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Abstract. The problem of finding a distance and a correspondence between a 

pair of graphs is commonly referred to as the Error-tolerant Graph matching 

problem. The Graph Edit Distance is one of the most popular approaches to 

solve this problem. This method needs to define a set of parameters and the cost 

functions aprioristically. On the other hand, in recent years, Deep Neural 

Networks have shown very good performance in a wide variety of domains due 

to their robustness and ability to solve non-linear problems. The aim of this 

paper is to present a model to compute the assignments costs for the Graph Edit 

Distance by means of a Deep Neural Network previously trained with a set of 

pairs of graphs properly matched. We empirically show a major improvement 

using our method with respect to the state-of-the-art results. 

1 Introduction 

Graphs are defined by a set of nodes (local components) and edges (the structural 

relations between them), allowing to represent the connections that exist between the 

component parts of an object. Due to this, graphs have become very important to 

model objects that require this kind of representation. In fields like cheminformatics, 

bioinformatics, computer vision and many others, graphs are commonly used to 

represent objects [1]. 
One of the key points in pattern recognition is to define an adequate metric to 

estimate distances between two patterns. The Error-tolerant Graph Matching tries to 
address this problem. In particular, the Graph Edit Distance (GED) [2] is an approach 
to solve the Error-tolerant Graph Matching problem by means of a set of edit 
operations including insertions, deletions and node assignments, also referred to as 
node substitutions. On the other hand, Deep Neural Networks (DNNs) have become a 
very powerful tool applied in several domains due to their ability to find models. 

The aim of this paper is to propose a new way to estimate node assignment costs 
for GED, using a DNN trained with a set of graphs correspondences properly labelled. 
The document is organized as follows: in Section 2 are presented the definitions to 
understand the paper, in Section 3 is presented the state-of-the-art, in Section 4 we 
describe the architecture and de details of our model while Section 5 shows the 
experimental results. Finally, the conclusions are presented in Section 6. 



2 Definitions and Methods 

2.1 Attributed Graph 

Formally, we define an attributed graph as a quadruplet G = (Σν , Σe , γv , γe), where 

Σv = {vi  | i =  1,… , n} is the set of nodes, Σe =   eij  i, j ∈ 1,… , n  is the set of 

edges connecting pairs of nodes, γv  is a function to map nodes to their attributed 

values and γe  maps the structure of the nodes. 

 

2.2 Graphs Correspondence 

We define a correspondence between two graphs Gp  and Gq  as a set of assignments 

f:  Σv
p
→ Σv

q
 that univocally relate the nodes of Gp  to the nodes of Gq . Where 

f vi
p
 =  vj

q
 if exist the assignment vi

p
→ vj

q
. 

2.3 Node Assignment Costs for the Graphs Edit Distance 

The basic idea of the GED [2] between two graphs Gp  and Gq , is to find the 

minimum cost to transform completely Gp  into Gq  by means of a set of edit 

operations, including insertions, deletions and node assignments, commonly referred 

to as editpath. Cost functions are introduced to quantitatively evaluate the level of 

distortion that each edit operation introduces. 

 

c vi
p
→ vj

q
 = cv vi

p
→ vj

q
 + ce vi

p
→ vj

q
  (1) 

 

The cost of an assignment edit operation (1) is typically given by the distance 

measure between the nodes attributes 

cv vi
p
→ vj

q
 = local_distance  γv

p
 vi

p
 , γv

q
 vj

q
    and by the cost of substituting the 

local structures ce vi
p
→ vj

q
 = structural_distance  γe

p
 vi

p
 , γe

q
 vj

q
  . These cost 

functions estimate the degree of separation between a pair of nodes vi
p
 and vj

q
 

belonging to graphs Gp  and Gq .  The Euclidean distance is a common way to 

estimate the local_distance between the nodes attributes, while in [3] are presented 

different metrics to estimate the structural_distance. Our model, as we will see, 

automatically learns the costs of these assignations from a set of training 

correspondences previously labeled without having to define the cost functions. 

In order to allow the maximum flexibility in the matching process and taking into 

account that graphs can have different cardinality and that a node that appears in Gp  

could not be in Gq , graphs can be extended with null nodes adding penalty costs 

when an existing node of one graph is assigned to a null one of the other graph. In this 



paper we do not consider this option since we focus on the problem of node 

assignments comparing our results with other works that face the same problem, as in 

[4, 5]. However, our model can be easily combined with other models that consider 

null nodes by adding penalty costs for insertions and deletions. 

2.4 Hamming Distance 

The hamming distance is a metric to compare graph correspondences used typically to 

assess the correctness of a correspondence comparing the correspondence that we are 

evaluating with respect to the ground-truth one. This metric evaluates the ratio 

between the number of correct assignments and the total number of assignments in the 

evaluated correspondence. Formally: 

Let f: Σv
p
→ Σv

q
 the automatic correspondence and f ′ : Σv

p′
→ Σv

q′
 the ground-truth 

correspondence between two graphs Gp  and Gq  with cardinality n (graphs can be 

extended with null nodes to manage insertions or deletions of nodes), the hamming 

distance is formally defined as: 

 

∆h f, f ′ =  
 (1 − δ f vi

p
 , f ′ vi

p
  )n

i=1

n
 (2) 

 

Where, δ is the Kronecker Delta function: 

 

δ(a, b) =   
0, if a ≠ b
1, if a = b

  (3) 

2.5 Deep Neural Networks 

DNNs are a computational model inspired by the neural networks existing in many 

biological organisms [6]. They have become very popular in many fields due to its 

adaptability and learning capacity. 

The classical architecture of a DNN consists of an input layer, an output layer and 

a cascade of multiple hidden layers in the middle. Each layer contains several neurons 

connected with the neurons of the previous layer. The connections between neurons 

have different weights fixing the strength of the signal at the connection. Each neuron 

executes an activation function having as inputs the values of the connections with the 

previous layer and sending the output to the neurons of the next layer. The signal path 

goes from the input layer to the output layer. Depending on the connections weights 

and the bias values, the output can be different given the same input. 

During the training process the learning algorithm adjust the weights and bias 

according to the values of a training set trying to minimize the error between the 

given inputs and the expected outputs. 



3 State of the Art 

The distance value of the GED depends on the edit costs, in particular cv  (distance 

between the nodes attributes), ce  (distance between the local structures) and the 

penalties costs for insertions and deletions. Typically, these costs must be defined and 

parameterized aprioristically. Depending on how these parameters and costs functions 

are defined the performance in terms of hamming distance between the automatically 

deduced correspondence and a ground truth correspondence or graphs classification 

accuracy, can be different. 

Recently, in order to maximize the performance of different Error-Tolerant Graph 

Matching approaches, some researchers have focused their work on automatically 

learn the parameters and the cost functions instead of using the traditional trial-error 

method. 

We can divide the learning methods in three main groups depending on the 

objective function. The first group [7-10] addresses the recognition ratio for graph 

classification, while the second group [4, 5, 11, 12] targets the hamming distance. 

Finally, there is a special case in [13] that does not learn the parameters to estimate 

the costs but tries to predict if an assignment between nodes is correct or not 

depending on the values of the costs matrix (the matrix with the costs of each edit 

operation). Moreover, another subdivision can be considered depending if the 

methods try to learn the assignments costs or the insertions and deletions. The aim of 

our paper is to propose a model to estimate only the assignments costs minimizing the 

hamming distance, as in [4, 5]. As we have commented before, our model can be 

combined with other models that consider nodes insertions and deletions but we do 

not address this particularity in this paper. 

4 Proposed Architecture 

In this section we describe a new architecture based on DNNs to estimate assignments 

costs (section 2.3) between a pair of nodes by means of a DNN (section 2.5) in order 

to minimize the hamming distance (section 2.4). 

 

c vi
p
→ vj

q
 = DNN vi

p
→ vj

q
  (4) 

4.1 Node Assignment Embedding 

The first step of our model consists of transforming the local and structural 

information of both nodes into a set of inputs for the network. In this section we show 

how to embed this information into an input vector.  

Let Gpand Gq  two attributed graphs, γv
p

= {vi
p
→ Ψi

p
| i = 1… n} a function that 

assigns t attribute values from an arbitrary domain to each node of Gp , where 

Ψi
p
∈  ℝt  is defined in a metric space of  t ∈  ℝ  dimensions and γe

p
= {vi

p
→



E vi
p
 | i = 1 …n} where E .   refers to the number of edges of a certain node (the 

Degree centrality [3]). And similar for γv
q
 and γe

p
 in Gq . 

Vector xi→j = [γv
p
 vi

p
 , γe

p
 vi

p
 , γv

q
 vj

q
 , γe

q
 vj

q
 ]  ∈  ℝ(t+1)∙2  is the embedded 

representation of the assignment vi
p
→ vj

q
 where each position of the vector xi→j  

corresponds to one of the values of the input layer of the DNN that estimates the 

assignment cost between the node vi
p
 of Gp  and the node vj

q
 of Gq  (Fig. 1). 

 

Fig. 1. An illustration showing the embedding process of two nodes (red and blue) into an input 

vector. 

4.2 Network Architecture 

The topology we propose is a classical topology for parameters fitting consisting of a 

multi-layer network using the sigmoid activation function for the hidden layers and a 

linear function for the output layer (Fig. 2). In the experimental section we shown the 

results achieved with different configurations changing the number of neurons and the 

number hidden layers. 

 

Fig. 2. DNN architecture for node assignments costs. Z is the number of inputs (size of the 

vector xi→j). L the number of neurons of each hidden layer, w the weights and b the bias. 

The input of the network representing the nodes to be assigned is the vector  xi→j 

∈  ℝ(t+1)∙2 (defined in section 4.1) and the output is a real value theoretically defined 

within a cost range from zero to one viz. yi→j = {c ∈ ℝ ∶ 0 ≤ c ≤ 1}. Zero is the 

expected value when there is no penalty for the assignment and one is the maximum 

expected value penalizing a node assignment. 



4.3 Training the Model 

We manage the problem of training the DNN as a supervised learning problem. The 

training set has K observations. Each observation is composed of a triplet consisting 

of pair of graphs and the correspondence that relates its nodes {Gp k , Gq k , f k}. The 

ground-truth correspondences f k  must be provided by an oracle according to the 

problem (images, fingerprints, letters…). 

 
a) b) 

 

  

Fig. 3. (a) Correspondence between a pair of graphs. Colored circles: Nodes. Black lines: 

Edges. Green arrows: Graphs correspondence. (b) Set of all possible node assignments and 
expected DNN outputs given the correspondence in (a). 

Then, assuming that the assignment cost must be low if two nodes are matched and 

high in the opposite case and taking into account that the outputs range goes from 

zero to one (section 4.2), we propose to feed the learning algorithm with a set of R 

inputs-outputs pairs  x
vi

p r
→vj

q r

, or  that we deduce from the training set 

{Gp k , Gq k , f k }.  Where vi
p r

 and vj
q r

are two nodes belonging to graphs Gp k
 and 

Gq k
  respectively. x

vi
p r

→vj
q r

are the inputs of the DNN representing the assignment 

between vi
p r

 and vj
q r

 (section 4.1). And or  is the expected output, zero if 

f k vi
p r
 = vj

q r
  and one otherwise. 

In Fig. 3.b, we show the expected outputs between nodes when the ideal 

correspondence is the correspondence shown in Fig. 3.a. Zero when there is an 

assignment in the gorund-truth correspondence and one when not. Note that there are 

more cases in which the expected output must be one because the correspondences 

between graphs are bijective by definition in our framework. That means, each node 

of Gp k
  is assigned to a single node of Gq k

 while it is unassigned to all the other 

nodes. For this reason and in order to prevent unbalancing problems we propose to 

oversample the positive assignments between nodes (when the expected output is 

zero) repeating them in the set of inputs-outputs that feeds the learning algorithm 

n − 1 times, where n is the graphs cardinality. 

The training algorithm used to learn the bias and weights of the network is the 

Leveberg-Marquardt [14]. 



4.4 Graph Matching Algorithm 

The graph matching method we propose is inspired by the Bipartite-GED [15] which 

is one of the most popular methods used to reduce the computational complexity of 

the GED problem to a Linear Sum Assignment Problem (LSAP). First, we build a 

cost matrix in which each cell corresponds to the cost of an assignment. The 

algorithm fills the values of this matrix with the DNN outputs. Our algorithm does not 

extend the matrix for insertions and deletions since we only consider the assignments 

between nodes. The process of assigning nodes can be solved as a LSAP on C matrix. 

In our experiments we used the Hungarian [16] solver. The final step is to sum the 

costs of the solution provided by the solver. 

 
Algorithm: Neural Graph Matching 

Input: Graph G1, G2; DNN network; 

Output: Correspondences Co; Cost Ct; 
1: 

2: 

3: 
4: 

5: 

6: 
7: 

8: 

9: 

Initialisation: 

foreach Node NodeI of G1 

 foreach Node NodeJ of G2 

  
x:=inputVector(NodeI,NodeJ); 

y:=computeCosts(network,x); 

  C(I,J) = y; 
 end 

end 
[Co, Ct] = solveLSAP(C); 

Algorithm 1. Learning Graph Matching methods. 

5 Experiments 

We divided the experimental section in three parts. First, we describe the database 

used in the experiments. Second, we show the resultant costs matrix using different 

network configurations. Finally, we present the hamming distance results using our 

model compared with the state-of-the-art algorithms that face the same kind of 

problem. 

5.1 Databases 

The HOUSE-HOTEL database described in detail in [17] consists of two sequences 

of frames showing two computer modeled objects, 111 frames of a HOUSE and 101 

frames of a HOTEL, rotating on its own axis. Each frame of these sequences has the 

same 30 salient points identified and labelled. Each salient point represents a node of 

the graph and it is attributed by 60 Context Shape features. They triangulated the set 

of salient points using the Delaunay triangulation to generate the structure of the 

graphs. They made three sets of frames pairs taking into account different baselines 

(number of frames of separation in the video sequence). One set was used to learn, 

another to validate and the third one to test the model. Since the salient points are 

labelled we know the ground-truth correspondence between the nodes of the graphs. 



5.2 Costs Matrix 

This section shows the heatmaps of the resultant costs matrix (C matrix in 4.4) using 

our model. The aim of this experiment is to find a cost matrix minimizing the costs 

when the nodes must be assigned and maximizing the costs when not. Since we know 

the ground-truth correspondence we can deduce the ground-truth cost matrix. Fig. 4.a 

shows the results using a single hidden layer while Fig. 4.b shows the same results 

using 5 hidden layers and Fig. 4.c shows the results using 10 hidden layers with 

different configurations of numbers of neurons per layer. Blue color represents low 

costs values while yellow color represents high costs values. The experiment was 

performed using the first pair of graphs of the test set in the HOUSE sequence 

separated by 90 frames and the model has been trained with all the graphs separated 

by 90 frames in the training set. 

 
a) b) c) 

   

Fig. 4. Costs matrix heatmaps between two graphs corresponding to the HOUSE dataset (90 

frames of separation) using (a) 1 hidden layer, (b) 5 hidden layers and (c) 10 hidden layers. 

 

  

Fig. 5. Correspondences found between two graphs of the HOTEL sequence using our model. 

Left: single-layer and 10 neurons per layer, Right: five-layers and 10 neurons per layer. Blue 

lines are the edges between these nodes. Green lines: correct assignments. Red lines: incorrect 

assignments. 

 

We observe how the model tends to separate better the correct assignments from 

the incorrect ones when we increase the number of neurons and layers until reaching a 

point where the improvement is no longer increasing and even it could decrease. This 

can be explained because when we increase the network complexity, the model is able 

to find deeper non-linear correlations between the attributes that feature the nodes, but 

reached a  critical point, could present overfitting problems due to there are more 

neurons than the ones that can be justified by the data. 

Fig. 5 shows the obtained correspondences computing a cost matrix with a single-

layer (left) and with five-layers (right) of 10 neurons each layer in order to illustrate 

the performance of the model with different network configurations in terms of 

matching accuracy. 



5.3 Hamming Distance Results 

The main goal of our model is to reduce the hamming distance performing the GED. 

In the following experiment we show the hamming distance results between the 

correspondence found by our model and the ground-truth correspondence. In Table 1, 

we compare our results with respect to the state-of-the-art, note that smaller values 

mean better performance. We train, validate and test the model using different pairs of 

graphs as we described in section 5.1. The baseline of our experiments is the number 

of frames of separation in the video sequence. Since the objects are in motion, 

consecutive frames are more similar than the distant ones. Therefore, the problem 

tends to be more complex when we increase the number of frames of separation. A 

single-layer network with 30 neurons per layer has been enough to reduce the 

hamming distance to zero for all the experiments, however, in Fig. 4, we show how 

deeper networks tend to increase the gap between the costs, generally separating 

better the correct assignments from the incorrect ones. The achieved results using our 

model represent a major improvement with respect to the previously presented results. 

We discuss the results in the next section. 

Table 1.  Hamming distance results on House and Hotel datasets.  

HOUSE  HOTEL 

#Frames [4] [5] 
Our 

model 

 
#Frames [4] [5] 

Our 

model 

90 0.14 0.24 0  90 0.09 0.21 0 

80 0.14 0.18 0  80 0.17 0.18 0 

70 0.13 0.10 0  70 0.14 0.15 0 

60 0.09 0.06 0  60 0.13 0.16 0 

50 0.19 0.04 0  50 0.09 0.07 0 

40 0.02 0.02 0  40 0.07 0.04 0 

30 0.02 0.01 0  30 0.04 0.02 0 

20 0.01 0 0  20 0.02 0 0 

10 0 0 0  10 0 0 0 

* Results obtained with 1 layer of 30 neurons 

6 Conclusions 

We have presented a new model to estimate assignment costs for the Graphs Edit 

Distance using a Deep Neural Network. We experimentally show that our model is 

able to find the ideal solution independently of the number of frames of separation. 

These results represent a major improvement with respect to the previous state-of-the-

art results, in particular, when the number of frames of separation is large. This means 

that the model can manage important distortions in the representations when it tries to 

find the best correspondence. We conclude that the improvement is because using 

neural networks allows to find multiple correlations between nodes attributes when 

performing the matching and our model is not limited by having to define a particular 

distance metric aprioristically since it learns the costs functions. 



We consider that this work represents an important step to define the costs 

functions for node assignments in the problem of the Graph Edit Distance. However it 

is necessary to train the network with a set of examples properly labeled. The next 

step is to expand the model including insertions and deletions costs. 
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