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Abstract

In this paper, we study the feasibility of receiver diversity for application to downlink cellular

networks, where low-energy devices are equipped with information decoding and energy harvesting

receivers for simultaneous wireless information and power transfer. We compare several options that are

based on selection combining and maximum ratio combining, which provide different implementation

complexities. By capitalizing on the Frechet inequality, we shed light on the advantages and limitations

of each scheme as a function of the transmission rate and harvested power that need to be fulfilled at

the low-energy devices. Our analysis shows that no scheme outperforms the others for every system

setup. It suggests, on the other hand, that the low-energy devices need to operate in an adaptive fashion,

by choosing the receiver diversity scheme as a function of the imposed requirements. With the aid of

stochastic geometry, we introduce mathematical frameworks for system-level analysis. We show that

they constitute an important tool for system-level optimization and, in particular, for identifying the

diversity scheme that optimizes wireless information and power transmission as a function of a sensible

set of parameters. Monte Carlo simulations are used to validate our findings and to illustrate the trade-off

that emerge in cellular networks with simultaneous wireless information and power transfer.
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I. INTRODUCTION

The Internet of Things (IoT) is expected to connect billions of Low-Energy Devices (LEDs)

by 2020 [1]. One of the main challenges of the IoT is how to provide enough energy for the

electronics of the LEDs, in order to have them operational over a reasonable amount of time

and without making either their battery too large or the device itself too bulky. For several

applications, it may not be even possible to (re-)charge some kinds of LEDs.

In this context, the emerging concept of Simultaneous Wireless Information and Power Trans-

fer (SWIPT) constitutes a suitable solution for prolonging the battery life of the LEDs and, in a

foreseeable future, for making them energy-neutral, i.e., operational in a complete self-powered

fashion. SWIPT, more specifically, is a technology where the same radio frequency signal is used

for information transmission and for replenishing the battery of the LEDs [2]. SWIPT may find

application in the emerging market of cellular-enabled IoT, where the LEDs, e.g., smart watches

[3], receive notifications from their cellular connection [4] and, simultaneously, re-charge their

battery. The recent decision to standardize NarrowBand IoT (NB-IoT), a new narrow-band radio

technology that addresses the requirements of the IoT, confirms the wish of capitalizing on the

ubiquitous coverage offered by the cellular network infrastructure for IoT applications [5].

The design of SWIPT-enabled cellular networks introduces, however, new research challenges

and never observed trade-offs. Conventional cellular networks are designed based on the as-

sumption that the interference has a negative impact on Information Decoding (ID), since it

reduces the coverage and rate [6]. The same interference, on the other hand, is a natural source of

power for Energy Harvesting (EH) [7]. As a result, the development of interference management

techniques that exploit interference for EH and counteract it for ID plays a fundamental role.

In this context, receiver diversity is considered to be a promising solution for enhancing the

reliability of data transmission and for increasing the amount of harvested power [8]. The size

of the LEDs, in fact, is expected to be larger than that of sensor nodes, and, as a consequence,

multiple radiating (antenna) elements may be available. On the other hand, their size, cost and

power consumption requirements may still limit the number of radio frequency front-ends that

may be used [9]. Receiver diversity constitutes a practical solution for taking advantage of the

available antenna elements by using fewer radio frequency front-ends. It provides, in fact, the
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possibility of optimizing performance, cost and power consumption for a given size of the LEDs.

The potential of receiver diversity for application to SWIPT-enabled systems has recently

been analyzed in [10] and [11]. In these papers, in particular, it has been shown that receiver

diversity based on selection combining and antenna switching constitutes a promising alternative

to typical approaches based on power splitting and time switching [12]. As elaborated in [11],

in fact, power splitting and time switching need dedicated hardware components (power splitters

and time switches), which may increase the complexity and cost of the LEDs and may be

subject to efficiency losses. Time switching, in addition, necessitates dedicated time slots and

synchronization circuits for EH, which results in the discontinuous transmission of information

data. Receiver diversity, on the other hand, is a mature technology that may overcome these

limitations. It requires, however, the availability of multiple antenna elements at the LEDs.

This leads to new performance versus implementation complexity trade-offs (further details are

available in Section III-A) that, to the best of the authors’ knowledge, are not totally understood.

Motivated by these considerations, we study the potential of receiver diversity for application

to SWIPT-enabled cellular networks. In particular, we focus our attention on practical implemen-

tations where one or two receive antennas are available at the LEDs. This implies that only one

or two radio frequency front-ends are needed. This case study may find concrete application to

LEDs such as smart watches, since the typical circumference of a human wrist is 14-20 cm, and,

thus, two compact integrated antennas and radio frequency front-ends may be accommodated at

typical transmission frequencies. More antenna elements may be used, by still employing one or

two radio frequency chains, for LEDs with larger size, e.g., for relay nodes [8]. We study various

options based on selection combining and maximum ratio combining schemes, and discuss their

achievable performance versus implementation complexity trade-off. Our analysis, in particular,

shows that no scheme outperforms the others for every system setup. It suggests, on the other

hand, that the LEDs need to operate in an adaptive fashion, by choosing the receiver diversity

scheme to be used as a function of the performance requirements that need to be fulfilled.

Against the state-of-the-art of research on performance evaluation of wireless networks with

SWIPT, our contribution is twofold. Compared to [10] and [11], we focus our attention on system-

level analysis and optimization rather than on link-level optimization. More specifically, we take
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into account the impact of large-scale network deployments and introduce new mathematical

frameworks for the adaptive optimization of SWIPT-enabled cellular networks. This is performed

by exploiting the mathematical tool of stochastic geometry and by modeling the locations of

cellular Base Stations (BSs) as points of a Poisson Point Process (PPP). Compared to recent

papers that have exploited similar mathematical tools for large-scale analysis of wireless networks

with SWIPT, e.g., [13]- [18], our paper is the first that investigates the potential of receiver

diversity for application to cellular networks. In [13]- [17], on the other hand, decentralized

(ad hoc) networks without receiver diversity are studied. In [18], cellular networks are analyzed

but single-antenna LEDs are considered. The latter paper constitutes, however, the benchmark

against which the potential benefits of receiver diversity studied in this paper are quantified.

The remainder of this paper is organized as follows. In Section II, the system model is

introduced. In Section III, the problem at hand is first motivated and then formulated in terms

of the Joint Complementary Cumulative Distribution Function (J-CCDF) of information rate and

harvested power. In Section IV, several SWIPT schemes are compared against each other with

the aid of the Frechet inequality. In Section V, mathematical frameworks for the system-level

performance evaluation and for the adaptive optimization of SWIPT-enabled cellular networks

are introduced. In Section VI, analysis and findings are validated with the aid of numerical

simulations. Finally, Section VII concludes this paper.

Notation: Main notation and most recurrent mathematical symbols are reported in Table I.

II. SYSTEM MODEL

A. Cellular Networks Modeling

A downlink cellular network is considered. The BSs are modeled as points of a homogeneous

PPP, denoted by Ψ, of density λ. The transmit power of the BSs is assumed to be fixed and is

denoted by P . Without loss of generality, the mathematical analysis is performed for the typical

LED located at the origin [6].
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TABLE I: Main notation and mathematical symbols.

Symbol Definition

(·)∗ Conjugate operator
j =

√
−1 Imaginary unit

E {·} Expectation operator
Pr {·} Probability measure
∪ Union of sets

Im {·} Imaginary part operator
min {·, ·}, max {·, ·} Minimum and maximum operators

1 (·) Indicator function
δ (·) Dirac delta function
H (·) Heaviside function

H (x) = 1−H (x) Complementary Heaviside function
pFq (a1, . . . , ap; b1, . . . , bq; ·) Generalized hypergeometric function

Γ (·, ·) Upper-incomplete gamma function
fX (·) Probability Density Function (PDF) of Random Variable (RV) X
FX (·) Cumulative Distribution Function (CDF) of RV X
ΦX (·) Characteristic Function (CF) of RV X
MX (·) Moment Generating Function (MGF) of RV X

X ∼ E (μ) X is a RV whose PDF is fX (ξ) = μ exp (−μξ)
X ∼ Emax (1) X is a RV whose PDF is fX (ξ) = 2 exp (−ξ)− 2 exp (−2ξ)
X ∼ G (2, 1) X is a RV whose PDF is fX (ξ) = ξ exp (−ξ)

X
d
=Y The RVs X, Y are equivalent in distribution, i.e., their CFs and MGFs are the same

R, Q Information rate, harvested power
R∗, Q∗ Information rate, energy harvesting requirements
F (·, ·) Joint Complementary Cumulative Distribution Function (J-CCDF) of R and Q
q
[a,b]
s Probability that a link of length r ∈ [a, b) is in state s
D Line-of-Sight (LOS) / Non-LOS (NLOS) ball
L(0) Smallest path-loss
Ψ, Ψs Poisson Point Process (PPP) of Base Stations (BSs), PPP of BSs in state s
λ, λs Density of BSs, density of BSs in state s
P Transmit power of BSs

βs, κ0 Path-loss exponent of links in state s, free-space path-loss constant
GM, GS Beamforming gains of main (M) and side (S) lobes

θM Beamwidth of main lobe
0 < ρ < 1 Power splitting ratio

Bw Transmission bandwidth
σ2
N Thermal noise power

σ2
ID Noise power due to the signal conversion from radio frequency to baseband

0 ≤ ζ ≤ 1 Efficiency of energy harvesting conversion

r∗ =
(
2R∗/Bw − 1

)−1

, r̃∗ = r∗ Short-hands used in Proposition 1 and Proposition 2

σ2
∗ = σ2

N + σ2
ID (1− ρ)−1, σ̃2

∗ = σ2
N + σ2

ID/ρID Short-hands used in Proposition 1 and Proposition 2
q∗ = Q∗ (ρζ)

−1, q̃∗ = Q∗ (ρEHζ)
−1 Short-hands used in Proposition 1 and Proposition 2

T∗ =
(
q∗ + σ2

∗
)/

(r∗ + 1), T̃∗ =
(
q̃∗ + σ̃2

∗
)/

(r̃∗ + 1) Short-hands used in Proposition 1 and Proposition 2

B. Channel Modeling

The channel model accounts for Line-of-Sight (LOS) and Non-LOS (NLOS) links due to the

presence of spatial blockages, for the path-loss, and for the fast-fading. Shadowing is implicitly

taken into account via the LOS and NLOS link model [19].
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1) LOS/NLOS Links: Let r be the distance from a BS to the typical LED. The probability of

LOS and NLOS as a function of r, ps (·) for s ∈ {LOS,NLOS}, is formulated as follows:

ps (r) =

⎧⎪⎨⎪⎩
q
[0,D]
s if r ∈ [0, D)

q
[D,∞]
s if r ∈ [D,+∞) ,

(1)

where q
[a,b]
LOS + q

[a,b]
NLOS = 1, 0 ≤ q

[a,b]
s ≤ 1 is the probability that a link of length r ∈ [a, b) is

in state s, and D takes into account that LOS and NLOS probabilities are different for short

and long distances [19]. Assuming no spatial correlation among the links, Ψ can be split in two

independent and non-homogeneous PPPs, ΨLOS and ΨNLOS, such that Ψ = ΨLOS∪ΨNLOS. From

(1) and the thinning theorem of PPPs, the density of Ψs is λs (r) = λps (r) for s ∈ {LOS,NLOS}.

2) Path-Loss: The path-loss of LOS and NLOS links is ls (r) = κ0r
βs for s ∈ {LOS,NLOS},

where κ0 = (4π/ν)2, ν is the transmission wavelength, and βs is the path-loss exponent.

3) Fast-Fading: The channels gains are independent and identically distributed (i.i.d.) complex

Gaussian RVs with zero mean and unit variance, i.e., Rayleigh fading is considered.

C. Cell Association

The typical LED is served by the BS providing the smallest path-loss. The other BSs act as

interferers. The smallest path-loss can be formulated as L(0) = min
{
L
(0)
LOS, L

(0)
NLOS

}
, where, for

s ∈ {LOS,NLOS}, L(0)
s is the smallest path-loss of Ψs, which is defined as follows:

L(0)
s = minn∈Ψs

{
ls
(
r(n)
)}

, (2)

where r(n) is the distance between the nth BS of Ψs and the typical LED.

D. Directional Beamforming at the BSs

At the BSs, to enhance the efficiency of information transmission and energy transfer over

long distances, directional beamforming is used. Compared with more sophisticated beamforming

schemes [17], it has the advantage of not necessitating channel information at the BSs. Directional

beamforming can be implemented by using, e.g., uniform linear arrays [18, Sec. II-C]. We

consider a two-lobe model for the radiation pattern, where θM is the beamwidth of the main
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lobe, and GM and GS are the beamforming gains of main and side lobes, respectively. The triplet

(θM, GM, GS) satisfies the unit power constraint, i.e., θMGM + (2π − θM)GS = 2π. Due to their

small form factor, the LEDs are assumed to use omnidirectional antennas with a unit gain.

The typical LED and its serving BS estimate the angles of arrival and adjust their antenna

steering orientations accordingly. Thus, the antenna gain of the typical intended link is G (0) =

GM. From the perspective of the typical LED, on the other hand, the beams of all interfering

BSs are randomly oriented, i.i.d., and uniformly distributed in [0, 2π). Thus, the PDF of the

antenna gain of the ith interfering link, G(i), can be formulated as follows:

fG(i) (g) =
θM
2π

δ (g −GM) +

(
1− θM

2π

)
δ (g −GS) . (3)

E. SWIPT and Receiver Diversity at the LEDs

Due to their small form factor, the LEDs cannot accommodate many receive antennas. Hence,

we analyze the case studies where the number of receive antennas and radio frequency front-

ends, Nr, is either Nr = 1 or Nr = 2. These two setups find practical application to wrist-worn

LEDs, e.g., smart watches, since the average circumference of a human wrist is about 14-20

cm. The LEDs are equipped with separate units for ID and EH. To shed light on the impact of

receiver diversity, five schemes for SWIPT are studied and compared.

• Power Splitting (PS). Nr = 1 is assumed and the received power, PRX, is split in two

parts, according to a power splitting ratio 0 ≤ ρ ≤ 1: PEH = ρPRX is used for EH and

PID = PRX − PEH = (1− ρ) PRX is used for ID.

• Power Splitting with Maximum Ratio Combining (PS-MRC). Nr = 2 is assumed and the

signals of the two receive antennas are combined according to the MRC scheme. The power

after combining, PRX, is split in two parts, according to a power splitting ratio 0 ≤ ρ ≤ 1:

PEH = ρPRX is used for EH and PID = PRX − PEH = (1− ρ) PRX is used for ID.

• Separate Antenna Receiver (SAR). Nr = 2 is assumed and the received power of the first

and second receive antenna is sent, without loss of generality, to the input of the ID and

EH unit, respectively. The two antennas can be used for ID and EH interchangeably.
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• ID-Prioritized Selection Combining (ID-SC). Nr = 2 is assumed and the received power of

the antenna providing the best and the worst channel power gain is sent to the input of the

ID and EH unit, respectively.

• EH-Prioritized Selection Combining (EH-SC). Nr = 2 is assumed and the received power

of the antenna providing the best and the worst channel power gain is sent to the input of

the EH and ID unit, respectively.

The proposed study can be generalized for application to SWIPT implementations based on

the time switching scheme [18]. For brevity, this case study is not analyzed in this paper.

III. PROBLEM STATEMENT

Considered individually, the performance of ID and EH units is usually quantified in terms

of information rate and harvested power, respectively. Let R and Q denote the Shannon rate (in

bits/sec) of the ID unit and the harvested power (in Watts) of the EH unit, respectively. As far as

the five SWIPT schemes introduced in Section II-E are concerned, R and Q can be formulated

as follows:

R = Bw log2

⎛⎝1 +
PG(0)U (0)

ID

/
L(0)

PIID (L(0)) + σ2
N + σ2

ID/ρID

⎞⎠
Q = ρEHζ

(
PG(0)U (0)

EH

/
L(0) + PIEH

(
L(0)

))
,

(4)

where the notation in Table I is used, and, for z ∈ {ID,EH}, 0 ≤ ρz ≤ 1 accounts for the

amount of power at the input of ID and EH units, U (0)
z is the power gain of the intended link,

and Iz (·) is the aggregate other-cell interference defined as follows:

Iz

(
L(0)

)
=

∑
s∈{LOS,NLOS}

∑
i∈Ψs

G(i)γ
(i)
z

ls (r(i))
1
(
ls
(
r(i)
)
> L(0)

)
, (5)

where γ
(i)
z is the power gain of the ith interfering BS. The definition and the distribution of the

parameters U (0)
z , γ(i)

z and ρz are summarized in Table II.

Remark 1: Based on Table II, IID (·) = IEH (·) for PS and PS-MRC schemes, but IID (·) �=

IEH (·) for SAR, ID-SC and EH-SC schemes. As far as the latter three SWIPT schemes are

concerned, however, IID (·) d
= IEH (·). More precisely, IID (·) and IEH (·) are partially correlated
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TABLE II: Definition and distribution of U (0)
z , γ(i)

z and ρz in (4) for the five SWIPT schemes in Section II-E.
γ
(0)
r ∼ E (1) and γ

(i)
r ∼ E (1) are the channel power gains of intended and ith interfering BSs at the rth receive

antenna; γ(i)
MRC, γ(i)

max, and γ
(i)
min are the channel power gains of the ith interfering BS after applying MRC and

impinging on the best and worst (as far as the the probe link is concerned) receive antennas, respectively. Short-hands:
psc = power splitting circuit, 2rx = two receive antennas, asc = antenna switching circuit, imp = implementation.

U(0)
ID U(0)

EH γ
(i)
ID γ

(i)
EH ρID ρEH imp

PS γ
(0)
1 ∼ E (1) γ

(0)
1 ∼ E (1) γ

(i)
1 ∼ E (1) γ

(i)
1 ∼ E (1) 1− ρ ρ psc

PS-MRC γ
(0)
1 + γ

(0)
2 ∼ G (2, 1) γ

(0)
1 + γ

(0)
2 ∼ G (2, 1) γ

(i)
MRC ∼ E (1) γ

(i)
MRC ∼ E (1) 1− ρ ρ psc + 2rx

SAR γ
(0)
1 ∼ E (1) γ

(0)
2 ∼ E (1) γ

(i)
1 ∼ E (1) γ

(i)
2 ∼ E (1) 1 1 2rx

ID-SC max
{
γ
(0)
1 , γ

(0)
2

}
∼ Emax (1) min

{
γ
(0)
1 , γ

(0)
2

}
∼ E (2) γ

(i)
max ∼ E (1) γ

(i)
min ∼ E (1) 1 1 2rx + asc

EH-SC min
{
γ
(0)
1 , γ

(0)
2

}
∼ E (2) max

{
γ
(0)
1 , γ

(0)
2

}
∼ Emax (1) γ

(i)
min ∼ E (1) γ

(i)
max ∼ E (1) 1 1 2rx + asc

RVs because the locations of the interfering BSs are the same but the power channel gains are

related to different receive antennas. For all SWIPT schemes, nevertheless, the distribution of

the aggregate other-cell interference is the same, i.e., ΦIID (·) = ΦIEH
(·) = ΦI (·).

A. Motivation: On the Benefits of Receiver Diversity

To better motivate our research, let us compare PS and SAR schemes based on (4). From

Table II and Remark 1, we evince that the power gains of the intended link and the aggregate

other-cell interferences of both schemes are equivalent in distribution, e.g., they have the same

PDF and CF. As far as the PS scheme is concerned, only a fraction of the received power is

used by ID and EH units. As far as the SAR scheme is concerned, on the other hand, the entire

received power is available at the input of both ID and EH units. As a result, R(SAR) ≥ R(PS)

and Q(SAR) ≥ Q(PS) simultaneously, i.e., the SAR scheme always outperforms the PS scheme.

This is obtained because Nr = 1 and Nr = 2 for PS and SAR schemes, respectively. From the

implementation standpoint, the PS scheme requires appropriate circuits for splitting the received

power while the SAR scheme avoids them by leveraging the availability of two receive antennas.

This example shows the potential of using, whenever possible, multiple antennas at the LEDs.

It highlights, in addition, the associated performance versus implementation trade-off, e.g., the

possibility of replacing power splitters with an additional antenna element and radio frequency

front-end. As far as the computational (signal processing) complexity of PS and SAR schemes

is concerned, it is apparent that it is the same, since ID and EH receivers perform the same

operations in both cases.
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Unlike the PS and SAR schemes, the comparison of the other schemes deserves more attention

because of the different distribution of the channel power gain of the intended link, of the

different power at the input of ID and EH units, and of the partial correlation of the aggregate

other-cell interference. Quantifying the performance gain of each scheme compared to the others

is, however, important because of the different implementation complexities, which are briefly

summarized in Table II. Assessing these trade-offs is the ultimate objective of this paper.

B. Problem Formulation

As far as the LEDs as a whole are concerned, the trade-off between information rate and

harvested power is quantified in terms of the J-CCDF of R and Q defined in (4) [18]:

F (R∗,Q∗) = Pr {R ≥ R∗,Q ≥ Q∗} , (6)

where R∗ and Q∗ are the minimum bit rate and harvested power, respectively, that are needed

for the LEDs in order to be able to perform their tasks.

In the next sections, we compare the five SWIPT schemes introduced in Section II-E in terms

of theirs J-CCDF and provide mathematical frameworks that allow us to optimize them and to

decide the best scheme to use as a function of R∗ and Q∗.

IV. PERFORMANCE COMPARISON AND EXPECTED TRENDS

To facilitate the comparison among the SWIPT schemes, we start by introducing three remarks.

Remark 2: By using the Frechet inequality of the probability of logical conjunctions [20], the

J-CCDF can be upper-bounded as follows:

F (R∗,Q∗) ≤ FUB (R∗,Q∗) = min {Pr {R ≥ R∗} ,Pr {Q ≥ Q∗}} . (7)

By direct inspection, it is apparent that the upper-bound in (7) is asymptotically tight for every

Q∗ if R∗ → 0 or R∗ → ∞ and for every R∗ if Q∗ → 0 or Q∗ → ∞. If R∗ 
 1 or Q∗ � 1,

the system operates in the EH-limited regime, i.e., F (R∗,Q∗) ≈ Pr {Q ≥ Q∗}. If R∗ � 1 or

Q∗ 
 1, the system operates in the ID-limited regime, i.e., F (R∗,Q∗) ≈ Pr {R ≥ R∗}.
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Remark 3: The J-CCDF of PS and PS-MRC schemes depends on ρ, i.e., Pr {R ≥ R∗}

= χID (ρ) and Pr {Q ≥ Q∗} = χEH (ρ). In particular, χID (·) and χEH (·) are monotonically

decreasing and increasing functions of ρ, respectively, and, by definition, χID (0) ≤ 1, χID (1) = 0

and χEH (0) = 0, χEH (1) ≤ 1. Based on these properties and on the upper-bound in (7), we

evince that an optimal value of ρ, ρopt, that maximizes the J-CCDF exists and that it is the

unique solution of the equation χID (ρopt) = χEH (ρopt). Since (7) is a upper-bound, however,

the optimal value of ρ that maximizes the exact J-CCDF may be different from the solution

of the latter equation. The optimal power splitting ratios computed by using the exact J-CCDF

and the upper-bound in (7) are compared in Section VI for some relevant case studies. Still

based on (7), we evince that the J-CCDF satisfies the property that, a function of ρ, the equation

χ (ρ) = τ , where χ (ρ) = min {χID (ρ) , χEH (ρ)} and 0 ≤ τ ≤ 1 is a constant value, has at least

one solution if τ ≤ χ (ρopt) and no solution if τ > χ (ρopt).

Remark 4: Based on Remark 3, the upper-bound of the J-CCDF of PS and PS-MRC schemes at-

tains its maximum if ρ = ρopt, where ρopt is the solution of the equation χID (ρopt) = χEH (ρopt).

Since χID (·) and χEH (·) are monotonically decreasing and increasing functions of ρ, respectively,

this implies that χEH (ρ) ≤ χID (ρ) if ρ ≤ ρopt and χID (ρ) ≤ χEH (ρ) if ρ ≥ ρopt. Thus, the sys-

tem operates in the EH-limited regime if ρ ≤ ρopt, i.e., χ (ρ) = min {χID (ρ) , χEH (ρ)} = χEH (ρ)

and in the ID-limited regime if ρ ≥ ρopt, i.e., χ (ρ) = min {χID (ρ) , χEH (ρ)} = χID (ρ),

respectively.

In Section III-A, we have shown that the SAR scheme always outperforms the PS scheme. In

the next sub-sections, we explicitly compare the other SWIPT schemes. For ease of presentation,

the following notation is used: F ID (R∗) = Pr {R ≥ R∗} and FEH (Q∗) = Pr {Q ≥ Q∗}. Our

derivations and conclusions are based on the upper-bound of the J-CCDF in (7).

A. SAR versus ID-SC

Lemma 1: Let us assume that R∗ is given. The ID-SC scheme outperforms the SAR scheme,

i.e., F
(ID−SC)

UB (R∗,Q∗) ≥ F
(SAR)

UB (R∗,Q∗), if Q∗ < Q(c)
∗ , where Q(c)

∗ is the unique solution of the

equation F
(SAR)

ID (R∗) = F
(ID−SC)

EH

(
Q(c)

∗
)

. On the other hand, the SAR scheme outperforms the

ID-SC scheme if Q∗ > Q(c)
∗ . Let us assume that Q∗ is given. The ID-SC scheme outperforms the
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SAR scheme if R∗ > R(c)
∗ , where R(c)

∗ is the unique solution of the equation F
(ID−SC)

EH (Q∗) =

F
(SAR)

ID

(
R(c)

∗
)

. On the other hand, the SAR scheme outperforms the ID-SC scheme if R∗ < R(c)
∗ .

Proof : It is a direct consequence of the upper-bound in (7), by taking into account that: i)

F
(ID−SC)

ID (R∗) ≥ F
(SAR)

ID (R∗) for every R∗, since max {a, b} ≥ a and max {a, b} ≥ b for every

(a, b); ii) F
(ID−SC)

EH (Q∗) ≤ F
(SAR)

EH (Q∗) for every Q∗, since min {a, b} ≤ a and min {a, b} ≤ b

for every (a, b); iii) F ID (·) is independent of Q∗ and monotonically decreasing with R∗; and

iv) FEH (·) is independent of R∗ and monotonically decreasing with Q∗. �

From Lemma 1, we conclude that the ID-SC scheme outperforms the SAR scheme for large

values of R∗ and for small values of Q∗, i.e., if the system operates in the ID-limited regime.

B. SAR versus EH-SC

Lemma 2: Let us assume that R∗ is given. The EH-SC scheme outperforms the SAR scheme,

i.e., F
(EH−SC)

UB (R∗,Q∗) ≥ F
(SAR)

UB (R∗,Q∗), if Q∗ > Q(c)
∗ , where Q(c)

∗ is the unique solution of

the equation F
(EH−SC)

ID (R∗) = F
(SAR)

EH

(
Q(c)

∗
)

. On the other hand, the SAR scheme outperforms

the EH-SC scheme if Q∗ < Q(c)
∗ . Let us assume that Q∗ is given. the EH-SC scheme outperforms

the SAR scheme if R∗ < R(c)
∗ , where R(c)

∗ is the unique solution of the equation F
(SAR)

EH (Q∗) =

F
(EH−SC)

ID

(
R(c)

∗
)

. On the other hand, the SAR scheme outperforms the EH-SC scheme if R∗ >

R(c)
∗ .

Proof : It follows from the upper-bound in (7), by using the same line of thought as that of

the proof of Lemma 1. For brevity, the details of the derivation are omitted. �

From Lemma 2, we conclude that the EH-SC scheme outperforms the SAR scheme for large

values of Q∗ and for small values of R∗, i.e., if the system operates in the EH-limited regime.

C. ID-SC versus EH-SC

Lemma 3: Let us assume that R∗ is given. The ID-SC scheme outperforms the EH-SC scheme,

i.e., F
(ID−SC)

UB (R∗,Q∗) ≥ F
(EH−SC)

UB (R∗,Q∗), if Q∗ < Q(c)
∗ , where Q(c)

∗ is the unique solution

of the equation F
(EH−SC)

ID (R∗) = F
(ID−SC)

EH

(
Q(c)

∗
)

. On the other hand, the EH-SC scheme

outperforms the ID-SC scheme if Q∗ > Q(c)
∗ . Let us assume that Q∗ is given. The ID-SC

scheme outperforms the EH-SC scheme if R∗ > R(c)
∗ , where R(c)

∗ is the unique solution of the
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equation F
(ID−SC)

EH (Q∗) = F
(EH−SC)

ID

(
R(c)

∗
)

. On the other hand, the EH-SC scheme outperforms

the ID-SC scheme if R∗ < R(c)
∗ .

Proof : It follows from the upper-bound in (7), by using the same line of thought as that of

the proof of Lemma 1 and by noting that max {a, b} ≥ min {a, b} for every (a, b). �

From Lemma 3, we conclude that the ID-SC scheme is to be preferred to the EH-SC scheme

if the system operates in the ID-limited regime. If the system operates in the EH-limited regime,

on the other hand, the EH-SC scheme is to be preferred to the ID-SC scheme.

Remark 5: From Lemmas 1-3, three main conclusions can be drawn: 1) there is no SWIPT

scheme among the SAR, ID-SC and EH-SC schemes that outperforms the others for every pair

(R∗,Q∗); 2) the SAR scheme is a special case of a generalized SWIPT scheme that is obtained

by choosing, as a function of (R∗,Q∗), the best scheme between the ID-SC and the EH-SC

schemes; and 3) given the reliability constraints (R∗,Q∗), the performance of SWIPT-enabled

cellular networks can be optimized by enabling the LEDs to adaptively use, as a function of

(R∗,Q∗), either the ID-SC scheme or the EH-SC scheme.

Based on Remark 5, we introduce a new SWIPT scheme that is referred to as Adaptive

Selection Combining (A-SC), which subsumes SAR, ID-SC and EH-SC schemes and foresees

that the LEDs use the best SWIPT scheme, between ID-SC and EH-SC, as a function of (R∗,Q∗).

More specifically, the LEDs operate by using either the ID-SC or the EH-SC scheme according

to the switching points Q(c)
∗ and R(c)

∗ introduced in Lemmas 1-3. The practical implementation

of this adaptive scheme is elaborated at the end of Section IV-F.

D. PS-MRC versus A-SC

Lemma 4: Let us assume that the PS-MRC scheme operates at its optimum ρopt, which is

obtained by maximizing its J-CCDF as a function of ρ. The PS-MRC scheme outperforms the

A-SC scheme if they both operate either in the ID-limited regime or in the EH-limited regime.

Proof : In the ID-limited regime and in the EH-limited regime, we have F
(PS−MRC)

UB (R∗,Q∗) ≈

F
(PS−MRC)

ID (R∗) and F
(PS−MRC)

UB (R∗,Q∗) ≈ F
(PS−MRC)

EH (Q∗), respectively. This implies that

ρopt = 0 and ρopt = 1 in the ID-limited regime and in the EH-limited regime, respectively.

In addition, the A-SC scheme reduces to the ID-SC scheme and to the EH-SC scheme in the
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ID-limited regime and in the EH-limited regime, respectively. The proof follows from the upper-

bound in (7), by noting that a+ b ≥ max {a, b} for every non-negative (a, b). �

Lemma 5: Let us assume that the PS-MRC scheme operates at its optimum ρopt, which is

obtained by maximizing its J-CCDF as a function of ρ. For a given pair (R∗,Q∗), the PS-MRC

scheme outperforms the A-SC scheme if, as a function of ρ, the equation F
(PS−MRC)

UB (R∗,Q∗; ρ) =

F
(A−SC)

UB (R∗,Q∗) admits at least one solution for 0 ≤ ρ ≤ 1. If the equation admits no solution,

on the other hand, the A-SC scheme outperforms the PS-MRC scheme.

Proof : It follows by applying the upper-bound in (7) and from Remark 3. �

E. PS-MRC versus PS

Lemma 6: Let us assume that the PS-MRC scheme and the PS scheme operate by using the

same ρ. The PS-MRC scheme outperforms the PS scheme for every (R∗,Q∗).

Let us assume, on the other hand, that the PS-MRC scheme and the PS scheme operate

at their respective optima ρ
(PS−MRC)
opt and ρ

(PS)
opt , which are obtained by finding the maximum,

as a function of ρ, of F
(PS−MRC)

UB (R∗,Q∗; ρ) and F
(PS)

UB (R∗,Q∗; ρ), respectively. The PS-MRC

scheme outperforms the PS scheme for every (R∗,Q∗).

Proof : Let us assume that (R∗,Q∗) is given. Let us use the same notation as in Remark

3, i.e., F
(PS−MRC)

(R∗,Q∗; ρ) ≤ χ(PS−MRC) (ρ) = min
{
χ
(PS−MRC)
ID (ρ) , χ

(PS−MRC)
EH (ρ)

}
and

F
(PS)

(R∗,Q∗; ρ) ≤ χ(PS) (ρ) = min
{
χ
(PS)
ID (ρ) , χ

(PS)
EH (ρ)

}
. Since a + b ≥ a and a + b ≥ b for

every non-negative (a, b), we obtain χ
(PS−MRC)
ID (ρ) ≥ χ

(PS)
ID (ρ) and χ

(PS−MRC)
EH (ρ) ≥ χ

(PS)
EH (ρ)

for every 0 ≤ ρ ≤ 1. This proves the first part.

Based on the upper-bound in (7) and on Remark 3, ρ(PS−MRC)
opt and ρ

(PS)
opt satisfy the equalities

χ
(PS−MRC)
ID

(
ρ
(PS−MRC)
opt

)
= χ

(PS−MRC)
EH

(
ρ
(PS−MRC)
opt

)
and χ

(PS)
ID

(
ρ
(PS)
opt

)
= χ

(PS)
EH

(
ρ
(PS)
opt

)
, respec-

tively. Accordingly, the following holds:

F
(PS−MRC)

(
R∗,Q∗; ρ

(PS−MRC)
opt

)
≤ χ(PS−MRC)

(
ρ
(PS−MRC)
opt

)
(a)
= χ

(PS−MRC)
EH

(
ρ
(PS−MRC)
opt

)
(b)

≥ χ
(PS−MRC)
EH (ρ)

(c)

≥ χ
(PS)
EH (ρ)

(d)
= χ(PS) (ρ)≥F

(PS)
(R∗,Q∗; ρ) ,

(8)

where (a) follows from χ
(PS−MRC)
ID

(
ρ
(PS−MRC)
opt

)
= χ

(PS−MRC)
EH

(
ρ
(PS−MRC)
opt

)
, (b) holds for ρ ≤

ρ
(PS−MRC)
opt since χEH (·) is a monotonically increasing function of ρ, (c) follows from the first
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part of the proof, and (d) holds for ρ ≤ ρ
(PS)
opt since χ

(PS)
EH (ρ) ≤ χ

(PS)
ID (ρ) if ρ ≤ ρ

(PS)
opt (see Remark

4 for the details). By using a similar line of thought, the following holds:

F
(PS−MRC)

(
R∗,Q∗; ρ

(PS−MRC)
opt

)
≤ χ(PS−MRC)

(
ρ
(PS−MRC)
opt

)
= χ

(PS−MRC)
ID

(
ρ
(PS−MRC)
opt

)
≥ χ

(PS−MRC)
ID (ρ) ≥ χ

(PS)
ID (ρ) = χ(PS) (ρ) ≥ F

(PS)
(R∗,Q∗; ρ) ,

(9)

for ρ ≥ ρ
(PS−MRC)
opt and ρ ≥ ρ

(PS)
opt .

From (8) and (9), in conclusion, we obtain F
(PS−MRC)

(
R∗,Q∗; ρ

(PS−MRC)
opt

)
≥ F

(PS)
(R∗,Q∗; ρ)

if ρ ≤ min
{
ρ
(PS−MRC)
opt , ρ

(PS)
opt

}
or ρ ≥ max

{
ρ
(PS−MRC)
opt , ρ

(PS)
opt

}
. This implies that, for every(

ρ
(PS−MRC)
opt , ρ

(PS)
opt

)
and (R∗,Q∗), the PS-MRC scheme outperforms the PS scheme if they

operate at their respective optima as a function of ρ. This concludes the proof. �

Lemma 6 establishes that PS-MRC is superior to PS if either they use the same power splitting

ratio or they operate at their respective optimal power splitting ratios. For arbitrary values of

their power splitting ratios, on the other hand, no general conclusion can be drawn. Numerical

examples are illustrated in Section VI for some relevant case studies.

F. Main Performance Trends

From the comparative analysis of the SWIPT schemes, three main conclusions can be drawn.

1) There exists a unique value of ρ that optimizes the performance of PS and PS-MRC

schemes. PS and PS-MRC schemes that operate at their respective optima are referred to

as Optimum PS (OPS) and Optimum PS-MRC (OPS-MRC) schemes, respectively.

2) For every pair (R∗,Q∗), i) the A-SC scheme outperforms the SAR scheme, ii) the SAR

scheme outperforms the PS scheme, iii) the PS-MRC scheme outperforms the PS scheme

if ρ is the same, iv) and the OPS-MRC scheme outperforms the OPS scheme. This implies

that the A-SC scheme outperforms the PS scheme.

3) The OPS-MRC scheme outperforms or underperforms the A-SC scheme depending on the

pair (R∗,Q∗) and on the specific setup of parameters being considered (see Lemma 5).

In order to optimize the J-CCDF, our analysis suggests that the LEDs need to operate in an

adaptive fashion by choosing the SWIPT scheme to use as a function of (R∗,Q∗). Depending on

the application, in general, each LED may have different (R∗,Q∗) requirements. Concretely, an
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adaptive SWIPT scheme can be implemented as follows. Assume that mathematical frameworks

for the J-CCDF of ID-SC, EH-SC and PS-MRC schemes are available in a tractable and

computable form. For any (R∗,Q∗) of interest, either the BSs or the LEDs (depending on

their computational complexity capabilities) adaptively choose the best SWIPT scheme to use

as follows: 1) the power splitting coefficient that optimizes the J-CCDF of the PS-MRC scheme

is estimated and the related optimal J-CCDF is computed, 2) the J-CCDF of the ID-SC and EH-

SC schemes are computed, 3) the LEDs use the SWIPT scheme that provides the best J-CCDF

among the three. If the BSs perform these tasks, they need to forward the related information to

their intended LEDs. This usually requires just a few control bits (two in the considered setup).

A system that operates according to this adaptive policy is referred to as Adaptive SWIPT

(A-SWIPT). To implement the A-SWIPT scheme in practice, mathematical expressions of the

J-CCDF of all SWIPT schemes studied in this paper are provided in the next section.

It is worth emphasizing that, by definition, the J-CCDF in (6) is obtained by computing the

average with respect to the spatial topology of the cellular network and with respect to the channel

conditions. This implies that the considered (system-level) optimization can be performed off-line

with a minimum overhead, since it depends on system parameters that are slowly-varying, e.g.,

that usually change on a geographical scale. For example, it can be performed at the beginning

of each communication round and if the performance requirements (R∗,Q∗) change.

V. SYSTEM-LEVEL ANALYSIS

The following two propositions provide mathematical expressions of the J-CCDF for the five

SWIPT schemes introduced in Section II-E. Proposition 1 is exact and is applicable only to PS

and PS-MRC schemes. Proposition 2 is based on the upper-bound in (7) and is applicable to all

SWIPT schemes. An exact mathematical framework for SAR, ID-SC and EH-SC schemes may

be obtained by using the multi-dimensional inversion theorem in [21]. The resulting framework,

however, would be formulated in terms of multi-fold integrals with limited mathematical and

numerical tractability. For this reason, it is not explicitly considered in this paper. For the inter-

ested readers, however, some hints on how to exploit the multi-dimensional inversion theorem for

computing the J-CCDF are reported in Appendix A. The mathematical complexity of studying
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SAR, ID-SC and EH-SC schemes compared with PS and PS-MRC schemes originates from the

fact that the aggregate other-cell interferences of ID and EH units are dissimilar and are only

equivalent in distribution (see Remark 1).

Proposition 1: Let fL(0) (·) be the PDF of the smallest path-loss, L(0), defined in (2):

fL(0) (x) = Λ̂ ([0, x)) exp (−Λ ([0, x))) , (10)

where Λ ([0, x)) = ΛLOS ([0, x)) + ΛNLOS ([0, x)) is the intensity measure of the PPP of the

path-losses [18], Λ̂ ([0, x)) = Λ̂LOS ([0, x)) + Λ̂NLOS ([0, x)) is its first derivative computed with

respect to x, as well as, for s ∈ {LOS,NLOS}, Λs ([·, ·)) and Λ̂s ([·, ·)) are the intensity measure

and its first derivative, respectively, of the PPP of the path-losses in state s defined as follows:

Λs ([0, x)) = πλq[0,D]
s

(
x

κ0

) 2
βs

H
(
x− κ0D

βs
)

+ πλ

((
x

κ0

) 2
βs

q[D,∞]
s +D2

(
q[0,D]
s − q[D,∞]

s

))
H
(
x− κ0D

βs
)
,

(11)

Λ̂s ([0, x)) = (2πλ/βs) q
[0,D]
s κ

−2/βs

0 x(2/βs−1)H
(
x− κ0D

βs
)

+ (2πλ/βs) q
[D,∞]
s κ

−2/βs

0 x(2/βs−1)H
(
x− κ0D

βs
)
.

(12)

Let ΦI
(
·|L(0)

)
be the CF of the other-cell interference, I, conditioned on L(0) given in (5):

ΦI
(
ω|L(0)

)
= ΦI

(
ω|L(0); LOS

)
ΦI
(
ω|L(0); NLOS

)
, (13)

where, for s ∈ {LOS,NLOS}, ΦI
(
·|L(0); s

)
is, conditioned on L(0), the CF of the other-cell

interference of all links in state s defined as follows:

ΦI

(
ω|L(0); s

)
= exp

(
λπq[D,∞]

s max

{
D2,

(
L(0)/κ0

)2/βs
}(

1−Υs

(
ω,max

{
κ0D

βs , L(0)
})))

× exp

(
πλq[0,D]

s

[(
L(0)/κ0

)2/βs
(
1−Υs

(
ω,L(0)

))
−D2

(
1−Υs

(
ω, κ0D

βs

))]
H

(
L(0) − κ0D

βs

))
,

(14)

and Υs (·, ·) is the following short-hand:

Υs (ω,Z) =
θM
2π

2F1

(
1,− 2

βs
, 1− 2

βs
,
jω

Z
GM

)
+

(
1− θM

2π

)
2F1

(
1,− 2

βs
, 1− 2

βs
,
jω

Z
GS

)
.

(15)
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TABLE III: Definitions of (aID, bID, cID) and (aEH, bEH, cEH) according to the PDFs in Table II.

aID bID cID aEH bEH cEH

PS 1 0 0 1 0 0
PS-MRC 0 0 1 0 0 1

SAR 1 0 0 1 0 0
ID-SC 2 -2 0 0 2 0
EH-SC 0 2 0 2 -2 0

Then, the J-CCDF of PS and PS-MRC schemes can be formulated as follows:

F (R∗,Q∗) =
∫ +∞

0

∫ +∞

0

1

πω
Im
{
J (ω, y) ΦI

( ω

G(0)

∣∣∣ y)} fL(0) (y) dωdy, (16)

where u = 0 for PS and u = 1 for PS-MRC schemes, respectively, and, for notational simplicity,

the following short-hand is introduced:

J (ω, y) = exp
(
−jω

q∗
PG(0)

)(
1− jω

y

)−(1+u)

Γ

(
1 + u,

T∗
PG(0)

(y − jω)

)
− exp

(
jω

σ2
∗

PG(0)

)(
1 +

jωr∗
y

)−(1+u)

Γ

(
1 + u,

T∗
PG(0)

(y + jωr∗)
)
.

(17)

Proof : Since U (0)
ID = U (0)

EH = U (0) for PS and PS-MRC schemes (see Table II), from (4) the

J-CCDF can be formulated as follows:

F (R∗,Q∗) = Pr {R ≥ R∗,Q ≥ Q∗} = Pr
{
I ≤ G(0)U(0)r∗

/
L(0) − σ2

∗
/
P, I ≥ −G(0)U(0)

/
L(0) + q∗/P

}

=

⎧⎨
⎩

Pr
{
−G(0)U(0)

/
L(0) + q∗/P ≤ I ≤ G(0)U(0)r∗

/
L(0) − σ2

∗
/
P
}

if G(0)U(0) ≥ (T∗/P )L(0)

0 otherwise

= EL(0)

{∫ +∞

(T∗/P )(L(0)/G(0))
FI

(
G(0)xr∗

/
L(0) − σ2

∗
/
P
∣∣∣L(0)

)
fU(0) (x) dx

}

− EL(0)

{∫ +∞

(T∗/P )(L(0)/G(0))
FI

(
−G(0)x

/
L(0) + q∗/P

∣∣∣L(0)
)
fU(0) (x) dx

}

(18)

where FI (x) = Pr {I < x} is the CDF of I. With the aid of the Gil-Pelaez theorem [22, Eq.

(16)], FI (·) can be formulated in terms of the CF of I. The proof follows by computing the

PDF of L(0) and the CF of I as in [18, Lemma 1] and [18, Lemma 2], respectively, by inserting

them in (18) and by using some algebra. �

Proposition 2: Let fL(0) (·) be the PDF in (10) and ΦI ( ·| ·) be the CF in (13). Let M̂I (z) =

dMI (z)/dz be the first derivative of the MGF of the aggregate other-cell interference, i.e.,
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MI (z) = ΦI (−jz| z). Then, the J-CCDF of the SWIPT schemes in Table II can be upper-

bounded as F (R∗,Q∗) ≤ min
{
F ID (R∗) , FEH (Q∗)

}
, where F ID (R∗) = Pr {R ≥ R∗} and

FEH (Q∗) = Pr {Q ≥ Q∗} can be formulated, respectively, as follows:

F ID (R∗) =
∫ +∞

0

JID (y) fL(0) (y)dy, (19)

FEH (Q∗) =
1

2
+

∫ +∞

0

∫ +∞

0

1

πω
Im

{
exp

(
−jω

q̃∗
P

)
JEH

(
ω,

G(0)

y

)
ΦI (ω| y)

}
fL(0) (y) dωdy,

(20)

where, for ease of notation, the following short-hands are introduced:

JID (y) = (aID + cID) exp

(
− σ̃2

∗y
PG(0)r̃∗

)
MI

(
y

G(0)r̃∗

)
+

bID
2

exp

(
− 2σ̃2

∗y
PG(0)r̃∗

)
MI

(
2y

G(0)r̃∗

)
+ cID

σ̃2
∗y

PG(0)r̃∗
exp

(
− σ̃2

∗y
PG(0)r̃∗

)
MI

(
y

G(0)r̃∗

)
− cID

y

G(0)r̃∗
exp

(
− σ̃2

∗y
PG(0)r̃∗

)
M̂I

(
y

G(0)r̃∗

)
,

(21)

JEH (ω, z) = aEH (1− jωz)−1 + bEH (2− jωz)−1 + cEH (1− jωz)−2 , (22)

and the two triplets of coefficients (aID, bID, cID) and (aEH, bEH, cEH) are defined in Table III.

Proof : F ID (·) is obtained by using the Pcov-based approach in [6, Sec. III-G] and F ID (·) is

obtained by using the Gil-Pelaez theorem in [22]. The triplets (aID, bID, cID) and (aEH, bEH, cEH)

are obtained based on the PDFs in Table II. The proof follows with the aid of some algebra. �

The J-CCDFs in Proposition 1 and Proposition 2 are formulated in terms of two-fold integrals

that can be efficiently computed with the aid of state-of-the-art computational software programs

and have the advantage of avoiding lengthly Monte Carlo simulations. For brevity, the explicit

expression of the first derivative of the MGF of the aggregate other-cell interference is not

reported. It can be computed and formulated in closed-form from (13) and (14). The numerical

complexity associated with the computation of Proposition 1 and Proposition 2 instead of using

Monte Carlo simulations in discussed in Section VI
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VI. NUMERICAL AND SIMULATION RESULTS

In this section, we capitalize on Monte Carlo simulations in order to validate our findings

and mathematical frameworks, as well as to assess the potential of the proposed A-SWIPT

scheme for application to cellular networks. Monte Carlo simulations are obtained by using the

approach discussed in [19]. Unless otherwise stated, the following setup is considered: ν = c0/fc,

where c0 is the speed of light in m/s and fc = 2.1 GHz is the carrier frequency; σ2
ID = −70

dBm; σ2
N = −174 + 10 log10 (Bw) + FN dBm, where Bw = 200 kHz and FN = 10 dB is the

noise figure; P = 30 dBm; ζ = 0.8; ωM = 25.6 degrees; GM = 7.47; and GS = 0.5. The

channel model and the density of BSs, λ, are chosen in agreement with [19]: D = 109.8517 m,

q
[0,D]
LOS = 0.7195, q[D,∞]

LOS = 0.0002, βLOS = 2.5, βNLOS = 3.5, λ = 1/(πR2
cell) where Rcell = 83.4122

m denotes the average cell radius. In Figs. 1-3, without loss of generality, we analyze the case

study F (R∗,Q∗) = 0.75. Usually, imposing higher values of the J-CCDF results in lower

values of R∗ and Q∗ that satisfy them. The setup F (R∗,Q∗) = 0.75 is considered only as

an illustrative example. Our frameworks can be applied for arbitrary parameters and setups. In

Fig. 4, in particular, we analyze a case study where F (R∗,Q∗) = 0.9, which corresponds to an

application scenario where the imposed requirements of information rate and harvested power

need to be achieved with high reliability.

In Figs. 1 and 2, we validate the correctness of the mathematical frameworks in Proposition 1

and Proposition 2, respectively, against Monte Carlo simulations. In particular, Fig. 1 confirms

that the J-CCDF in Proposition 1 is exact and Fig. 2 highlights that the Frechet inequality in

Proposition 2 provides a upper-bound of the J-CCDF, which is asymptotically tight as the system

operates either in the ID-limited or in the EH-limited regimes. From the engineering standpoint,

Figs. 1 and 2 show that information rate and harvested power highly depend on the choice of

ρ for PS and PS-MRC schemes, as well as that there is no scheme among SAR, ID-SC and

EH-SC that outperform all the others for every pair (R∗,Q∗). All lemmas and remarks in Section

IV are, in particular, confirmed. This motivates the need of the proposed adaptive schemes for

system-level optimization.

In Fig. 3, we investigate the performance of the proposed adaptive schemes and compare them

against the ideal setups where ID and EH can be performed without any practical implementation



21

R
*
 [kbps]

Q
* [d

B
m

]

0 100 200 300 400 500
−80

−78

−76

−74

−72

−70

−68

−66

−64

−62

−60
PS−MRC (ρ = 0.1)

PS−MRC (ρ = 0.5)

PS−MRC (ρ = 0.9)

PS (ρ = 0.1)

PS (ρ = 0.5)

PS (ρ = 0.9)
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ers: Monte Carlo simulations. Solid lines: Proposition
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signal without the need of PS. ρopt is computed by using Proposition 1. Markers: Monte Carlo simulations. Solid
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considered setup, the OPS-MRC scheme coincides with the A-SWIPT scheme.
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Fig. 4: Highest harvested power Q∗ of OPS-MRC and A-SC so that F (R∗,Q∗) = 0.90 and R∗ = 100 kbps,
as a function of Rcell. ρopt is computed by using Proposition 1. Markers: Monte Carlo simulations for the A-SC
scheme. Solid lines: Proposition 1 for the OPS-MRC scheme. Dashed lines: Proposition 2 for the A-SC scheme.

constraints (denoted by “Ideal” in the figure). We observe that the proposed A-SWIPT scheme

outperforms all the other schemes, as well as that its J-CCDF is not far from the corresponding

ideal benchmark. In the considered setup, in particular, we note that the J-CCDF of the A-

SWIPT scheme coincides with the J-CCDF of the OPS-MRC scheme. This implies that, in the

considered setup, the OPS-MRC scheme outperforms the A-SC scheme for every pair (R∗,Q∗).

In Fig. 4, we leverage the proposed mathematical frameworks for computing the highest power

that can be harvested, Q∗, for some given requirements of achievable rate, R∗, and reliability

formulated in terms of J-CCDF. The figure, in particular, highlights the impact of the density

of BSs via Rcell and of directional beamforming. More precisely, Nt is the number of antennas

of the directional beamformer in [18]. The values of ωM, GM and GS used in Figs. 1-3 can be

obtained by setting Nt = 4. The figure proves that the densification of BSs and antenna elements

increases the amount of harvested power remarkably. We note, in particular, that Q∗ increases

almost linearly with the logarithm of Nt. In addition, two important performance trends can be

identified: i) OPS-MRC and A-SC provide similar performance as Nt increases, which highlights
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TABLE IV: Optimum power splitting ratio for different values of Q ∗ and R∗ expressed in dBm and kbps,
respectively. The “Exact” values are obtained by using Proposition 1. The “Upper-bound” values are obtained
by using Proposition 2. The “Mixed” values are obtained by using Proposition 2 to compute ρ opt and by obtaining

the corresponding J-CCDF by using Proposition 1.

(Q∗,R∗) → (-60, 100) (-60, 200) (-60, 300) (-60, 400) (-60, 500)

Exact
ρopt = 0.9568
F opt = 0.7447

ρopt = 0.9108
F opt = 0.7401

ρopt = 0.8526
F opt = 0.7334

ρopt = 0.7825
F opt = 0.7243

ρopt = 0.7004
F opt = 0.7121

Upper-bound
ρopt = 0.9640
F opt = 0.7465

ρopt = 0.9036
F opt = 0.7452

ρopt = 0.8006
F opt = 0.7425

ρopt = 0.6352
F opt = 0.7375

ρopt = 0.4208
F opt = 0.7280

Mixed
ρopt = 0.9640
F opt = 0.7446

ρopt = 0.9036
F opt = 0.7401

ρopt = 0.8006
F opt = 0.7327

ρopt = 0.6352
F opt = 0.7213

ρopt = 0.4209
F opt = 0.7032

(Q∗,R∗) → (-80, 100) (-70, 100) (-60, 100) (-50, 100) (-40, 100)

Exact
ρopt = 0.1983
F opt = 0.9051

ρopt = 0.7166
F opt = 0.8213

ρopt = 0.9568
F opt = 0.7447

ρopt = 0.99
F opt = 0.6333

ρopt = 0.99
F opt = 0.2028

Upper-bound
ρopt = 0.1669
F opt = 0.9084

ρopt = 0.7103
F opt = 0.8263

ρopt = 0.9640
F opt = 0.7465

ρopt = 0.99
F opt = 0.6348

ρopt = 0.99
F opt = 0.2049

Mixed
ρopt = 0.1669
F opt = 0.8989

ρopt = 0.7103
F opt = 0.8212

ρopt = 0.9640
F opt = 0.7446

ρopt = 0.99
F opt = 0.6333

ρopt = 0.99
F opt = 0.2028

that SC may be a low-complexity option with minimal performance degradation with respect to

MRC and ii) the mathematical framework in Proposition 2 is in good agreement with Monte

Carlo simulations. It is worth mentioning that the values of Nt for which the J-CCDF does not

reach 0.9 are not shown in the figure.

In Table IV, we analyze the accuracy of computing the optimum power splitting ratio, ρ, by

using the upper-bound in Proposition 2. This study is motivated by the comment in Remark 3.

The numerical results confirm that, even though the upper-bound may provide slightly different

values of ρopt, its accuracy is usually acceptable and the corresponding values of the J-CCDF

are sufficiently close to those obtained with using the exact optimum power splitting ratio.

In Table V, we provide numerical examples for substantiating the comment made right after

Lemma 6, i.e., PS may outperform PS-MRC for values of ρ that do not satisfy the conditions

stated in the lemma. The reason of this performance trend, which may be considered to be

unexpected at the first sight, is related to the fact that PS and PS-MRC are configured to operate

in different regimes. Due to the small and large values of the power splitting ratios, PS and

PS-MRC operate close to the ID-limited and EH-limited regimes, respectively. This implies that

their J-CCDFs have different mathematical expressions and, thus, the impact of MRC cannot

be predicted based on conventional arguments. This motivates the need and relevance of the

comparison and findings summarized in Lemma 6. The values reported in the third column of
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TABLE V: J-CCDF of PS and PS-MRC schemes as a function of Q∗ and R∗ expressed in dBm and kbps,
respectively. Setup: ρ = 0.001 for PS and ρ = 0.999 for PS-MRC.

(Q∗,R∗) → (-60, 800) (-60, 900) (-60, 944.144) (-60, 950) (-60, 1050)
PS 0.020811 0.0207128 0.0206575 0.0206493 0.0204861

PS-MRC 0.0309 0.0232655 0.0205 0.0202259 0.0151995

(Q∗,R∗) → (-65, 500) (-65, 600) (-65,630) (-65,700) (-65, 800)
PS 0.0505034 0.0502939 0.0502159 0.0499982 0.0495784

PS-MRC 0.0758926 0.0556419 0.0508347 0.0413108 0.0309119

(Q∗,R∗) → (-70, 300) (-70, 350) (-70, 366.15) (-70, 400) (-70, 450)
PS 0.119039 0.118727 0.118614 0.118369 0.117965

PS-MRC 0.151332 0.125689 0.118636 0.105478 0.0891926

(Q∗,R∗) → (-75, 100) (-75, 150) (-75, 174.76) (-75, 200) (-75, 250)
PS 0.261551 0.260555 0.260041 0.259499 0.258374

PS-MRC 0.397323 0.295535 0.259963 0.230231 0.184795

(Q∗,R∗) → (-80, 20) (-80, 70) (-80, 75.674) (-80, 80) (-80,130)
PS 0.470646 0.468389 0.468131 0.467937 0.465607

PS-MRC 0.685975 0.487832 0.468606 0.454633 0.330482

TABLE VI: Comparison of the time (in seconds) for computing the J-CCDF via Monte Carlo simulations and
Proposition 1, for different pairs (Q∗,R∗) in (dBm, kpbs). As for Monte Carlo simulations, the number of spatial
and channel realizations is set equal to 1000 in all setups, while the simulation area, Area, (in square meters) is
chosen so that the relative error, Error, between the J-CCDF functions computed with Proposition 1 and estimated
via simulation have a relative error equal to around 0.1%. For completeness, the relative error (in %) is reported

as well. The time for computing ρopt is not taken into account.

(Q∗,R∗) → (-63, 200) (-66, 300) (-69, 400) (-75, 400) (-78, 400)

Monte Carlo

Time = 1761
F (·) = 0.7540
Area = 2.1858e9
Error = 0.1049

Time = 294
F (·) = 0.7599
Area = 2.1858e8
Error = 0.0996

Time = 1782
F (·) = 0.7534
Area = 2.1858e9
Error = 0.0904

Time = 304
F (·) = 0.7617
Area = 2.1858e8
Error = 0.1156

Time = 1547
F (·) = 0.7630
Area = 2.1858e9
Error = 0.0906

Framework
Time = 83
F (·) = 0.754792
ρopt = 0.843616

Time = 63
F (·) = 0.759144
ρopt = 0.60452875

Time = 71
F (·) = 0.7527194
ρopt = 0.3198705

Time = 65
F (·) = 0.7606211
ρopt = 0.106576097

Time = 63
F (·) = 0.76230968
ρopt = 0.05698357663

Table V, in particular, correspond to the pair (Q∗,R∗) for which PS and PS-MRC provide almost

the same J-CCDF.

In Table VI, we compare the proposed mathematical frameworks and Monte Carlo simulations

in terms of the computation time that is necessary for estimating the J-CCDF for a single

pair (Q∗,R∗). Since the computation time of Monte Carlo simulations highly depends on the

simulation area, which determines the accuracy of the result, the study is conducted by setting the

simulation area so that the relative error between the J-CCDF computed with the mathematical

framework and that estimated via Monte Carlo simulations is around 0.1%. It is worth mentioning

that Table VI does not account for the time needed to compute the optimal power splitting ratio,

ρopt. This computation is, in fact, not affordable by using Monte Carlo simulations due to the
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many possible values that need to be analyzed. Even neglecting this latter significant computation

time, we note that the proposed mathematical frameworks are faster than Monte Carlo simulations

for values of the simulation area that provide sufficiently accurate estimates of the J-CCDF. This

justifies even further the usefulness of the proposed mathematical frameworks: they are not only

insightful and make our numerical illustrations easier to be reproduced (reproducible research),

but are more numerically tractable as well.

VII. CONCLUSION

In this paper, we have analyzed SWIPT-enabled cellular networks that employ several receiver

diversity schemes. We have shown that receiver diversity has the potential of enhancing the

information rate and of increasing the harvested power simultaneously. We have proved, in

addition, that the system-level performance can be improved by adaptively choosing the receiver

diversity scheme as a function of the information rate and of the harvested power requirements

that need to be fulfilled. With the aid of stochastic geometry, we have introduced mathematical

frameworks that enable one to perform this system-level and adaptive optimization. All findings

and performance trends have been validated with the aid of Monte Carlo simulations.

As far as the SWIPT schemes that use selection combining are concerned, the analysis has

been based on a upper-bound that exploits the Frechet inequality. This proposed bound provides

several important design guidelines for system-level optimization and it is asymptotically tight

in the ID-limited regime and in the EH-limited regime. In general, however, a gap between

the exact J-CCDF and its estimate based on the upper-bound exists (see Figs. 2 and 3). The

authors are currently working on the development of more accurate, but still tractable, bounds

and approximations for arbitrary information rate and harvested power requirements.

APPENDIX A

ON THE EXACT J-CCDF OF SAR, ID-SC AND EH-SC SWIPT SCHEMES

In Section V, it is argued that an exact expression for the J-CCDF of SAR, ID-SC and EH-SC

schemes may be obtained with the aid of the multi-dimensional inversion theorem [21], which,

however, would result in a multi-fold integral expression that is much less tractable than the
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mathematical framework reported in Proposition 2. In this appendix, we provide further details

on how this framework can be developed. Due to space limitations, no formulas are reported

but only the approach is briefly summarized.

The approach is along the same lines as the proof of Proposition 1. More precisely, the J-

CCDF can be formulated as shown in the first line of (18). In this case, however, the other-cell

interferences of ID and EH receiver are different as discussed in Remark 1. As a result, the

equality in the second line of (18) does not hold anymore, since it assumes that the other-cell

inferences are the same. Nevertheless, the joint CF of the other-cell interferences of ID and EH

receivers can be computed by using the same steps as in [18, Lemma 2] and the associated

joint CDF can be formulated in terms of the joint CF by using [21, Eq. (11)]. The resulting

expression, however, necessitates the computation of a two-fold integral. Since the computation

of the expectation with respect to the smallest path-loss (see (18)) requires another integral, the

final expression of the J-CCDF may require the computation of at least a three-fold integral.

This makes the resulting mathematical framework less tractable and less numerically stable than

the upper-bound in Proposition 2. This motivates the use of the Frechet bound in (7).

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of things: A survey on enabling

technologies, protocols, and applications”, IEEE Commun. Surveys & Tuts., vol. 17, no. 4, pp. 2347-2376, 2015.

[2] I. Krikidis, S. Timotheou, S. Nikolaou, G. Zheng, D. W. K. Ng, and R. Schober, “Simultaneous wireless information and

power transfer in modern communication systems”, IEEE Commun. Mag., vol. 52, no. 11, pp. 104-110, Nov. 2014.

[3] http://vandrico.com/wearables/device/intel-mica.

[4] http://www.cnet.com/news/ring-ring-its-your-watch-calling-att-bets.

[5] http://www.3gpp.org/news-events/3gpp-news/1733-niot.

[6] M. Di Renzo, A. Guidotti, and G. E. Corazza, “Average rate of downlink heterogeneous cellular networks over generalized

fading channels – A stochastic geometry approach”, IEEE Trans. Commun., vol. 61, no. 7, pp. 3050-3071, July 2013.

[7] G. Zheng, I. Krikidis, C. Masouros, S. Timotheou, D. Toumpakaris, and Z. Ding, “Rethinking the role of interference in

wireless networks”, IEEE Commun. Mag., vol. 52, no. 11, pp. 152-158, Nov. 2014.

[8] Z. Ding, C. Zhong, D. W. K. Ng, M. Peng, H. A. Suraweera, R. Schober, and H. V. Poor, “Application of smart antenna

technologies in simultaneous wireless information and power transfer”, IEEE Commun. Mag., vol. 53, no. 4, pp. 86-93,

Apr. 2015.

[9] M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for generalized MIMO: Challenges,

opportunities and implementation,” Proc. of the IEEE, vol. 102, no. 1, pp. 56-103, Jan. 2014.



27

[10] L. Liu, R. Zhang, and K. C. Chua, “Wireless information and power transfer: A dynamic power splitting approach”, IEEE

Trans. Commun., vol. 61, vol. 9, pp. 3990-4001, Sep. 2013.

[11] I. Krikidis, S. Sasaki, S. Timotheou, and Z. Ding, “A low complexity antenna switching for joint wireless information and

energy transfer in MIMO relay channels”, IEEE Trans. Commun., vol. 62, vol. 5, pp. 1577-1587, May 2014.

[12] X. Zhou, R. Zhang, and C. Ho, “Wireless information and power transfer: Architecture design and rate-energy tradeoff”,

IEEE Trans. Commun., vol. 61, vol. 11, pp. 4754–4767, Nov. 2013.

[13] I. Krikidis, “Simultaneous information and energy transfer in large-scale networks with/without relaying”, IEEE Trans.

Commun., vol. 62, vol. 3, pp. 900-912, Mar. 2014.

[14] Z. Ding, I. Krikidis, B. Sharif, and H. V. Poor, “Wireless information and power transfer in cooperative networks with

spatially random relays”, IEEE Trans. Wireless Commun., vol. 13, no. 8, pp. 4440-4453, Aug. 2014.

[15] J. Guo, S. Durrani, X. Zhou, and H. Yanikomeroglu, “Outage probability of ad hoc networks with wireless information

and power transfer”, IEEE Wireless Commun. Lett., vol. 4, no. 4, pp. 409–412, Aug. 2015.

[16] I. Flint, L. Xiao Lu, N. Privault, D. Niyato, and P. Wang, “Performance analysis of ambient RF energy harvesting with

repulsive point process modeling”, IEEE Trans. Wireless Commun., vol. 14, no. 10, pp. 5402-5416, Oct. 2015.

[17] X. Zhou, J. Guo, S. Durrani, and I. Krikidis, “Performance of maximum ratio transmission in ad hoc networks with

SWIPT”, IEEE Wireless Commun. Lett., vol. 4, no. 5, pp. 529-532, Oct. 2015.

[18] W. Lu, M. Di Renzo, and T. Q. Duong, “On stochastic geometry analysis and optimization of wireless-powered cellular

networks”, in Proc. IEEE GLOBECOM, Dec. 2015, pp. 1-6.

[19] W. Lu and M. Di Renzo, “Stochastic geometry modeling of cellular networks: Analysis, simulation and experimental

validation”, in Proc. ACM MSWiM, Nov. 2015, pp. 179-188.
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