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Abstract— Recent studies have demonstrated that millimeter-
wave cellular networks may operate either in the noise- or inthe
interference-limited regime, depending on several parameters,
which include the density of base stations, the density and
size of obstacles/blockages, the antenna beamwidth, and the
transmission bandwidth. The objective of the present paper
is to exploit tools from stochastic geometry for obtaining a
mathematically tractable framework that allows us to identify
the operating conditions under which millimeter-wave cellular
networks operate in the inference-limited regime and to assess
the potential advantages of interference alignment, by taking into
account the overhead cost of base station cooperation due tothe
estimation of channel state information.

I. I NTRODUCTION

The use of the millimeter wave (mmWave) frequency band
for application to the wireless access of heterogeneous ultra-
dense cellular networks constitutes a promising solution for
achieving the data rate that the fifth generation (5G) of cellular
systems is expected to provide. Recent results have shown, in
fact, that mmWave cellular networks may outperform their
counterparts that operate at conventional frequencies, i.e.,
below 6 GHz, provided that the Base Stations (BSs) are
sufficiently densely deployed, highly-directive antennasare
used at both the BSs and the Mobile Terminals (MTs), and
the transmission bandwidth is sufficiently large [1]- [4].

In [1], in particular, it is shown that mmWave cellular
networks with an average cell radius of 50 meters and with a
transmission bandwidth of the order of GHz may outperform
conventional cellular networks in dense urban environments.
The reason of this performance gain is that mmWave cellular
networks operate close to the noise-limited regime while
conventional cellular networks are interference-limited. The
mathematical analysis and numerical illustrations shown in
[1] have unveiled that mmWave cellular networks exhibit a
noise-limited to interference-limited transitional behavior as
a function of the inter-site distance of the BSs, the antenna
beamwidth, and the transmission bandwidth. Stated differently,
mmWave cellular networks may operate in the interference-
limited regime as well, if practical constraints on the trans-
mission bandwidth and on the antenna beamwidth need to be
imposed and, consequently, the density of BSs needs to be
increased for providing an adequate coverage to the MTs.

In these application scenarios, interference management
schemes need to be applied, in order to exploit the potentialof
mmWave cellular networks for wireless access. A promising

technique for reducing the other-cell interference is Interfer-
ence Alignment (IA) [5], since it is capable of best using the
available degrees of freedom in interference channels. In IA,
clusters of BSs, which serve different MTs on the same phys-
ical channel, cooperate and apply linear precoding methodsto
suppress the other-cell interference at each intended MT. If
applied to interference-limited mmWave cellular networks, IA
provides opportunities for suppressing the strongest interferers
and enhancing the coverage and rate. The larger the number
of cooperating BSs is, in general, the smaller the other-cell
interference is and, hence, the better the performance is. In
order to appropriately work, however, IA necessitates channel
state information at the BSs. This is usually obtained with
the aid of pilot signals that are transmitted before the data
signals [6]- [8]. In general, in addition, the larger the number
of cooperating BSs is, the longer the time for estimating the
channel is. This negatively affects the achievable rate of IA.

Motivated by these considerations, we investigate the po-
tential throughput of IA for application to mmWave cellular
networks. The objective is to quantify the interference reduc-
tion vs. training overhead tradeoff of IA, as a function of the
number of cooperating BSs. To this end, we exploit tools from
stochastic geometry and model the BSs of mmWave cellular
networks as points of a Poisson Point Process (PPP) [9]. Based
on the mathematical approach introduced in [10], we develop
a tractable framework that is easier to compute than numerical
simulations. From it, we show that an optimal number of
cooperating BSs that maximizes the potential throughput of
mmWave cellular networks that use IA exists.

The remainder of the present paper is organized as follows.
In Section II, the system model is introduced. In Section
III, the proposed mathematical framework for the potential
throughput is presented. In Section IV, the framework is vali-
dated with the aid of Monte Carlo simulations and numerical
illustrations are shown in order to quantify the impact of IA
as a function of the density of BSs and of the number of
cooperating BSs. Finally, Section V concludes this paper.

II. SYSTEM MODEL

A. PPP-Based Cellular Networks Modeling

We consider a downlink cellular network where the BSs are
modeled as points of a homogeneous PPP, denoted byΨBS,
of densityλBS. The MTs are modeled as another independent
homogeneous PPP, denoted byΨMT, of densityλMT . Each
BS and MT are equipped withNT transmit andNR receive



antennas, respectively. We assumeλMT ≫ λBS, i.e., saturated
traffic conditions hold and, thus, the BSs are all active. Each
BS is assumed to emit a constant transmit powerP .

B. Channel Modeling

A quasi-static channel model is assumed, where each BS-
to-MT link is characterized by a blockage probability, which
takes into account whether the link is in Line-Of-Sight (LOS)
or in Non-LOS (NLOS), path-loss, shadowing and fast-fading.

1) Blockage Modeling:In the mmWave frequency band,
modeling blockages is of primary importance [1], [4]. A BS-
to-MT link is said to be in NLOS if a blockage, e.g., a
building in an urban environment, is present in the straightline
between the BS and the MT. Otherwise, it is in LOS. Typically,
the presence of blockages and, thus, the occurrence of LOS
and NLOS conditions is taken into account statistically with
the aid of probability functions that depend on the distance
between BSs and MTs [10]. In this paper, the LOS and NLOS
probability are denoted bypLOS (·) andpNLOS (·), respectively.
They are assumed to depend only on the BS-to-MT distance,
r, and the identitypLOS (r)+ pNLOS (r) = 1 holds for everyr.

The mathematical analysis of mmWave cellular networks
in the presence of realistic blockage models is known to be
intractable. To overcome this issue, we adopt the tractable
model first introduced in [1] and then generalized in [10] for
arbitrary blockage models in the presence of shadowing and
general load conditions. The adopted blockage model is known
as the multi-ball model and it is summarized as follows [3].

In the multi-ball blockage model, the distance between the
typical MT and its serving BS is divided inB + 1 annular
regions, which correspond toB balls whose center is the MT.
Let 0 = D0 < D1 < D2 < · · · < DB < DB+1 = ∞ denote
the radii of theB balls. The LOS and NLOS probabilities,
ps (·) for s ∈ {LOS, NLOS}, can be formulated as follows:

ps (r) =

B+1∑

b=1

q[Db−1,Db]
s 1 (Db−1 < r < Db) (1)

whereq[x,y]s for s ∈ {LOS, NLOS} is the probability that a
link of length r ∈ [x, y] is in states and1(·) is the indicator
function. Since a link can be only in LOS or NLOS, the
equality

∑
s∈{LOS,NLOS} q

[x,y]
s = 1 holds in every region.

2) Path-Loss Modeling:The path-loss of LOS and NLOS
links is formulated asls (r) = ksr

βs for s ∈ {LOS,NLOS},
whereks denotes the path-loss constant,βs denotes the path-
loss slope, andr is the BS-to-MT distance, respectively.

3) Shadowing Modeling:Consider a link of lengthr in
states ∈ {LOS,NLOS}. The shadowing, denoted byχs, is
assumed to follow a log-normal distribution with meanµs

(in dB) and standard deviationσs (in dB). The probability
density function of shadowing can be formulated asfχs

=
10

ln(10)
1√

2πσsx
exp

(
−

(10log10x−µs)
2

2σ2
s

)
.

4) Fading Modeling: In addition to blockage, path-loss
and shadowing, each BS-to-MT link is subject to fast-fading,
which is modeled as an independent complex channel gain
denoted byh. The power gain|h|2 is assumed to follow an
exponential distribution (i.e., Rayleigh fading is assumed) with
mean value equal toΩLOS = ΩNLOS = 1.

C. Directional Beamforming Modeling

In order to overcome the large path-loss at high frequency
bands, mmWave cellular networks are expected to use direc-
tional antennas for enhancing the link reliability and reducing
the other-cell interference. We assume that directional beam-
forming is employed at both the BSs and MTs. Similar to
previous works, a two-lobe model for the radiation pattern of
the directional antennas is assumed [1]. The generalizations
to other radiation pattern models is possible by using the
approach recently introduced in [10]. Accordingly, the antenna
gain of BSs and MTs can be formulated as follows:

Gq (θ) =

{
G

(M)
q if |θ| ≤

ωq

2

G
(S)
q if |θ| >

ωq

2

(2)

where q ∈ {BS,MT}, θ ∈ {−π, π} is the angle off the
boresight direction,ωq is the beamwidth of the main lobe,
G

(M)
q andG(S)

q are the array gains of main and side lobes.
The typical MT and its serving BS are assumed to estimate

the angles of arrival and to adjust their steering directions
accordingly, so that the directivity gain of the intended link is
G(0) = G

(M)
BS G

(M)
MT . The directivity gain of the interfering BSs,

G(i) where i identifies theith interfering BS, are assumed
to be randomly oriented with respect to each other and to be
independently and uniformly distributed in[−π, π). Therefore,
the probability density function ofG(i) can be formulated as:

fG(i) (g) =
∑

m∈{M,S}

∑

n∈{M,S}

ω
(m)
BS

2π

ω
(n)
MT

2π
δ
(
g −G

(m)
BS G

(n)
MT

)

(3)

whereδ(·) is the Dirac delta function,ω(M)
q = ωq andω(S)

q =
2π − ωq for q ∈ {BS,MT}.

D. Cell Association Criterion

The cell association is based on the highest average received
power criterion, which accounts for the path-loss and shadow-
ing while the fast-fading is neglected. We assume that the
LOS or NLOS status of a BS-to-MT link is independent of
the LOS or NLOS status of any other BS-to-MT link. Stated
differently, no spatial correlation among the BS-to-MT links
is considered. Under this assumption, the homogenous PPP
of the BSs,ΨBS, can be partitioned into two independent
and inhomogeneous PPPs,ΨBS,s for s ∈ {LOS,NLOS},
such that

⋃
s∈{LOS,NLOS} ΨBS,s = ΨBS, whose intensities are

λBS,LOS(r) = λBSpLOS (r) andλBS,NLOS(r) = λBSpNLOS (r).
Let Ls (r) = ls (r)/χs for s ∈ {LOS,NLOS} be the

generalized path-loss that accounts for shadowing, i.e., the
inverse average received power, of a BS-to-MT link of length
r. The generalized path-loss of the serving BS of the typical
MT can be formulated asL(0) = min

{
L
(0)
LOS, L

(0)
NLOS

}
, where

L
(0)
s for s ∈ {LOS,NLOS} is defined as follows:

L
(0)
s = min

n∈ΨBS,s

{
Ls

(
r(n)

)}
(4)

andr(n) is the distance between thenth BS ofΨBS,s and MT.



Λ̂s ([0, x)) = πλ̂BS,s

B̂∑
b=1

q̂
[D̂b−1,D̂b]
s H

(
x− ksD̂

βs

b−1

)
H

(
x− ksD̂

βs

b

)(
(x/ks)

2/βs − D̂2
b−1

)

+πλ̂BS,s

B̂∑
b=1

q̂
[D̂b−1,D̂b]
s H

(
x− ksD̂

βs

b

)(
D̂2

b − D̂2
b−1

)
+ πλ̂BS,sq̂

[D̂B̂
,∞]

s H
(
x− ksD̂

βs

B̂

)(
(x/ks)

2/βs − D̂2
B̂

) (5)

E. Tractable Mathematical Modeling

Taking spatial blockages and shadowing into account makes
the mathematical analysis of mmWave cellular networks in-
tractable. To overcome this limitation, we capitalize on the
approach introduced in [10], which is referred to as the
Intensity Matching (IM) approach. The interested readers are
referred to [10] for further information. In simple terms, the IM
approach is an approximation that allows us to account for the
impact of blockages and shadowing at an affordable analytical
complexity. It is based on the following assumptions:

• Any blockage model, if different from the multi-ball
model formulated in (1), is approximated with a multi-
ball model whose number of balls, denoted bŷB, is
chosen to tradeoff computational complexity and approx-
imation accuracy. Usually three-five balls are enough to
get sufficiently accurate results.

• Shadowing is taken into account as follows: i) by scaling
the density of BSs in LOS and NLOS with respect
to the typical MT as λ̂BS,s = λBSEχs

{
χ
2/βs
s

}
=

λBS exp
(
2 µ̄s

βs
+ 2

σ̄2
s

β2
s

)
, where E {·} is the expectation

operator, andµ̄s and σ̄s are the mean and standard
deviation of log-normal shadowing expressed in neper, ii)
by scaling the radii,Db, and the occurrence probabilities,
q
[Db−1,Db]
s , of the B̂ balls in (1). The scaled radii and

probabilities are denoted bŷDb and q̂
[D̂b−1,D̂b]
s .

• The approximated (scaled) parameterŝB, D̂b and

q̂
[D̂b−1,D̂b]
s are obtained by minimizing the mean square

error between i) the intensity measure of the generalized
path-loss corresponding to the exact blockage and shad-
owing models and to a density of BSs equal toλBS,s

and ii) the intensity measure of the generalized path-
loss corresponding to a multi-ball blockage model with

parametersB̂, D̂b and q̂
[D̂b−1,D̂b]
s and to a density of

BSs equal tôλBS,s. The definition of intensity measure
of inhomogeneous PPPs and the mathematical details of
the matching criterion are available in [10].

With the aid of the IM approach, the set of generalized
path-losses corresponding to the PPP of BSs,ΨBS, can be
shown to be an inhomogeneous PPP whose intensity measure
is Λ̂ ([0, x)) =

∑
s∈{LOS,NLOS} Λ̂s ([0, x)), where Λ̂s ([·, ·))

is defined in (5),H(·) is the Heaviside function andH(x) =
1−H(x). Since inhomogeneous PPPs are completely charac-
terized by their intensity measure, (5) constitutes an enabling
result for the analysis of mmWave cellular networks.

F. Interference Alignment

As mentioned in Section I, ultra-dense mmWave cellular
networks may be interference-limited. Thus, allowing the

cooperation among BSs may reduce the impact of strong
interferers. As an example of BSs cooperation for interfer-
ence reduction, we analyze IA. For simplicity, we assume
that a single information stream is transmitted. As far as
the typical MT is concerned, in particular, IA operates as
follows [6]- [8]. First, the K BSs providing the smallest
K generalized path-losses to the typical MT are identified.
The smallest generalized path-loss is denoted byL(0), while
the kth smallest generalized path-loss is denoted byL(k) for
k = 2, 3, . . . ,K−1. Then, theK cooperating BSs apply linear
precoding and decoding vectors in order to suppress the other-
cell interference generated by theK − 1 interfering BSs for
the typical MT. The mathematical formulation for obtaining
precoding and decoding vectors is available in [5]. We use the
min-leakage algorithm for obtaining them [6]- [8]. The BSs
outside the cluster ofK cooperating BSs, on the other hand,
still create other-cell interference towards the typical MT. It is
worth noting that the number of cooperating BSsK needs to
be chosen according to the feasibility conditions:

NT +NR ≥ (K + 1) and min {NT , NR} ≥ 2 (6)

In order to compute the precoding and decoding vectors,
the cooperating BSs necessitate channel state informationof
the links inside the cluster. To obtain estimates of the BS-to-
MT channel gains inside the cluster ofK cooperating BSs,
we adopt the pilot overhead model in [7] for application to
frequency-division duplex systems. In simple terms, a block-
fading channel model is assumed, where the block-length
expressed in terms of multiple of the symbol time,Nb, depends
on the Doppler spreadfD, i.e., Nb = 1

2fD
. According to the

pilot overhead model in [7], the number of pilot symbols,Np,
that are needed for channel estimation isNp = Npf + Npr +
Nfb + Npd, whereNpf ≥ KNT , Npr ≥ KNR, Nfb ≥ K2NT

andNpd ≥ K. As a result, the number of symbols available
for data transmission isNd = Nb −Np. Since a finite number
of pilots are used, in addition, the channels are estimated
with some errors, which does not permit perfect interference
suppression inside the cluster ofK cooperating BSs. For
further details, the interested readers are referred to [6]- [8].
In the rest of the present paper, we assumeNpf = KNT ,
Npr = KNR, Nfb = K2NT andNpd = K.

III. SYSTEM-LEVEL PERFORMANCEEVALUATION

In this section, we provide a tractable mathematical
framework for computing the Potential Throughput (PT) of
mmWave cellular networks with IA. The PT is defined as:

PT = τ log2 (1 + γth) Pr {SINR ≥ γth} (7)

whereτ =
Nb−(Npf+Npr+Nfb+Npd)

Nb
accounts for the effective

resources used for data transmission and, thus, takes the pilot



PT = τ log2 (1 + γth)
Ω

⌣
u

(0)

Ω
⌣
u

(0)+γthΩũ(0)

×
∫ +∞
0

∫ +∞
0

exp

(
−

γthσ
2
N

PG(0)Ω
⌣
u

(0)
x

)
M intra

(
γth

G(0)Ω
⌣
u

(0)
x

∣∣∣∣ x, y
)
M inter

(
γth

G(0)Ω
⌣
u

(0)
x

∣∣∣∣ y
)
fL (x, y) dxdy

(12)

Υs (Ω, z |u) = πλ̂BS,s

(
u
ks

) 2
βs

Θs

(
Ω
u , z

) B̂∑
b=1

q̂
[D̂b−1,D̂b]
s H

(
u− ksD̂

βs

b

)
H

(
u− ksD̂

βs

b−1

)

+πλ̂BS,s

B̂∑
b=1

q̂
[D̂b−1,D̂b]
s

(
D̂2

b−1Θs

(
Ω

ksD̂
βs
b−1

, z

)
H

(
u− ksD̂

βs

b−1

)
− D̂2

bΘs

(
Ω

ksD̂
βs
b

, z
)
H

(
u− ksD̂

βs

b

))

+πλ̂BS,sq̂
[D̂B̂

,∞]
s

(
D̂2

B̂
Θs

(
Ω

ksD̂
βs

B̂

, z

)
H

(
u− ksD̂

βs

B̂

)
+
(

u
ks

) 2
βs

Θs

(
Ω
u , z

)
H

(
u− ksD̂

βs

B̂

))
(16)

training overhead into account,γth is the decoding threshold,
and SINR is the Signal-to-Interference+Noise-Ratio.

Based on the system model introduced in Section II, the
SINR of mmWave cellular networks with IA can be formulated
as follows (the details are omitted for brevity):

SINR =

(
PG(0)

/
L(0)

)
⌣
u
(0)

(
PG(0)

/
L(0)

)
ũ(0) + σ2

N + PIagg
(
L(0), L(K−1)

)
(8)

where σ2
N is the noise power,Iagg

(
L(0), L(K−1)

)
=

I intraagg

(
L(0), L(K−1)

)
+I interagg

(
L(K−1)

)
is the aggregate other-

cell interference, whereI intraagg (·, ·) originates from theK
cooperating BSs and is due to channel estimation errors and
I interagg (·) originates from all the other non-cooperating BSs,
⌣
u
(0)

is the equivalent channel gain of the intended link after
decoding, andũ(0) is the equivalent channel gain of the
intended link after decoding due to channel estimation errors.

With the aid of some algebra, the following can be proved:

•
⌣
u
(0)

is an exponential random variable with mean
Ω⌣

u
(0) = NpdP

/(
σ2
N +NpdP

)
.

• ũ(0) is an exponential random variable with meanΩũ(0) =

σ2
N

/(
σ2
N +NpdP

)
. ⌣
u
(0)

and ũ(0) are independent.
• I intraagg (·, ·) andI interagg (·) can be formulated as follows:

I intraagg

(
L(0), L(K−1)

)

=
K−1∑
k=1

G(k)

L(k) g̃
(k)

1
(
L(0) < L(k) < L(K−1)

) (9)

I interagg

(
L(K−1)

)

=
∑

i∈ΨBS

G(i)

L(i)

(
⌣
g
(i)

+
⌢
g
(i)
)
1
(
L(i) > L(K−1)

) (10)

whereg̃(k), ⌣
g
(i)

and⌢
g
(i)

are independent and exponen-
tially distributed random variables with meansΩg̃(k) =
Ωg, Ω⌣

g
(i) = 1−Ωg andΩ⌢

g
(i) = Ωg, respectively, where:

Ωg =
NTσ2

N

NpfP
+

σ2
N

(KNT−NR)P

×
(

N2
R

Npr
+ KNTNR

Nfb

(
1 +

NRσ2
N

NprP

)) (11)

We note that, with respect to currently available mathemat-
ical frameworks for the analysis of cellular networks by using
stochastic geometry [10], the main difference of the problem
formulation in (8) is the presence of additional terms that

account for channel estimation errors and for the dependence
of the aggregate interference on both the smallest generalized
path-lossL(0) and on the(K−1)th smallest generalized path-
lossL(K−1), which are correlated random variables.

By using the same line of thought as in [10], a mathe-
matically tractable and computable expression of the PT is
provided in (12), wherefL (·, ·) is the joint probability density
function of L(0) and L(K−1), M intra ( ·| ·, ·) is the Laplace
transform ofI intraagg (·, ·) conditioned onL(0) andL(K−1), and
M inter ( ·| ·) is the Laplace transform ofI interagg (·) conditioned
on L(K−1). The functionfL (·, ·) can be formulated as:

fL (x, y) =
(Λ̂([0,y))−Λ̂([0,x)))

K−2

(K−2)! exp
(
−Λ̂ ([0, y))

)

×Λ̂(1) ([0, x)) Λ̂(1) ([0, y))H (y − x)
(13)

where Λ̂(1) ([·, ·)) is the first-order derivative of̂Λ([·, ·)) in
(5), which can be explicitly expressed aŝΛ(1) ([0, x)) =∑

s∈{LOS,NLOS} Λ̂
(1)
s ([0, x)), whereΛ̂(1)

s ([·, ·)) is:

Λ̂
(1)
s ([0, x)) = πλ̂BS,s (2/βs) k

−2/βs
s x2/βs−1

×
B̂∑
b=1

q̂
[D̂b−1,D̂b]
s H

(
x− ksD̂

βs

b

)
H

(
x− ksD̂

βs

b−1

)

+πλ̂BS,s (2/βs) k
−2/βs
s x2/βs−1q̂

[D̂B̂
,∞]

s H
(
x− ksD̂

βs

B̂

)

(14)
andM intra ( ·| ·, ·) andM inter ( ·| ·) can be formulated as:

M intra (z|x, y) = exp
(∑

s∈{LOS,NLOS} m
intra
s (z|x, y)

)

M inter (z| y) = exp
(∑

s∈{LOS,NLOS} m
inter
s (z| y)

)

(15)
where mintra

s (z |x, y ) = Υs (Ωg, z |x) − Υs (Ωg, z |y ),
minter

s (z |y ) = Υs ((1− Ωg) , z |y )+Υs (Ωg, z |y ), Υs (·, · |· )
is defined in (16) and:

Θs (Ω, z) = 1−
∑

m∈{M,S}

∑
n∈{M,S}

ω
(m)
BS

2π

ω
(m)
MT

2π

×2F1

(
− 2

βs
, 1, 1− 2

βs
,−ΩG

(m)
BS G

(n)
MTz

) (17)

IV. N UMERICAL AND SIMULATION RESULTS

In this section, the accuracy of the proposed mathematical
framework is validated with the aid of Monte Carlo sim-
ulations and the feasibility of IA for enhancing the PT of
mmWave cellular networks is studied. The following setup is
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Fig. 1. PT as a function of the density of BSs (λBS =
1

πR2
cell

, whereRcell

is the average radius in meter) and of the number of cooperating BSs (K).
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Fig. 2. Maximum PT as a function of the cluster sizeK. This figure is
obtained from Fig. 1 by choosing the bestRcell for everyK.

considered: i) the carrier frequency is 28 GHz, ii)P = 30
dBm, iii) σ2

N = −174 + 10log10 (Bw) + FdB, whereBw =
0.5 GHz is the bandwidth andFdB = 10 dB is the noise
figure, iv) βLOS = 2.1, βNLOS = 2.92, kLOS = 61.4 dB
and kNLOS = 72 dB correspond to a mmWave channel at
28 GHz [2], v) a blockage model based on random shape
theory, i.e.,pLOS (r) = aRS exp (−bRSr), with parameters
aRS = 1, bRS = 0.046 meter−1 is considered [10], vi)
µLOS = µNLOS = 0 dB, σLOS = 5.8 dB andσNLOS = 8.7
dB, vii) G(M)

BS = G
(M)
MT = 20 dB,G(S)

BS = G
(S)
MT = −10 dB, and

ωBS = ωMT = 30 degrees, viii)NT= 64 andNR= 2, and ix)
fD = νMT

wavelength×Bw
, whereνMT = 50 kilometer/hour is the

velocity of the MTs. The decoding threshold isγth = 30 dB,
which maximizes the PT for the considered setup.

The mathematical framework is obtained by approximating
the random shape blockage model with log-normal shadowing
with a 3-ball (B̂ = 3) blockage model, as discussed in Section
II and using the IM approach. The resulting parameters are:

D̂1= 4.7139, D̂2 = 18.6449, D̂3 = 67.7784, q̂
[0,D̂1)
LOS =

0.8089, q̂
[D̂1,D̂2]
LOS = 0.3680, q̂

[D̂2,D̂3]
LOS = 0.0589, q̂

[D̂3,∞)
LOS = 0.

In Fig. 1, we illustrate the PT as a function of the density

of BSs and of the number of cooperating BSs. We observe
that the proposed mathematical framework is in good agree-
ment with Monte Carlo simulations. Due to the presence of
blockages [10], an optimal deployment density for the BSs
exists. It depends, in general, on the number of cooperating
BSsK. As far as the impact of IA is concerned, a too large
cluster size,K, may lead to a considerable reduction of the
PT because of the associated training overhead for channel
estimation. An optimal value ofK that maximizes the PT,
in general, exists. In Fig. 2, in particular, we provide the
maximum PT with respect to the density of BSs and as a
function of K. We conclude that, in the considered setup,
K = 7 corresponds to the optimal number of cooperating BSs,
which optimally tradeoffs interference reduction and channel
estimation overhead. The maximum gain originating from IA
is of the order of 0.7 bits/s/Hz.

V. CONCLUSION

We have proposed a tractable mathematical framework for
estimating the PT of mmWave cellular networks with IA. Our
study shows that: i) due to the training overhead for channel
estimation, an optimal number of cooperating BSs exists and
ii) due to the presence of blockages, an optimal density of
the BSs exists. The proposed mathematical approach is in
good agreement with Monte Carlo simulations and provides a
tractable tool for optimizing mmWave cellular networks.
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