo-based simulations in

symmetric and asymmetric scenarios. ii) To validate the proved insights of Section III-D.

The Monte Carlo simulations are obtained by simulating the whole communication system, such as the

modulator, propagation channel, and the demodulator. For the generation of the network interference, we

consider the following procedure: i) We consider a finite circular area of sufficiently large radius, which

we denote as Ra, which results in interferers located close to the edge having a negligible effect on the



17

−20 −10 0 10 20 30 40 50

10
−2

10
−1

10
0

P
k
/P

I
 [dB]

A
v
e

ra
g

e
 S

u
m

 S
E

R

 

 

m
1
=1, Simulation

m
1
=0, Simulation

Analysis

d
k
=70 m d

k
=120 m

d
k
=20 m

(a) σ2
ehk

= 0.001.

−20 −10 0 10 20 30 40 50 60
10

−4

10
−3

10
−2

10
−1

10
0

P
k
/P

I
 [dB]

A
v
e

ra
g

e
 S

u
m

 S
E

R

 

 

m
1
=1, Simulation

m
1
=0, Simulation

Analysis

d
k
=70 m

d
k
=120 m

d
k
=20 m

(b) σ2
ehk

= 0.

Fig. 2: Average sum SER vs. Pk

PI
[dB] for a = 4.

relay and the two sources. In particular, we use Ra = 5000 m. This way, we can model the effect of the

theoretically infinite radius of the system; ii) The number of interferers for each of the three pair-wise

independent PPPs, i1, i2, and i3 is generated according to a Poisson distribution with densities m1λ, m2λ,

and m2λ, respectively, and area πR2
a; iii) The locations of the interferers are distributed according to a

uniform distribution in the circular region of area πR2
a. Furthermore, we render inactive the nodes that

are generated inside a circle with radius Rexc (exclusion region of the interference); and iv) Independent

complex channel coefficients are generated for each interferer. In addition, if m1 6= 0, the same locations

of the interferers that belong to the PPP i1 are maintained in the simulator in the two time slots that the

communication lasts and only the corresponding complex channel coefficients of the interferers change

independently in these two slots. This is how i1R , i1A , and i1B are obtained.

In addition, for the cases where a 6= 2m, m = 2, 3, 4, ..., and Rexc >
(
3 + 2

√
2
)
dk, the second case

from (23) holds, where the first series grows to infinity. For those cases, we use the first 15 terms of

the infinite series in those analytical expressions. For all the obtained results we used PI/N0 = 100 dB,

where N0 = 1 is the variance of the AWGN affecting the relay and the two sources, λ = 10−5
(
nodes
m2

)
,

and MQAM modulation with M = 4.

A. Symmetric Scenario

We consider the following setup: Rexc = 150 m, dA = dB = dk, PA = PB = PR = Pk, σ2
ehA

= σ2
ehB

=

σ2
ehk

, and σ2
hA

= σ2
hB

= 1.
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[dB] for a = 2.5.

1) Average Sum SER: In Fig. 2, we illustrate the average sum SER vs. Pk
PI

plots for a = 4, two values

of σ2
ehk

, three values of dk, and for m1 = 1 and m1 = 0. The m1 = 1 case corresponds to the scenario

where the same interferers are active at both time slots with their location being the same, whereas in the

m1 = 0 case the sets of interferers that are active at two time slots are disjoint. As we observe from Fig. 2,

for all cases there is a good match of the theoretical analysis with the simulation results for error rates

lower than 0.1 (high-SINR region), which substantiates the significance of the derived analytical error rate

framework. In addition, we observe that the simulation plots for the m1 = 1 and m1 = 0 cases overlap

in that region, which numerically validates the based on the theoretical analysis Remark 1. Furthermore,

we observe that there is also an overlap in the low and medium-SINR region. This non-dependence of

the performance metrics on the amount of correlation between the interference processes that affect the

relay and the two sources can intuitively be justified by the fact that the two sources are unaware of the

interference and, moreover, no combining is used5. Moreover, we see that the average sum SER reduces

as dk increases, which was expected due to the fact that stronger interference affects the two sources for

increasing dk due to the smaller distances between the interferers and the two sources.

In Fig. 3, we provide the same plots as with Fig. 2 with the only difference that we consider a = 2.5.

We again observe the good match of the theoretical with the simulation results for error rates lower than

5Such findings are similar to the ones that can be inferred by observing Figs. 2 and 3 of [34], which illustrate the average symbol error
probability for an interference-unaware receiver in the cases of full correlation and independence between the two interference processes
affecting the relay and the destination. By careful observation of these two figures, we can see that the simulated error probabilities in the two
cases of full correlation and independence are the same, which means that correlation does not have an effect on the performance metrics.
On the other hand, these error probabilities differ with respect to each other for an interference-aware receiver, as it can be observed in Figs.
4 and 5 of [34].



19

20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

d
k
 [m]

ρ
R

,A
, 

ρ
R

,B

 

 

m
1
=1, Simulation

m
1
=0.5, Simulation

(a) a = 4.

20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

d
k
 [m]

ρ
R

,A
, 

ρ
R

,B

 

 

m
1
=1, Simulation

m
1
=0.5, Simulation

(b) a = 2.5.

Fig. 4: ρR,A, ρR,B vs. dk.

0.1 together with the overlap in all the SINR range of the m1 = 1 and m1 = 0 cases.

Now, to numerically quantify the correlation between the interference processes that affect the relay and

the two sources, in Fig. 4 we illustrate the ρR,A, ρR,B vs. dk plots, where ρR,A, ρR,B have been obtained

by means of Monte Carlo simulations, according to (11). As we observe from Fig. 4, the correlation

coefficient decreases as dk increases, which is attributed to the fact that the closer the sources are to the

relay, the closer the distances between the interferers and the relay and between the interferers and the

sources are with respect to each other. In addition, although for small values of dk the distances between

the interferers and the relay and between the interferers and the two sources are almost equal, in Fig. 4

we also observe that ρR,A and ρR,B are not higher than 0.5 for small values of dk, which is due to the

independent channel fading in the two time slots that the communication lasts. Finally, we also observe

that the values of ρR,A and ρR,B are higher for a = 2.5 than for a = 4, which can be attributed to less

severe attenuation of the interfering signals as a decreases.

2) Average Sum Rate: In Fig. 5 and Fig. 6, we illustrate the average sum rate vs. Pk
PI

plots for the same

configurations as with Fig. 2 and Fig. 3, respectively. We again observe a relatively good match in the

high-SINR region of the simulation with the analysis together with the overlap of the m1 = 1 and m1 = 0

cases for all the SINR range. Furthermore, we observe a non-negligible gap between the simulation and

the analysis in the low and medium-SINR region, which was expected since the theoretical expression of

the average sum rate of (32) is obtained by using the high-SINR approximation of FA (x) and FB (x),

according to (18).
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Fig. 6: Average sum rate vs. Pk

PI
[dB] for a = 2.5.

B. Asymmetric Scenario

To also show the flexibility of the analytical expressions regardless of the value of the parameters, in

Fig. 7 we illustrate the average sum SER and sum rate vs. PA
PI

plots, respectively, for an asymmetric scenario

with Rexc = 150 m, PB = PR = 2PA, dA = 50 m, σ2
hA

= 1, σ2
hB

= 2, σ2
ehA

= 10−5, σ2
ehB

= 5 · 10−5,

a = 3.2, m1 = 0.5, and three values of dB. Again, we observe the good match in the high-SINR region

(SER<10−1) of the analytical model with the Monte Carlo simulations.

C. Validation of the Insights of Section III-D

In this section, we validate the proved insights of Section III-D. We first start by validating Proposition

4. Towards this, we consider the following setup: Rexc = 200 m, dA = dB = dk, PA = PB = PR = Pk,
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Fig. 7: Average sum SER and sum rate vs. PA

PI
[dB].

σ2
hA

= σ2
hB

= 1, σ2
ehA

= 10−4, σ2
ehB

= 5 · 10−4, a = 4, and m1 = 0.5. As we observe in Fig. 8, the higher

value of the error variance of the source B-relay link compared to the corresponding one of the source

A-relay link results in PEB > PEA for two different values of dk.

In addition, to validate Proposition 5 we consider the following setup: Rexc = 200 m, dA = 50 m,

PA = PB = PR = Pk, σ2
hA

= σ2
hB

= 1, σ2
ehA

= σ2
ehB

= 0, a = 4, and m1 = 0.5. In Fig. 9 (a), we consider

that there is no interference and we illustrate the PEA , PEB curves vs. Pk/N0. As we observe, PEA > PEB

for both values of dB that are greater than dA and this is justified by the fact, as we aforementioned in

Section III-D, that due to the higher distance of source B to the relay the amplified noise is attenuated

more in that link than in the source A-relay link. On the other hand, by including interference we observe

in Fig. 9 (b) that PEA > PEB for dB = 80 m, whereas PEA < PEB for dB = 130 m. This is justified by

the fact that in the case of dB = 130 m the interference affecting source B is quite strong since source

B is close to the border of the exclusion region, which eliminates the advantage of higher attenuation of

the amplified noise plus interference at the relay due to the higher distance of the source B-relay link

than the one of the source A-relay link. Hence, from Fig. 9 (b) we understand how important it is to

accurately model the spatial characteristics of interference. Such distance-based trends cannot be captured

by the Gaussian assumption for the interference since that model does not incorporate the distance of the

interferers to the affected nodes.
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V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have investigated the joint effect of channel estimation errors and network interference

on the performance of two-way relaying systems with ANC. In particular, a general model for the

interference processes that affect the relay and the two sources has been presented, which incorporates

the expected correlation between them. Subsequently, after deriving the statistics of the SINR of the two

sources, we provided high-SINR analytical expressions of the system average sum SER and achievable

average sum rate, which exhibit a relatively good match with the simulation results in the specific region.

Furthermore, important insights regarding the impact of the imperfect channel estimates and network

interference on the performance of the system were gained based on the analytical expressions.
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In addition, the theoretical analysis reveals that the amount of correlation between the interference

processes that affect the relay and the two sources does not affect the examined performance metrics in

the high-SINR region. This trend is validated by simulations, which also show that for the whole SINR

range the amount of correlation does not affect these metrics.

Future work will focus on the study of the multiple-antenna relay case, which is expected to provide

diversity gains. In addition, the study of the full-duplex relay case is another topic of interest.

APPENDIX

A. Proof of Proposition 1

We are going to prove that the statistical effect of the random terms GR

√
Pk
dak
e2
hk
sk, GR

√
Pk̄
dakd

a
k̄

ehkehk̄ ,

and GR
nRehk√

dak
of (6) is negligible since their second moment (average power effect) is much smaller than

the second moment of other terms of this equation. More specifically,

i) We first consider the term GR

√
Pk
dak
e2
hk
sk of (6) and let us take the ratio its second moment with the

corresponding one of the term 2GR

√
Pk
dak
ĥkehksk of the same equation. We have

E

{∣∣∣GR

√
Pk
dak
e2
hk
sk

∣∣∣2}
E

{∣∣∣2GR

√
Pk
dak
ĥkehksk

∣∣∣2} =
3σ4

ehk

4
(
σ2
hk
− σ2

ehk

)
σ2
ehk

=
3σ2

ehk

4
(
σ2
hk
− σ2

ehk

) � 1, (35)

for σhk � σehk , which occurs in practical systems. Hence, the term GR

√
Pk
dak
e2
hk
sk can be eliminated from

(6) since its statistical power effect is negligible.

ii) We now consider the ratio of the second moment of the term GR

√
Pk̄
dakd

a
k̄

ehkehk̄ with the corresponding

one of the term GR

√
Pk̄
dakd

a
k̄

ĥkehksk̄ of (6). We have

E

{∣∣∣GR

√
Pk̄
dakd

a
k̄

ehkehk̄

∣∣∣2}
E

{∣∣∣GR

√
Pk̄
dakd

a
k̄

ĥkehksk̄

∣∣∣2} =
σ2
ehk
σ2
ehk̄(

σ2
hk
− σ2

ehk

)
σ2
ehk
|sk̄|

2
=

σ2
ehk̄(

σ2
hk
− σ2

ehk

)
|sk̄|

2
� 1 (36)

for typical modulation orders and σhk � σehk , σehk̄
. Consequently, also the term GR

√
Pk̄
dakd

a
k̄

ehkehk̄ can be

eliminated from (6) since its statistical power effect is negligible.

iii) Finally, we consider the ratio of the second moment of the term GR
nRehk√

dak
with the corresponding
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one of the term GR
nRĥk√
dak

of (6). We have

E

{∣∣∣∣GR
nRehk√

dak

∣∣∣∣2
}

E

{∣∣∣∣GR
nRĥk√
dak

∣∣∣∣2
} =

σ2
ehk

σ2
hk
− σ2

ehk

� 1, (37)

for σhk � σehk . Hence, the term GR
nRehk√

dak
can be eliminated from (6).

B. Proof of Proposition 2

We are going to prove that the average value of each of the terms
PRIRσ

2
ehk

dak
, Pk
dak
σ2
ehk

+
Pk̄
da
k̄

σ2
ehk̄

, and

Ik

(
Pk
dak
σ2
ehk

+
Pk̄
da
k̄

σ2
ehk̄

)
of µ is much smaller than the average value of other terms of the denominator of

(14) and, hence, the statistical effect of µ is negligible. More specifically,

i) We consider the term
PRIRσ

2
ehk

dak
and take the ratio of its average value with the average value of the

term PRIR
dak

∣∣∣ĥk∣∣∣2 in the denominator of (14). We have

E

{
PRIRσ

2
ehk

dak

}
E

{
PRIR
dak

∣∣∣ĥk∣∣∣2} =
σ2
ehk

σ2
hk
− σ2

ehk

� 1. (38)

Hence, the statistical effect of
PRIRσ

2
ehk

dak
is negligible.

ii) We now consider the ratio of the average value of the term Pk
dak
σ2
ehk

+
Pk̄
da
k̄

σ2
ehk̄

with the corresponding

one of the term
Pk|ĥk|2
dak

+
Pk̄|ĥk̄|2
da
k̄

in the denominator of (14). We have

E
{
Pk
dak
σ2
ehk

+
Pk̄
da
k̄

σ2
ehk̄

}
E

{
Pk|ĥk|2
dak

+
Pk̄|ĥk̄|2
da
k̄

} =

Pk
dak
σ2
ehk

+
Pk̄
da
k̄

σ2
ehk̄

Pk
dak

(
σ2
hk
− σ2

ehk

)
+

Pk̄
da
k̄

(
σ2
hk̄
− σ2

ehk̄

) � 1, (39)

since σehk , σehk̄ � σhk , σhk̄ . Consequently, also the statistical effect of Pk
dak
σ2
ehk

+
Pk̄
da
k̄

σ2
ehk̄

is negligible.

iii) Finally, we consider the ratio of the average value of the term Ik

(
Pk
dak
σ2
ehk

+
Pk̄
da
k̄

σ2
ehk̄

)
with the

corresponding one of the term Ik

(
Pk|ĥk|2
dak

+
Pk̄|ĥk̄|2
da
k̄

)
in the denominator of (14). We have

E
{
Ik

(
Pk
dak
σ2
ehk

+
Pk̄
da
k̄

σ2
ehk̄

)}
E

{
Ik

(
Pk|ĥk|2
dak

+
Pk̄|ĥk̄|2
da
k̄

)} =

Pk
dak
σ2
ehk

+
Pk̄
da
k̄

σ2
ehk̄

Pk
dak

(
σ2
hk
− σ2

ehk

)
+

Pk̄
da
k̄

(
σ2
hk̄
− σ2

ehk̄

) � 1. (40)
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Hence, the statistical effect of Ik
(
Pk
dak
σ2
ehk

+
Pk̄
da
k̄

σ2
ehk̄

)
is negligible.

C. Proof of Proposition 3

We derive Fk (x) in a two-step procedure: i) We first derive Fk (x) conditioned on the network

interference (the statistics of the distances), which we denote as Fk (x |I ), by averaging over
∣∣∣ĥk∣∣∣2 and∣∣∣ĥk̄∣∣∣2. ii) Subsequently, we derive Fk (x) by averaging over the statistics of the network interference.

i) Fk (x |I ): We have that

Fk (x|I)
(a)
= Pr

 Pk̄PR

∣∣∣ĥk∣∣∣2∣∣∣ĥk̄∣∣∣2
Ck

∣∣∣ĥk∣∣∣2 +Dk

∣∣∣ĥk̄∣∣∣2 6 x

 = Pr

(∣∣∣ĥk∣∣∣2(Pk̄PR∣∣∣ĥk̄∣∣∣2 − Ckx) 6 Dk

∣∣∣ĥk̄∣∣∣x)

= Pr

(
Pk̄PR

∣∣∣ĥk̄∣∣∣2 − Ckx 6 0

)
+ Pr

∣∣∣ĥk∣∣∣2 6 Dk

∣∣∣ĥk̄∣∣∣x
Pk̄PR

∣∣∣ĥk̄∣∣∣2 − Ckx |Pk̄PR
∣∣∣ĥk̄∣∣∣2 − Ckx > 0

 ,

(41)

where in (a) we use (15).

For the first term of (41), we have

Pr

(
Pk̄PR

∣∣∣ĥk̄∣∣∣2 − Ckx 6 0

)
= Pr

(∣∣∣ĥk̄∣∣∣2 6 Ckx

Pk̄PR

)
= 1− e

Ckx(
σ2
hk̄

−σ2
ehk̄

)
Pk̄PR . (42)

For the second term of (41), we have

Pr

∣∣∣ĥk∣∣∣2 6 Dk

∣∣∣ĥk̄∣∣∣x
Pk̄PR

∣∣∣ĥk̄∣∣∣2 − Ckx |Pk̄PR
∣∣∣ĥk̄∣∣∣2 − Ckx > 0

 =

∫ ∞
Ckx

Pk̄PR

(
1− e

− 1

σ2
hk

−σ2
ehk

Dkyx

Pk̄PRy−Ckx

)

× 1

σ2
hk̄
− σ2

ehk̄

e
− 1

σ2
hk̄

−σ2
ehk̄

y

dy
(u=Pk̄PRy−Ckx)

=
e
− 1

σ2
hk̄

−σ2
ehk̄

Ckx

Pk̄PR(
σ2
hk̄
− σ2

ehk̄

)
Pk̄PR

∫ ∞
0

e
− 1

σ2
hk̄

−σ2
ehk̄

u
Pk̄PR

du

− e
− (Dk+Ck)x

Pk̄PR(
σ2
hk̄
− σ2

ehk̄

)
Pk̄PR

∫ ∞
0

e
− 1

σ2
hk

−σ2
ehk

(
CkDkx

2

Pk̄PRu
+ u
Pk̄PR

)
du = e

− 1

σ2
hk̄

−σ2
ehk̄

Ckx

Pk̄PR

− e
−
[

1

σ2
hk̄

−σ2
ehk̄

Ckx

Pk̄PR
+ 1

σ2
hk

−σ2
ehk

Dkx

Pk̄PR

]
(
σ2
hk̄
− σ2

ehk̄

)
Pk̄PR

2x

√√√√σ2
hk̄
− σ2

ehk̄

σ2
hk
− σ2

ehk

CkDk

×K1

 2x

Pk̄PR

√√√√ 1(
σ2
hk
− σ2

ehk

)(
σ2
hk̄
− σ2

ehk̄

)CkDk

 , (43)
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where the second term of (43) follows from [38, 3.478.4]. If Pk̄ and PR have high enough values

such that 2x
Pk̄PR

√
1(

σ2
hk
−σ2

ehk

)(
σ2
hk̄
−σ2

ehk̄

)CkDk � 1 (high-SINR region), we can use the small argument

approximation of K1 (·), i.e. K1 (z) ≈ 1
z
, z � 1 [39]. Hence, (43) becomes

Pr

∣∣∣ĥk∣∣∣2 6 Dk

∣∣∣ĥk̄∣∣∣x
Pk̄PR

∣∣∣ĥk̄∣∣∣2 − Ckx |Pk̄PR
∣∣∣ĥk̄∣∣∣2 − Ckx > 0

 ≈ e

− Ckx(
σ2
hk̄

−σ2
ehk̄

)
Pk̄PR

− e
−

 Ckx(
σ2
hk̄

−σ2
ehk̄

)
Pk̄PR

+
Dkx(

σ2
hk

−σ2
ehk

)
Pk̄PR


. (44)

By substituting (42) and (44) into (41), we get

Fk (x|I) ≈ 1− e
−

 Ck(
σ2
hk̄

−σ2
ehk̄

)
Pk̄PR

+
Dk(

σ2
hk

−σ2
ehk

)
Pk̄PR

x
(b)
≈

 Ck(
σ2
hk̄
− σ2

ehk̄

)
Pk̄PR

+
Dk(

σ2
hk
− σ2

ehk

)
Pk̄PR

x,
(45)

where in (b) we have considered the small argument approximation (e−x ≈ 1 − x, x � 1) of the

exponential function in (45) since the error probability in the high-SINR region is dominated by the

behavior of the probability (or cumulative) density function (pdf) as x (SINR) tends to 0 [40]. Hence, in

the region of interest (high-SINR region) it holds that

[(
σ2
hk̄
−σ2

ehk̄

)
Ck+

(
σ2
hk
−σ2

ehk

)
Dk

Pk̄PR

]
x� 1 (the exponent

in (45)).

ii) Fk (x): From (45), we have Fk (x) = EI {Fk (x|I)} and, hence, (19) is obtained from (41).

Now, we have that [41, Eq. (8)] (which is a result of Campbell’s theorem for a PPP process [37])

EI {I1R} =
2πm1λPI
a− 2

R2−a
exc and EI {I2} =

2πm2λPI
a− 2

R2−a
exc . (46)

Furthermore, again according to Campbell’s theorem, we have

EI {I1k} = m1λPI

∫ ∞
Rexc

l1dl1

∫ 2π

0

1(√
l21 + d2

k − 2l1dk cos θ
)adθ. (47)

By setting l22 = l21 + d2
k − 2l1dk cos θ, we have

cos θ =
l21 + d2

k − l22
2l1dk

⇒ θ = cos−1

(
l21 + d2

k − l22
2l1dk

)
⇒ dθ =

2l2√
l22 − (l21 − d2

k)
√

(l21 + d2
k)− l22

dl2. (48)
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By substituting (48) into (47), we get

EI {I1k} = 2m1λPI

∫ ∞
Rexc

l1dl1

∫ l1+dk

l1−dk
l−a2

2l2√
l22 − (l1 − dk)2

√
(l1 + dk)

2 − l22
dl2

t=l−2
2= 2m1λPI

∫ ∞
Rexc

l1dl1

∫ 1

(l1−dk)2

1

(l1+dk)2

t
a
2
−2√

1
t
− (l1 − dk)2

√
(l1 + dk)

2 − 1
t

dt

= 2m1λPI

∫ ∞
Rexc

l1
(l1 − dk) (l1 + dk)

dl1

∫ 1

(l1−dk)2

1

(l1+dk)2

t
a
2
−1√

1
(l1−dk)2 − t

√
t− 1

(l1+dk)2

dt

u=t− 1

(l1+dk)2

= 2m1λPI

∫ ∞
Rexc

l1
(l1 − dk) (l1 + dk)

dl1

×
∫ 1

(l1−dk)2−
1

(l1+dk)2

0

(
u+ 1

(l1+dk)2

)a
2
−1

√
u
√

1
(l1−dk)2 − 1

(l1+dk)2 − u
du. (49)

Now, from (49) we distinguish two cases:

1) a = 2m, where m = 2, 3, 4, ....In this case, for the second integral of (49) we can take the binomial

expansion of the numerator. This gives

∫ 1

(l1−dk)2−
1

(l1+dk)2

0

(
u+ 1

(l1+dk)2

)a
2
−1

√
u
√

1
(l1−dk)2 − 1

(l1+dk)2 − u
du

=

a
2
−1∑

n=0

 a
2
− 1

n

[ 1

(l1 + dk)
2

]a
2
−1−n ∫ 1

(l1−dA)2−
1

(l1+dA)2

0

un−
1
2√

1
(l1−dk)2 − 1

(l1+dk)2 − u
du

=

a
2
−1∑

n=0

 a
2
− 1

n

[ 1

(l1 + dk)
2

]a
2
−1−n[

4l1dk

(l1 − dk)2(l1 + dk)
2

]n
B

(
1

2
, n+

1

2

)
, (50)
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which follows from [38, 3.191.1]. By substituting (50) into (49), we get

EI {I1k} = 2m1λPI

a
2
−1∑

n=0

 a
2
− 1

n

B(1

2
, n+

1

2

)
(4dk)

n

∫ ∞
Rexc

ln+1
1

(l1 − dk)2n+1(l1 + dk)
a−1dl1

p=l1−Rexc
= 2m1λPI

a
2
−1∑

n=0

 a
2
− 1

n

B(1

2
, n+

1

2

)
(4dk)

n

×
∫ ∞

0

(p+Rexc)
n+1

(p+Rexc − dk)2n+1(p+Rexc + dk)
a−1dp

= 2m1λPI

a
2
−1∑

n=0

 a
2
− 1

n

B(1

2
, n+

1

2

)
(4dk)

n

×
n+1∑
w=0

 n+ 1

w

Rn+1−w
exc

∫ ∞
0

pw

(p+Rexc − dk)2n+1(p+Rexc + dk)
a−1dp

= 2m1λPI

a
2
−1∑

n=0

 a
2
− 1

n

B

(
1

2
, n+

1

2

)
(4dk)

n
n+1∑
w=0

 n+ 1

w

Rn+1−w
exc (Rexc + dk)

1−a

× (Rexc − dk)w−2nB (w + 1, a+ 2n− w − 1) 2F1

(
a− 1, w + 1, a+ 2n,

2dk
Rexc + dk

)
, (51)

which follows from [38, 3.197.1]. In the same way, EI {I3k} is given by (51) by replacing m1 with m2.

2) a 6= 2m, where m = 2, 3, 4, .... In this case, the exponent a
2
− 1 of the numerator of the second

integral in (49) is fractional and so we cannot rely on the known binomial expansion formula that works

only for integer exponents. Instead, we can rely on Newton’s generalized binomial expansion formula for

fractional exponents. In particular, if x and y are real numbers with |x| > |y|, and r is a complex number,

it holds that [38]

(x+ y)r =
∞∑
n=0

(r)n
n!

xr−nyn. (52)

Now, we see that the variable u of the integral
∫ 1

(l1−dk)2−
1

(l1+dk)2

0

(
u+ 1

(l1+dk)2

)a
2 −1

√
u
√

1

(l1−dk)2−
1

(l1+dk)2−u
du of (49) takes

values in the interval
[
0, 1

(l1−dk)2 − 1
(l1+dk)2

]
. Due to this, we distinguish two subcases:

i) The maximum value that u takes, which is 1
(l1−dk)2 − 1

(l1+dk)2 , is smaller than the term 1
(l1+dk)2 of the
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enumerator of
∫ 1

(l1−dk)2−
1

(l1+dk)2

0

(
u+ 1

(l1+dk)2

)a
2 −1

√
u
√

1

(l1−dk)2−
1

(l1+dk)2−u
du, which means that

1

(l1 − dk)2 −
1

(l1 + dk)
2 <

1

(l1 + dk)
2 ⇒ l21 − 6l1dk + d2

k > 0. (53)

The two roots of the second degree polynomial of (53) are

l11,2 =
(

3± 2
√

2
)
dk. (54)

Hence,

l21 − 6l1dk + d2
k > 0⇒ l1 <

(
3− 2

√
2
)
dk or l1 >

(
3 + 2

√
2
)
dk. (55)

Due to the fact that l1 takes values in the interval [Rexc, ∞), according to the first integral of (49), only

the right-side root of (55) satisfies the condition. Hence,

1

(l1 − dk)2 −
1

(l1 + dk)
2 <

1

(l1 + dk)
2 ⇒ l21 − 6l1dk + d2

k > 0
l1∈[Rexc,∞)⇒ Rexc >

(
3 + 2

√
2
)
dk. (56)

When (56) holds, the numerator of
∫ 1

(l1−dk)2−
1

(l1+dk)2

0

(
u+ 1

(l1+dk)2

)a
2 −1

√
u
√

1

(l1−dk)2−
1

(l1+dk)2−u
du can be expanded according

to (52), which means that

∫ 1

(l1−dk)2−
1

(l1+dk)2

0

(
u+ 1

(l1+dk)2

)a
2
−1

√
u
√

1
(l1−dk)2 − 1

(l1+dk)2 − u
du

=
∞∑
n=0

(
a
2
− 1
)
n

n!

[
1

(l1 + dk)
2

]a
2
−1−n ∫ 1

(l1−dk)2−
1

(l1+dk)2

0

un−
1
2√

1
(l1−dk)2 − 1

(l1+dk)2 − u
du

=
∞∑
n=0

(
a
2
− 1
)
n

n!

[
1

(l1 + dk)
2

]a
2
−1−n[

4l1dk

(l1 − dk)2(l1 + dk)
2

]n
B

(
1

2
, n+

1

2

)
, (57)

which follows from [38, 3.191.1]. By plugging (57) into (49) and following the same steps as in (51),

we get

EI {I1k} = 2m1λPI

∞∑
n=0

(
a
2
− 1
)
n

n!
B

(
1

2
, n+

1

2

)
(4dk)

n
n+1∑
w=0

 n+ 1

w

Rn+1−w
exc (Rexc + dk)

1−a

× (Rexc − dk)w−2nB (w + 1, a+ 2n− w − 1) 2F1

(
a− 1, w + 1, a+ 2n,

2dk
Rexc + dk

)
. (58)

Obviously, (58) is not in closed form since the first series grows to infinity. However, we can truncate it
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and take a finite number of terms to approximate the series. In Section IV, we numerically show that a

number of terms as low as 15 is adequate so that the examined performance metrics closely match the

Monte Carlo simulations in the high-SINR region.

ii) If Rexc 6
(
3 + 2

√
2
)
dk, it holds that there is a range of values of l1 for which the maximum

value 1
(l1−dk)2 − 1

(l1+dk)2 of u is smaller, greater, or equal to the term 1
(l1+dk)2 of the enumerator of

∫ 1

(l1−dk)2−
1

(l1+dk)2

0

(
u+ 1

(l1+dk)2

)a
2 −1

√
u
√

1

(l1−dk)2−
1

(l1+dk)2−u
du, based on (54) and since l1 ∈ [Rexc,∞). Due to the analytical

difficulty of this case, we consider the following. We take a look at Fig. 1 and we observe that source k

is under the effect of asymmetric interference since it is not located at the center of the circle with radius

Rexc. In particular, due to this asymmetry there are two values of the smallest possible distance between

source k and any interferer that are diametrically opposite. The first distance (smallest one), as we observe

from Fig. 1, is equal to Rexc − dk and the second one is equal to Rexc + dk. Hence, we can consider

two bounds of the interference that affects source k. The first bound corresponds to the assumption that

source k is located at the center of a circular exclusion region with radius Rexc−dk and the second bound

corresponds to the assumption that source k is located at the center of a circular exclusion region with

radius Rexc+dk. The first bound, which corresponds to the radius Rexc−dk, gives a higher value than the

actual interference that source k experiences, whereas the second bound, which corresponds to the radius

Rexc + dk, gives a smaller value than the actual one. Under these considerations, we can name these two

bounds of the interference as Higher Value (HV), which corresponds to the exclusion region with radius

Rexc− dk, and Lower Value (LV), which corresponds to the exclusion region with radius Rexc + dk. This

means that [41, Eq. (8)] (according to Campbell’s theorem)

EI {I1k}HV =
2πm1λPI
a− 2

(Rexc − dk)2−a and EI {I1k}LV =
2πm1λPI
a− 2

(Rexc + dk)
2−a . (59)

Now, we can approximate EI {I1k} by taking the average value of EI {I1k}HV and EI {I1k}LV . Hence,

EI {I1k} ≈
1

2

(
EI{I1k}HV + EI{I1k}LV

) (c)
=
πλm1PI
a− 2

[
(Rexc − dk)2−a + (Rexc + dk)

2−a] , (60)

where in (c) we use (59). The appropriateness of (60) as an approximation of the actual average inter-

ference is verified against Monte Carlo simulations in Section IV for the examined performance metrics.

Furthermore, we again note that EI {I3k} is given by the expression of EI {I1k} by replacing m1 with

m2, which concludes the proof of Proposition 3.
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