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Abstract—Macrocells are expected to be densely overlaid by
small cells (SCs) to meet the increasing capacity demands. Due to
their dense deployment, some SCs will not be connected directly
to the core network and thus they may forward their traffic to the
neighboring SCs until they reach it, thereby forming a multi-hop
backhaul (BH) network. This is a promising solution, since the
expected short length of BH links enables the use of millimeter
wave (mmWave) frequencies to provide high capacity BH. In this
context, user association becomes challenging due to the multi-
hop BH architecture and therefore new optimal solutions should
be developed. Thus, in this paper, we study the user association
problem aiming at the joint maximization of network energy and
spectrum efficiency, without compromising the user quality of
service. The problem is formulated as an ε-constraint problem,
which considers the transmit energy consumption both in the
access network, i.e., the links between the users and their serving
cells, and the BH links. The optimal Pareto front solutions of the
problem are analytically derived for different BH technologies
and insights are gained into the energy and spectrum efficiency
trade-off. The proposed optimal solutions, despite their high
complexity, can be used as a benchmark for the performance
evaluation of user association algorithms. We also propose a
heuristic algorithm, which is compared with reference solutions
under different traffic distribution scenarios and BH technologies.
Our results motivate the use of mmWave BH, while the proposed
algorithm is shown to achieve near-optimal performance.

Index Terms—Backhaul, cell selection, context-awareness,
green communications, LTE-Advanced, millimeter wave.

I. INTRODUCTION

THE mobile data traffic is expected to grow significantly
during the next few years, which results in an urgent

need for mobile operators to maintain capacity growth. Serving
more traffic leads to increased energy consumption, and there-
fore, how to minimize the energy consumption becomes also
important. In parallel, the spectrum scarcity problem stresses
the need for spectral efficient s olutions. T he aforementioned
goals can be summarized into the joint maximization of energy
and spectrum efficiency, w hich c onstitutes a  fundamental
design objective for next generation cellular networks.
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To that end, the dense deployment of small cells (SCs),
overlaying the existing macrocell networks, is a promising so-
lution. The SC deployment reduces the distance between user
equipments (UEs) and base stations (BSs)1 and, consequently,
i) the area spectral efficiency (bps/Hz/m2) increases, and ii) the
energy consumption in the access network (AN), i.e., the links
between the UEs and their serving BSs, decreases. Hence,
dense deployment of SCs is expected during the next years,
with SC radius being eventually of the order of 50 meters [1].

However, the dense deployment of SCs also poses new
challenges. Due to the high number of deployed SCs, the
direct connection of all SCs to the core network becomes
complicated. Fiber connections, which have been traditionally
considered as the best backhaul (BH) solution, are prohibitive
in this case due to their high deployment cost [2]. A promising
solution lies in exploiting the existing connection between the
macrocell site and the core network (most of the times it is a
fiber connection), and to provide core network connectivity to
SCs through the macrocell site [3]. Still, in order to connect the
SCs to the macrocell site (thus providing them core network
connectivity), new cheap wireless BH solutions are required.

In addition, this wireless BH is expected to provide high-
capacity services from the SCs to the core network, in order
to meet the expected traffic demands of the order of Gbps
[1]. Therefore, a promising solution for high capacity wireless
BH connections between the SCs and the core network lies
in using millimeter wave (mmWave) frequencies, due to their
high bandwidth availability [2]. It has been shown, however,
that mmWave frequencies are capable of providing good
coverage only if the transmission distance is shorter than 200
meters [1]–[3]. Otherwise, links may not be established. In
parallel, small wavelengths enable highly directive antennas to
compensate the high path loss with the use of pencil beams [2].
Since the macrocell radius is even in dense deployments of the
order of 500 meters, this implies that a multi-hop architecture
of point-to-point line-of-sight (LOS) links is needed, in order
to allow each of the SCs to reach the macrocell site [3], [4].

In this context, user association becomes challenging due to
the multi-hop BH architecture [5] and therefore new optimal
solutions need to be developed aiming at the joint energy and
spectrum efficiency maximization of the network.

A. State-of-the-art and Contribution

The user association problem has received a lot of research
attention, since it impacts both the network and UE perfor-

1In this paper, we will use the term BS to refer to a macrocell BS and/or a
SC BS (i.e., an eNodeB (eNB) and/or a Home eNB in LTE-A, respectively).
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mance. In LTE-Advanced, the user association is based on
the reference signal received power (RSRP), which measures
the average received power over the resource elements that
carry cell-specific reference signals within certain bandwidth
[4]. Although RSRP maximizes the signal-to-interference-
plus-noise ratio (SINR) of UEs, it was shown that it does not
significantly increase the overall throughput, since few users
get connected to SCs [6]. Thus, range expansion (RE) (also
known as biasing) was introduced, whereby UEs are actively
pushed onto SCs [6]. In this case, although a UE may be
associated with a BS not providing the best SINR, better load
balancing is achieved between SCs and macrocell.

In [7], the authors propose a low-complexity distributed
algorithm that converges to a near-optimal solution and they
show that a per-tier biasing loses little, if the bias values
are chosen carefully. In [8], the joint user association and
resource allocation problem is studied. The authors aim to find
the optimal association so that the total resources required to
satisfy the given UE traffic demands are minimized. Focusing
also on the joint spectrum allocation and user association
problem, in [9], a proportionally fair utility function based
on the coverage rate is defined. The authors associate the UEs
with BSs based on the biased downlink received power, while
stochastic geometry is used to model the placement of BSs.
In [10], the authors formulate two different user association
problems. The first one is based on a sum utility of long-
term rate maximization with rate quality of service (QoS)
constraints, and the second on minimizing a global outage
probability with outage QoS constraints.

Taking into account the BH, in [11], the authors model a
BH-aware BS assignment problem as a multiple-choice multi-
dimensional Knapsack problem. In the considered framework,
they impose constraints on both AN and BH resources. The
main idea behind their algorithm is to distribute traffic among
BSs according to a load balancing strategy, considering both
AN and BH load status. Yet, the proposed algorithm, reduces
the BH congestion at the expense of lower spectral efficiency,
since some UEs may be assigned to non-optimal BSs in terms
of RSRP. In [12], a load-balancing based mobile association
framework is proposed under both full and partial frequency
reuse, and pseudo-optimal solutions are derived using gradient
descent method. In [13], a new theoretical framework is
introduced to model the downlink user association problem,
while upper bounds are derived for the achievable sum rate
and minimum rate using convex optimization. In [14], a joint
user association and resource allocation optimization problem
is proposed, which is shown to be NP-hard. Therefore, the
authors develop techniques to obtain upper bounds on the
system performance. In [15], the joint problem of downlink
user association and wireless BH bandwidth allocation is
studied in two-tier cellular heterogeneous networks (HetNets).
According to the considered architecture, SCs are connected
through wireless BH with the macrocell BS. The problem
is formulated as a sum logarithmic user rate maximization
problem, and wireless BH constraints are also considered.

However, the aforementioned approaches either consider
only the AN [4], [6]–[10], thus totally overlooking the BH
capacity constraints and energy impact, or do not take into

account the energy consumption of the network and hence,
their energy efficiency cannot be guaranteed [11]–[15].

To that end, in this paper, we study the user association
problem aiming at the joint energy and spectrum efficiency
maximization, while taking into account both the AN and BH
and without compromising the UE throughput demands. Pre-
liminary results of this research have been published in [16].
However, in this paper, we provide the following contributions:
• The aforementioned problem is formulated as an ε-

constraint problem [17], where the total transmit power
consumption of AN and BH is the objective to be
minimized and the amount of spectrum resources needed
is set as constraint, with its upper bound denoted by ε.

• We study the trade-off between energy and spectrum
efficiency analytically for different BH technologies by
solving the ε-constraint problem for all different ε.
Thereby, we derive the Pareto front solutions of the
problem, i.e., the set of optimal solutions for all ε values,
which can be used as a benchmark for the performance
evaluation of user association algorithms.

• Due to the high complexity of the derived optimal solu-
tions, which increases for a higher number of UEs and
BSs, we also propose a low-complexity user association
algorithm, which aims at the maximization of the energy
efficiency given a specific spectral efficiency target. The
algorithm is able to select any point of the Pareto front,
by accordingly tuning a single parameter, i.e., the spectral
efficiency target. Moreover, for each UE, it considers the
total transmit power consumption needed (both AN and
BH) to serve its traffic. This association metric relaxes the
assumption of [16] that all BH links are homogeneous,
by considering the actual transmit power consumption of
each BH link and not just the number of hops.

• Finally, we compare the energy and spectrum efficiency
of the proposed algorithm with existing user association
solutions as well as with the derived optimal solutions
under different spectral efficiency targets, traffic distribu-
tion scenarios and BH technologies. Our results motivate
the use of mmWave frequencies to provide high capacity
BH, while the proposed algorithm is shown to achieve
notable performance gains.

The rest of the paper is organized as follows: In Section II,
the system model is presented. In Section III, the problem
formulation and the solution methodology are provided. In
Section IV and Section V, the proposed algorithm is described
and compared, respectively, with existing user association
algorithms as well as with the analytical solutions derived in
Section III. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

Without loss of generality and in accordance with the
scenarios proposed by 3GPP [18], we focus our analysis on a
single eNB sector, overlaid with multiple SCs. In particular,
we consider a set of BSs, denoted by C, which includes one
eNB (j=0) and C−1 SCs (j=1...C-1), with C representing the
cardinality of the set C. The SCs are divided in Ncl clusters
(k=1...Ncl), as depicted in Fig. 1, with SCk denoting the
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Fig. 1. System model.

number of SCs in cluster k [18]. We study the downlink and
make the following assumptions:
• Each SC is connected to the core network through the

eNB aggregation gateway either directly or through one
or more SC aggregation gateways [3]–[5].

• There is a fiber connection between the core network and
the eNB site, and a set of point-to-point LOS mmWave
BH links between the eNB site and the SCs, denoted
by L={L1 ,L2,...Ll,...LC−1}. Each mmWave BH link l
is represented by a set Ll that includes all cells j that
backhaul their traffic through it (i.e., ∀j ∈ Ll).

• Flat slow-fading channels are considered [14]. Therefore,
we assume that the total transmission power of each BS
is equally distributed among its subcarriers [4].

• We consider a set of N UEs (i=1,...,N ) with strict
guaranteed bit rate (GBR) QoS requirements, denoted as
ri,net, based on their service/application [19].

• Each UE can be associated only with one BS at a time.
• There is a maximum number of spectrum resource units

available to each BS j, i.e., physical resource blocks
(PRBs)2, denoted by cjmax .

In the following, the most important parameters involved in
the total network energy efficiency calculation are derived. The
SINR calculation is given in Section II-A, while both AN and
BH power consumption models are provided in Section II-B.

A. SINR calculation

The signal-to-noise ratio (SNR) received by UE i from BS
j is given by [20]

SNRij(dB) = PjPRB (dBm) +GTxj (dBi) − Lcbj (dB)

−Lpij (dB)
− Lfij (dB)

−Nth(dBm) −NF (dB) (1)

with PjPRB=10log10(Pjmax /cjmax ) being the power allocated
by BS j to a PRB, where Pjmax is its maximum transmission
power (mW), and cjmax is the maximum number of PRBs
allocated to it. The parameter GTxj is the antenna gain of BS j
and Lcbj is the cable loss between the radio RF connector and

2Please note that 1 PRB is equal to 12 subcarriers in the frequency domain
and 0.5 ms in the time domain [4].

the antenna. The path loss between UE i and BS j is denoted
by Lpij , while Lfij represents the losses due to shadowing.
Finally, Nth stands for the thermal noise and NF is the noise
figure. The SINR of UE i from BS j is given by

SINRij(dB) = SNRij(dB) − 10log10

(
Iij(mW )

Ntotal(mW )

+ 1

)
(2)

where Iij is the total interference experienced by UE i, when
associated with BS j, which depends on the applied frequency
allocation scheme. Due to the constant power allocation, the
SINRij of UE i from BS j can be estimated a priori3, and
be given as an input to the problem. Hence, the proposed work
can be applied regardless of the employed channel allocation
scheme. Still, although it is out of the scope of this paper,
the combination of our proposal with a sophisticated channel
allocation could further improve the system performance.
Finally, Ntotal = 10(Nth(dBm)+NF (dB))/10 denotes the total
noise power (mW) experienced by UE i.

B. Power consumption models

The total network power consumption can be divided into
the power consumed in the BSs (i.e, in the AN) and in the
BH links. The first is given by [16], [21]

PAN(W )
=
∑
j∈C

(
PANjstat(W )

+ PANjvar(W )

)
(3)

where PANjstat is the fixed power consumption of BS j attributed
to e.g., power supply, cooling, and baseband unit operation
[21] and PANjvar is the load-dependent power consumption of
BS j. Without loss of generality, we assume ideal electronics
in terms of power efficiency and therefore the load dependent
power consumption part becomes equal to the radio frequency
(RF) transmit power consumption part, which is given by [16]

PANjvar (W )
= PANjRF (W )

=
∑
i∈N

(PjPRB (W )
)dcijeaij =

∑
i∈N

(
Pjmax
cjmax

)⌈
ri,net

(1−BLER)(1− kov)

1

b log2 (1 + SINRij)

⌉
aij

(4)

where cij represents the number of PRBs needed for the
association of UE i with BS j and ri,net is the rate demand
of UE i. The parameter BLER stands for the block error rate
(BLER), i.e, for the number of erroneous blocks divided by the
total number of received blocks [22] and kov is the percentage
of overhead bits (e.g., cyclic prefixes, reference signals) [23].
From now on, we will denote as ri =

ri,net
(1−BLER)(1−kov) , the

total rate needed for the satisfaction of ri,net. Parameter b
is the bandwidth of a PRB and d·e is the ceiling function
operator. The denominator of the third fraction is derived by
Shannon’s theorem and represents the maximum rate that can
be achieved with effective SINRij [23] and bandwidth equal
to b. Finally, aij is the association vector (equal to 1 when the
UE i is associated with BS j and 0 otherwise).

3Please note that the SINR after the UE association may differ from the
estimated one, as the interference experienced by the UE depends on resource
allocation i.e., whether neighboring BSs allocate the same PRBs to other UEs,
and consequently on user association. In this work, to overcome this problem,
the worst-case scenario in terms of generated interference is considered.
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Similar to the AN, the power consumption of the BH links
consists of a fixed and a variable part [21], and thus equals to

PBH (W ) =
∑
Ll∈L

PBHLlstat (W )
+ PBHLlvar (W )

(5)

Under the assumption of ideal electronics, the load dependent
power consumption of a BH link Ll, i.e., PBHLlvar , equals to the
RF transmit power consumption, which is given by [20], [24]

PBHLlRF (dBm)
= SINRtrgLl (dB)

+

αLl︷ ︸︸ ︷
Lpo (dB) + LpLl (dB)

+ IL(dB)︷ ︸︸ ︷
+Nth(dBm) +NF (dB) −GTxLl (dBi)

−GRxLl (dBi)
(6)

where Lpo is the path loss at 1 m distance and
LpLl

=20log10(4π dLlλ ) is the path loss at distance dLl equal
to the length of the link. Moreover, λ is the signal wavelength
(e.g., for 60 GHz, λ = 0.005 m) and IL is the implementation
loss that may account for e.g., distortion, intermodulation
and/or phase noise. The over-braced equation, which is de-
rived by subtracting from the total losses, the transmitter and
receiver antenna gains of the BH link, will be denoted from
now on by αLl . Finally, assuming that link adaptation is
employed [20], SINRtrg

Ll
corresponds to the (minimum) target

SINR that is needed so that the aggregated BH link traffic is
successfully transmitted and can be given by [20]

SINRtrg
Ll (dB)

= 10log10

(
2

∑
i∈N

∑
j∈Ll

riaij

BLl − 1

)
(7)

where BLl is the bandwidth of the BH link Ll and∑
i∈N

∑
j∈Ll riaij is the aggregated traffic that passes

through it. For mmWave, the generated interference is neg-
ligible due to high path loss, and thus SINRtrg

Ll
=SNRtrg

Ll
.

III. PROBLEM FORMULATION

The problem under study aims at the joint maximization of
the network energy and spectrum efficiency, without compro-
mising the UE QoS (i.e., the UE throughput demands). The
energy efficiency (bits/Joule) is expressed as the total number
of successfully transmitted useful bits divided by the total
energy consumption or equivalently as the total goodput of the
network divided by the total power consumption (i.e., the sum
of the power consumed in the AN and in the BH links). Under
the condition that the specific UE throughput demands are
satisfied, the network energy efficiency maximization is equiv-
alent to power consumption minimization, while the spectral
efficiency maximization is equivalent to PRBs minimization.

The aforementioned problem is a non-convex multi-
objective problem. Therefore, for its formulation, we employ
the ε-constraint method, which is able to find any Pareto
optimal solution even for non-convex problems [17]. Accord-
ing to it, one of the objectives is included in the utility
function to be optimized (i.e., minimization of the total power
consumption), while the others (i.e., minimization of the total
number of required PRBs) are converted into constraints by
setting an upper bound to them. Given that the fixed power
consumption4 is independent of the user association decision,

4Still, the inclusion of the fixed power would impact all the algorithms by
equally increasing their power consumption.

the minimization of the total power consumption is equivalent
to the minimization of the traffic-dependent part (i.e., the RF
transmit power consumption in our case). Therefore, our study
from now on focuses on this part, as depicted in (8).

Hence, the first term of the objective function in (8) repre-
sents the total RF transmit power consumption of the AN and
the second of the BH links. We remind that aij5 denotes the
association vector that is equal to 1 when the UE i is associated
with BS j and 0 otherwise (8a). Each UE can be associated
only with one BS at a time (8b). The total number of PRBs
used by BS j, denoted by cij , cannot exceed the maximum
number that is allocated to it (8c). The RF transmit power
consumption of the BH link Ll cannot exceed a maximum
value, denoted by PBHmax (8d). The parameter sLlj is 1 if
the traffic of the BS j passes through the BH link Ll and
0 otherwise (8e). Finally, constraint (8f) refers to the total
number of PRBs and thus to the network spectrum efficiency.

argmin
aij

f1(aij) =
∑
j∈C

PANjRF (W )︷ ︸︸ ︷∑
i∈N

PjPRBcijaij+

+
∑
Ll∈L

PBHLlRF (W )︷ ︸︸ ︷(
2

∑
i∈N

∑
j∈C aijsLlj

ri
BLl − 1

)
10

αLl
−30

10

s.t. a) aij ∈ {0, 1}, ∀i ∈ N , ∀j ∈ C

b)
∑
j∈C

aij = 1,∀i ∈ N

c)
∑
i∈N

aijcij ≤ cjmax , ∀j ∈ C

d)PBHLlRF ≤ PBHmax ∀Ll∈L
e) sLlj ∈ {0, 1}, ∀Ll ∈ L, ∀j ∈ C

f)f2(aij) =
∑
i∈N

∑
j∈C

aijcij ≤ ε

(8)

Theorem 1. The solution of the ε-constraint problem in (8)
is weakly Pareto optimal.

Proof. Let a?ij be a solution of the ε-constraint problem. Let
us assume that a?ij is not weakly Pareto optimal. In this case
there exists some other aij such that fk(aij) < fk(a?ij) for
k=1,2. This means that f2(aij) < f2(a?ij) ≤ ε. Hence, aij
is feasible with respect to the ε-constraint problem. While in
addition f1(aij) < f1(a?ij), we have a contradiction to the
assumption that a?ij is a solution of the ε-constraint problem.
Thus, a?ij

6 has to be weakly Pareto optimal.

Although, according to Theorem 1, every solution of the ε-
constraint problem is weakly Pareto optimal, there is no Pareto
optimal solution, since there is no solution that optimizes
both objectives simultaneously. Therefore, it is reasonable
to search for a good trade-off between the two objectives

5Due to the binary association vector and the non-linear objective function
and contraints, the problem is a 0-1 non-linear integer programming problem.

6Please note that, in the rest of the paper, aij is omitted.
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instead. To that end, the increase of ε leads to a relaxation
of the spectral efficiency constraint (i.e., f2) and consequently
to a more energy efficient solution. On the contrary, the
decrease of ε improves the spectral efficiency of the solution
by degrading its energy efficiency. The set of solutions for
the subproblems resulting from the variation of ε define the
Pareto front, hereafter denoted by F . In practice, due to the
high number of subproblems and the difficulty to establish
an efficient variation scheme for the ε-vector, this approach
has mostly been integrated within heuristic and interactive
schemes. However, due to the nature of (8), it is possible
to derive the exact Pareto front with the use of an iterative
algorithm [25]. The idea is to construct a sequence of ε-
constraint problems based on a progressive reduction of ε.

Let ~φI = (φI1, φI2) be the ideal point, where φI1 = min(f1)
and φI2 = min(f2) stand for the minimum value of f1 and
f2, respectively. Equivalently, let ~φN = (φN1 , φN2 ) be the
nadir point, with φN1 and φN2 being the minimum values
of f1 and f2, when f2 = φI2 and f1 = φI1, respectively,
i.e., φN1 = min{f1:f2=φI2} and φN2 = min{f2:f1=φI1}. Thus,
(φI1, φ

N
2 ) is the solution of the Pareto front that minimizes

the RF transmit power consumption (i.e., f1) without spectral
efficiency constraints, whereas (φN1 , φ

I
2) is the solution in F

that minimizes the total number of PRBs used (i.e., f2).

Lemma 1. Both (φI1, φN2 ) and (φN1 , φI2) belong to F , i.e., (φI1,
φN2 ) ∈ F and (φN1 , φI2) ∈ F .

Proof. Let us assume that (φI1, φN2 ) /∈ F . Then, ∃ ~f=(f1, f2)
∈ Φ: (f1, f2) � (φI1, φN2 ), where Φ denotes the objective
space and the expression ~f=(f1, f2) � (φI1, φN2 ) denotes that
(f1, f2) dominates (φI1, φN2 ). In general, we say that ~f=(f1,
f2) dominates ~f ′=(f ′1, f ′2), with ~f , ~f ′ ∈ Φ if and only if (iff)
f1 ≤ f ′1 and f2 ≤ f ′2, where at least one inequality is strict.
Thus, ~f=(f1, f2) � (φI1, φN2 ) is true when a) f1 < φI1 and f2
< φN2 or b) f1 < φI1 and f2 = φN2 or c) f1 = φI1 and f2 <
φN2 . Since a) and b) contradict the definition of an ideal point
and since c) contradicts the definition of a nadir point, then
(φI1, φN2 ) ∈ F . The proof of (φN1 , φI2) ∈ F is analogous.

Lemma 2. For each (f1, f2) ∈ Φ, if (f1, f2) ∈ F , then φI1
≤ f1 ≤ φN1 and φI2 ≤ f2 ≤ φN2 .

Proof. As proved in Lemma 1, (φI1, φN2 ) ∈ F , and thus it is
non-dominated. Since φI1 = min(f1), f1 ≥ φI1, ∀ (f1, f2) ∈ F .
Moreover, if f2 > φN2 , (φI1, φN2 ) � (f1,f2) and (f1,f2) /∈ F .
Hence, f1 ≥ φI1 and f2 ≤ φN2 ∀ (f1, f2) ∈ F . The proof for
φI2 ≤ f2 ≤ φN2 is analogous.

According to Lemma 1 and Lemma 2, Algorithm 1 gener-
ates the exact Pareto front of the problem described in (8).

Theorem 2. Algorithm 1 generates one feasible solution for
each point of the Pareto front.

Proof. Let us denote the sequence of solutions of Algorithm 1
by {~f∗1 , . . . , ~f∗m, . . . , ~f∗M}, where, e.g., ~f∗m =

(
(f∗m)1, (f

∗
m)2

)
,

Algorithm 1 Exact Pareto front calculation of problem (8)

1: Calculate the ideal and nadir points, ~φI and ~φN .
2: Add ~f∗1 = (φI1, φ

N
2 ) to F .

3: Set m = 2.
4: Set εm = φN2 −∆, with ∆ = 1.
5: while εm ≥ φI2 do
6: Solve problem (8) and add the optimal solution value

~f∗m =
(
(f∗m)1, (f

∗
m)2

)
to F .

7: Set εm+1 = (f∗m)2 −∆.
8: Set m = m+ 1.
9: end while

10: Remove dominated points if required.

with 1, 2 denoting the first and the second objective, re-
spectively. We have to prove that if ~f ∈ Φ \ { ~f∗1 , . . . ,
~f∗m, . . . , ~f∗M}, then ~f /∈ F . Let us assume that there is a
solution ~f ′ = (f ′1, f

′
2) ∈ Φ \ { ~f∗1 , . . . , ~f∗m, . . . , ~f∗M} such

that ~f ′ ∈ F . By Lemma 2, for the first objective we have
φI1 ≤ f ′1 ≤ φN1 . Thus, either a) f ′1 = (f∗m)1 for a given
m = 1 . . .M or b) (f∗m−1)

1
< f ′1 < (f∗m)1 and (f∗m−1)

2
< f ′2 ≤ (f∗m)2 for a given m = 1 . . .M . In the first case (i.e.,
case a), f ′2 must be lower than (f∗m)2 for ~f ′ to be efficient.
However, since ∆ = 1 and the second objective is integer by
definition, ∃ εm′ that will eventually reach a value for which
the optimum of the corresponding ε-constraint problem is ~f ′

for m + 1 ≤ m′ ≤ M , that is ~f ′ ∈ {~f∗m+1, . . . ,
~f∗M}, which

contradicts the hypothesis. Regarding the second case (i.e.,
case b), f ′2 must be such that (f∗m−1)2 < f ′2 ≤ (f∗m)2, which is
impossible since ~f∗m is the optimal value of problem (8), with
εm=εm−1-∆, ∆=1, and the second objective is integer.

Some dominated solutions may be generated by the se-
quence of subproblems derived according to Theorem 2.
However, since all dominated points can be identified, one
can simply exclude the non-efficient solutions to obtain the
exact Pareto front. Furthermore, although Algorithm 1 limits
the number of subproblems, a subproblem may be very hard to
solve. This stems from the fact that an exhaustive search would
require the examination of CN possible solutions, which re-
sults in prohibitive complexity (O(nn)), as the number of BSs,
C, and the number of UEs, N , increase. Therefore, alternative
algorithms, available in the literature, should be used, able
to come up with very close to the optimal solutions with
acceptable computational complexity [17]. In this work, we
applied a meta-heuristic method [26], which has been shown
to lead to high-quality solutions (the average gap is less than
1% with respect to best-known solutions) in almost real time.
The applied method uses biased randomization together with
an iterated local search meta-heuristic algorithm. Although
the meta-heuristic algorithm involves lower complexity than
O(nn)7, it still requires a high number of iterations (50000
in our case). Therefore, there is need for low-complexity
algorithms, able to achieve solutions close to the Pareto front.

7Meta-heuristics have no predefined end, and thus big O notation cannot
be used to describe their complexity. Yet, they can be compared empirically
(through number of objective function evaluations/iterations).
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Algorithm 2 Proposed energy efficient user association algo-
rithm
Input: N , C, SINRij , ri,net, b, cjmax ,Ll, L

1: Calculate cij as in (4)
2: Candidatesi ← j : cij ≤ min(cijmin + cthres, cjmax)
3: Sort all UEs i by Candidatesi size in ascending order
4: Calculate Ptotij = PANij + PBHij using (4), (6) ∀j ∈
Candidatesi

5: Sort the UEs with the same candidate number by the Ptotij
difference among their candidates in descending order

6: Sort Candidatesi by Ptotij in ascending order
7: Choose the candidate with the minimum Ptotij
8: if the chosen BS has sufficient spectrum resources then
9: Associate the UE to it

10: Update remaining spectrum resources
11: else
12: Move to the next candidate and repeat the process
13: end if

IV. PROPOSED HEURISTIC ALGORITHM

In this section, we propose an algorithm that aims at a good
trade-off between energy and spectrum efficiency, while induc-
ing low complexity in the system. The proposed algorithm
takes into account the available context-aware information,
i.e., the UEs’ measurements (SINR) and requirements (ri,net),
the HetNet architecture (sLlj) and the available spectrum
resources of each BS (cjmax ) to efficiently associate the UEs.

This context-aware information, which can be divided into
information being reported by the network and information
being reported by the UEs, can be easily available to all nodes
in a LTE-A network (i.e., eNBs and/or SCs) [4], [27]. In
particular, the information being reported by the network does
not impose additional constraints, since the standard defines
the X2 logical interface to allow the exchange of information
among BSs (eNBs and/or SCs) [4]. Moreover, the information
about the network architecture (sLl ) requires very limited or
nil update due to its static nature. Hence, the only additional
information to be exchanged is the current traffic of each
BH link. Regarding the information being reported by UEs,
each UE is required to measure the SINR received from the
neighboring BSs. For such a purpose, Release 8 has already
defined the radio resource management (RRM) measurement
set, i.e., the set of BSs from which a UE measures and reports
parameters, such as RSRP or reference signal received quality
(RSRQ). Later on, in order to support coordinated multi-point
(CoMP), Release 10 defined a subset of the RRM measure-
ment set, namely CoMP measurement set, to allow the UEs
to measure and report short-term channel state information
[27]. Thereby, the aforementioned mechanisms guarantee the
availability of the required information.

The proposed algorithm, which is summarized in Algorithm
2, aims at the maximization of the energy efficiency given a
specific spectral efficiency target. From this point on, we will
refer to it as energy efficient (EE) user association algorithm.

As shown in Algorithm 2, EE considers as candidate cells
for a UE i the set of cells, denoted by Candidatesi, that
satisfy its rate requirements with fewer PRBs (cij) than a

target cthres=δ cijmin (line 2). The spectral efficiency target
is defined by the tuning parameter δ >0, which controls the
deviation in the number of needed PRBs from the association
that requires the fewest. For instance, selecting δ=0, and thus,
cthres=0, would result in the maximum spectral efficiency,
while δ >0 would decrease the spectral efficiency accordingly
in favor of higher energy efficiency. Note also that a BS j
cannot be included in the candidates of a UE i, if SINRij is
too low and hence cij >cjmax . To ensure that all the UEs will
be associated, EE sorts the UEs by their number of candidates
and starts with the UEs with the fewest candidates (line 3).

In order to maximize the network energy efficiency, EE
calculates for each UE i and candidate cell j the total RF
transmit power consumption needed for the traffic of the
UE i to be served, denoted by Ptotij=PANij+PBHij , (line
4). EE then sorts the UEs with the same Candidatesi size
by the difference in Ptotij between the candidate cells in
descending order, i.e., starting with the UE with the maximum
difference between the first and the second candidate (line
5). Thereafter, EE sorts the candidate cells of each UE i
by Ptotij in ascending order (line 6) and associates the UE
to the candidate cell, which involves the minimum power
consumption, as long as it has sufficient spectrum resources
to serve it (lines 8). Otherwise, it moves to the next candidate
(line 12). Every time a UE is associated with a BS j, the
algorithm updates the remaining spectrum resources of j.
Contrary to the algorithm providing the exact Pareto front
solutions, presented in Section III, the proposed heuristic
algorithm is much less complex, i.e., O(n log n) [28].

EE may be executed in each eNB sector at a specific time
interval based on the dynamics of the UE traffic, so that the
system performance is optimized. If a new UE becomes active
in the meantime (i.e., after the last execution of the algorithm
and before the next one), its association can be decided by
EE given the associations of the rest of the UEs. In particular,
Algorithm 2 is applied, excluding lines 3 and 5. Thereby, the
proposed algorithm can provide high network scalability.

V. SIMULATION RESULTS

A. Simulation Scenario
In the extensive simulations we executed in MATLAB R©,

we considered an eNB sector area, as depicted in Fig. 1, that
overlaps with Ncl=2 clusters. Each cluster consists of 4 SCs
(SC1=SC2=4) according to 3GPP [18]. Moreover, according
to [18], the SC clusters are uniformly distributed within the
eNB sector, and the SCs of each cluster are uniformly dropped
within the cluster area. The minimum distance between two
SCs is 20 m and between the eNB and a SC cluster center is
105 m. The minimum distance of a UE from the eNB is 35 m
and from a SC is 5 m. In addition, in each cluster, one SC (the
one being the closest to the eNB) is considered one hop away
from the eNB site and thus plays the role of the aggregator of
the cluster traffic, two SCs (the ones being the closest to the
aggregator) are considered two hops away from the eNB site
and the last SC is considered three hops away and connected
to the closest two-hop-away SC of the cluster (see Fig. 1).

In order to gain further insights into the benefits of
mmWave, we consider three different BH technologies: i) LOS
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TABLE I
SIMULATION VALUES

Parameter Value Parameter Value Parameter Value
fAN 2.0 GHz PeNBmax 46 dBm NFUE 9 dB

BeNB , BSC 10 MHz PSCmax 30 dBm NFBH 5 dB
ceNBmax , cSCmax 50 PBHmax 47 dBm Nth -174 dBm/Hz

LpeNB 69.55+26.16 logfAN -13.82 logheNB-CH+(44.9- 6.55 logheNB) logd, d in km GTxeNB 17 dBi heNB 25 m
LpSC 69.55+26.16 logfAN -13.82 loghSC+(44.9- 6.55 loghSC ) logd, d in km GTxSC 5 dBi hSC 2.5 m
Lpo 57.5 dB GTxUE 0 dBi hm 1.5 m
CH 0.8+ (1.1 logfAN - 0.7) hm -1.56 logfAN IL 2 dB

mmWave links (fBH1= 60 GHz) of BBH1= 200 MHz channel
bandwidth [24], ii) LOS microwave8 links (fBH2= 28 GHz)
of BBH2= 28 MHz [29], and iii) sub-6GHz (fBH3= 3 GHz)
of BBH3= 10 MHz [30]. For a fair comparison, the path loss
models of the provided references are used, while the antenna
gains are selected equal to 37, 24 and 19 dBi, respectively. Due
to the static BH nature, we assume that frequency planning
among adjacent BH links is performed during the deployment
phase, so that the generated interference is mitigated.

In each realization (1000 in total), we consider N UEs of
different GBR requirements. Specifically, 60% of UEs demand
1.024 Mbps, 30% 2.560 Mbps and 10% 3.328 Mbps [19]. The
following UE traffic distribution scenarios are considered:
• Uniform: the UEs are uniformly distributed in the sector

area of radius R= 500 m.
• Hotspot: 2/3 of UEs are uniformly dropped within the

clusters (in a radius r= 70 m from cluster center) and 1/3
of UEs are uniformly dropped in the eNB sector [18].

The proposed work, as explained in Section II-A, is inde-
pendent of the employed channel allocation scheme. There-
fore, for the sake of simplicity and without loss of generality,
we assume that inter-sector interference is mitigated through
some form of fractional frequency reuse scheme or sophisti-
cated frequency allocation [31] and that the channels allocated
to the eNB are orthogonal to the channels allocated to SCs.
However, SCs belonging to different clusters reuse the same
bands, thus interfering to each other.

The rest of the simulation parameters are summarized in
Table I, where the subscript x={eNB, SC} refers to the eNB or
to a SC, respectively. Then, fAN denotes the frequency used in
the AN, while Bx is the bandwidth allocated to x and hx is the
antenna height of x. The parameter hm is the mobile antenna
height, while CH is the antenna height correction factor and
d is the distance between the BS and the UE. According to
LTE, BLER= 0.1 [22] and kov= 0.13 [23]. The slow fading
is modeled by a log-normal random variable with zero mean
and deviation 8 dB for the eNB and 10 dB for the SC signal.
B. Pareto front solutions

Following the general description of Section V-A, we con-
sider two different simulation scenarios, as depicted in Fig.
2 a) and b). In the first scenario, the UEs are uniformly dis-
tributed, while in the second they form hotspots. To that end,
in Fig. 3 a) and b) the exact Pareto front points of the problem
in (8) are depicted for the considered BH technologies.

As already mentioned, the number of PRBs and the power
consumption are two metrics that can not be minimized at

8In [29], 28 GHz is considered as mmWave. Still, in this paper, we adopt
the SC Forum categorization (Fig. 5-2 in [1]).

the same time, and thus a good trade-off between them has
to be found. Hence, each Pareto front point corresponds to a
dominant solution of the ε-constraint problem for a different ε
value, as described in Theorem 2. In general, in multi-objective
optimization, none of the Pareto front solutions is better than
the others. However, depending on the preference for each of
the conflicting objectives, a Pareto front solution may be more
preferable than another. For instance, in (8), the preference for
one objective (f1 or f2) may vary based on the network state.
In scenarios where spectral efficiency becomes important, e.g.,
in highly loaded scenarios, the operators may select a point
near the right extreme Pareto front solution to maximize the
spectral efficiency (f2= φI2). On the other hand, when the
spectrum resources do not limit the system (except for (8c)),
the operators could select a point near the left Pareto front
solution (f1=φI1), thus minimizing the energy consumption.

In the considered example, for all BH technologies when
f1=φI1 (maximum energy efficiency), most UEs are associated
to SCs to minimize the AN power consumption (the AN power
consumption is much higher when a UE is associated to the
eNB than to a SC). Moreover, the UE association with the
SC that involves the minimum BH power consumption (e.g,
the one with the fewest hops or shortest BH links) is favored.
Therefore, when f1 = φI1 (maximum energy efficiency), the
number of required PRBs is higher in the uniform scenario
(than in the hotspot), since the UEs are located further from the
SC cluster centers. On the contrary, when f2 = φI2 (maximum
spectral efficiency), more UEs are associated to the eNB to
reduce the required PRBs at the expense of higher AN energy
consumption. Thus, the AN power consumption increase is
higher in the uniform scenario for all BH technologies, as
more UEs are associated to the eNB.

Regarding the rest of the Pareto front points, we notice
that in the uniform scenario, for the same RF transmit power
consumption as in the hotspot, more PRBs are required for all
BH technologies. This stems from the fact that the UEs located
in a hotspot mostly get associated with SCs both to use fewer
PRBs, and to have much less AN power consumption. On
the contrary, when the UEs are uniformly distributed, they are
located further from the SC clusters and thus to decrease the
RF transmit power consumption, a proportional PRB increase
is needed. This results in a steeper Pareto front curve for the
hotspot scenario, i.e., the hotspot Pareto front points provide
better trade-offs between the two objectives than the uniform.

Among the different BH technologies, mmWave presents
the best performance, since its Pareto front is shifted on the
left. This implies that mmWave can provide better trade-offs
than the rest of the BH technologies. Although mmWave
experiences the highest path loss, it is able to send high amount
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Fig. 2. Snapshots of (a) uniform and (b) hotspot traffic distribution scenarios with N=70 UEs.
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Fig. 3. Pareto front: number of PRBs vs. total RF transmit power consumption for N=70 UEs with (a) uniform and (b) hotspot traffic for different BH
technologies with frequency equal to 3 GHz, 28 GHz and 60 GHz, respectively.

of data without increasing the transmitted power due to its high
bandwidth availability. Therefore, mmWave achieves the high-
est performance gains for hotspot scenarios, where higher BH
traffic is generated. On the contrary, the available bandwidth
of sub-6GHz is very limited. Consequently, for higher BH
traffic, a significant increase in the RF transmit power of the
BH links is required, so that the SINR at the receiver increases.
Thereby, higher order modulation and coding schemes can be
used, which result in higher spectral efficiency. However, the
much higher RF transmit power consumption results in lower
energy efficiency. Still, 3 GHz outperforms 28 GHz for low
BH traffic, e.g., when only the UEs very closely located to
SCs are associated with them, as it presents lower path loss.

C. Performance Evaluation

In this section, we compare the performance of the proposed
algorithm with both the state-of-the-art and the optimal (yet
complex) solutions of Algorithm 1 for all BH technologies.
The algorithms under study are summarized in the following.
• ε-constraint9: the two extreme Pareto front analytical

solutions of the ε-constraint problem described in Sec-

9Under overloaded network conditions, when (8) had no feasible solution,
we were relaxing constraint (8b) and solving the relaxed problem for ε-
constraint EE and ε-constraint SE, while measuring the blocking probability
in each case (i.e., percentage of UEs that were not served).

tion III. In particular, we refer with ε-constraint EE to the
extreme Pareto front solution that maximizes the energy
efficiency and with ε-constraint SE to the Pareto front
solution that maximizes the spectral efficiency.

• EE: the proposed energy efficient algorithm, described in
Section IV, with cthres=0, 1, 2.

• BH-aware: the association algorithm proposed in [16].
• RSRP: a UE is associated with the BS from which it

receives the strongest reference signal [4].
• Range expansion (RE): a bias = 13 dB is added to the

RSRP if the signal comes from a SC [6], [31].
• Minimum path loss (MPL): a UE is associated with the

BS from which it has the minimum path loss (Lij =
Lpij + Lfij ) [14], independently of its received power.

In Fig. 4, the average network energy efficiency is depicted
for all algorithms and BH technologies versus the number of
UEs, N , under uniform traffic. In general, it can be noticed
that mmWave achieves much higher energy efficiency than the
rest of the BH technologies (i.e., 40% higher than 3 GHz and
2 times higher than 28 GHz) for all algorithms and N values.
This is due to its high bandwidth availability which results in
much lower BH power consumption (of the order of mW).

Regarding the user association algorithms, it is reminded
that ε-constraint EE shows the maximum energy efficiency
that can be achieved independently of the spectral efficiency,
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Fig. 4. Average total network energy efficiency for different N values and BH technologies (3, 28 and 60 GHz), when the UEs are uniformly distributed.
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Fig. 5. Average total network energy efficiency for different N values and BH technologies (3, 28 and 60 GHz), when the UEs form hotspots.

while ε-constraint SE corresponds to the maximum energy
efficiency given that the spectral efficiency is maximized.
These solutions achieve better performance than the state-
of-the-art (e.g., ε-constraint EE shows up to 10.5, 7, and
14.5 times higher energy efficiency for 3, 28 and 60 GHz,
respectively). However, unlike the rest of the algorithms,
they present very high complexity, which increases with an
increasing number of UEs and BSs, as discussed in Section III.

As the network traffic increases, the gap between ε-
constraint EE and ε-constraint SE decreases, until the network
reaches saturation and thus the most energy-efficient solution
is also the most spectrum-efficient one. As shown in Fig. 4, the
network reaches saturation at an earlier point, i.e., for lower
traffic, in 3 GHz compared to the other technologies. This
stems from the fact that the maximum BH capacity (in terms
of maximum RF transmit power) is reached earlier for 3 GHz,
due to the much lower bandwidth availability at this frequency.

In Fig. 4, it can be also noticed that for all BH technolo-
gies the proposed low complexity (O(n log n)) EE algorithm
outperforms the state-of-the-art (except for MPL for low
traffic, which associates most UEs to SCs, leading to lower
AN power consumption, at the expense, however, of much
lower spectral efficiency, as it will be shown later on), while
achieving similar performance to the ε-constraint solutions.
Nevertheless, the selection of the parameter value cthres is
important. EE with cthres = 0 achieves equal performance to
the ε-constraint SE, while as cthres increases and the system is
not overloaded, the performance of the algorithm in terms of

energy efficiency is improved at the expense of lower spectral
efficiency. However, when the system becomes saturated a
higher threshold would result in lower energy efficiency, since
not all the traffic demands of UEs could be served (i.e., non-
zero blocking probability). Thus, for maximum performance,
the threshold should be adapted dynamically based on the
network conditions, i.e., a high threshold value should be
selected in low traffic scenarios, and a low value otherwise.

As for the rest of the algorithms, they achieve lower perfor-
mance for all BH technologies. In particular, BH-aware gives
priority to the candidate cell with the fewest hops to reach the
core network and thus most of the UEs get connected to the
eNB. Hence, similar to RSRP, for low values of N , although
the BH energy consumption is zero, there is high AN energy
consumption (we remind that the power per subcarrier is much
higher for the eNB than for a SC). On the contrary, EE takes
into account the possibility of having heterogeneous BH links
and adapts the user association accordingly. Thus, it presents
lower dependency on the employed scenario. Regarding RE,
it achieves almost the same performance as EE with cthres=0,
as there are more UEs associated with SCs, resulting in lower
AN energy consumption. However, this comes at the expense
of much lower spectral efficiency, as it will be shown later on.

Accordingly, in Fig. 5, the average network energy effi-
ciency of all algorithms is depicted in a hotspot scenario for
all BH technologies. In this scenario, mmWave achieves even
higher gains than in the uniform (i.e., 60% higher than 3 GHz
and 3 times higher than 28 GHz) for all algorithms and N
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Fig. 6. Average total RF transmit power consumption in the access network for different N values and BH technologies with hotspot traffic.
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Fig. 7. Average total RF transmit power consumption in the backhaul network for different N values and BH technologies with hotspot traffic.

values. This stems from the fact that, in hotspot scenarios, the
BH traffic increases and thus the available bandwidth of each
technology becomes more important. Due to the same reason,
in the hotspot scenario, the gap between ε-constraint EE and
ε-constraint SE for 3 GHz decreases at a higher rate. However,
it reaches saturation at a later point, i.e., for higher traffic, than
in the uniform scenario, as the AN in hotspot scenarios gets
saturated at a lower rate (most UEs get connected to SCs). This
is the reason why, in 60 GHz, where BH capacity is not the
network bottleneck, the gap decreases more smoothly than in
the uniform. The proposed solutions also achieve higher gains
(up to 15.5, 9, and 26 times higher energy efficiency for 3,
28 and 60 GHz, respectively) compared to the state-of-the-art
than in the uniform scenario. To gain further insights into that,
the AN and BH power consumption of all algorithms and BH
technologies are depicted in Fig. 6 and 7, respectively.

As it can be observed in Fig. 6, the AN power consumption
increases as N increases for all algorithms and BH technolo-
gies. For BH-aware, the AN power consumption increases
initially at a high rate, as more UEs get connected to the eNB.
Yet, for very high traffic the eNB becomes saturated, and thus
more UEs get associated with SCs, which results in a smoother
AN power consumption increase. As depicted in Fig. 7, the BH
energy consumption also increases for all algorithms (except
for ε-constraint EE), as N increases, since higher BH traffic
is generated and thus higher energy consumption.

In general, ε-constraint EE favors the user association that
minimizes the total RF transmit power consumption at a
specific instant, and thus, it presents a different behavior than

the rest of the algorithms. In particular, for low traffic, ε-
constraint EE favors the association of most UEs with SCs
and especially with the SC cluster located closer to the core
network to minimize both the AN and BH power consumption
as well as the number of PRBs required. For higher traffic,
however, which differs for different technologies (N=100 UEs
for 3 GHz and N=70, 160 UEs for 28 GHz and N=130 UEs
for 60 GHz), the BH aggregated traffic increases a lot (we
remind that the power consumption of a BH link increases
in an exponential way with the traffic that passes through the
link) and therefore the association of a portion of UEs with
the eNB is preferable in order to avoid a significant increase
in the BH power consumption. This is also due to the fact that
the association with the eNB at this point gives the possibility
of switching off one or even both SC clusters (in the case
all UEs can be served by the eNB), thus resulting in higher
energy efficiency gain. It is worth noting that the most energy-
consuming links in the considered model are the links that are
one hop away from the core network, which not only aggregate
all the traffic of the cluster but also may be much longer than
the rest of the BH links. Therefore, the complete switch off
of a cluster corresponds to the highest energy efficiency gain.

Regarding the rest of the algorithms, it is shown that ε-
constraint SE achieves a good balance between AN and BH
power consumption and so does the proposed algorithm. MPL
presents high energy efficiency for low traffic, as more UEs
are associated to SCs than in RSRP and RE, resulting in lower
AN power consumption and higher spectral efficiency than in
the uniform scenario, as it will be shown later on. For high
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TABLE II
AVERAGE NETWORK SPECTRAL EFFICIENCY (SE) AND BLOCKING PROBABILITY (BP)

Uniform Hotspot
3 GHz 28 GHz 60 GHz 3 GHz 28 GHz 60 GHz

User association algorithm SE BP SE BP SE BP SE BP SE BP SE BP
(bps/Hz) (%) (bps/Hz) (%) (bps/Hz) (%) (bps/Hz) (%) (bps/Hz) (%) (bps/Hz) (%)

ε-constraint SE
3.50

2.08
3.53 0 3.53 0 4.34 2.42

4.33
0.02

4.34

0

EE cthres = 0 2.29 2.59 0.07
BH-aware 2.68 0.16 0.21 4.32 2.72 0.09

RSRP 3.39 2.36 3.47 0.03 3.47 0.01 4.14 3.0 4.19 0.1 4.20
RE 3.24 2.40 3.31 3.30 3.87 4.17 3.85 3.89

MPL 1.95 3.75 1.99 1.21 1.98 1.21 2.96 4.62 3.03 0.05 3.08
EE cthres = 1 3.01 2.27 3.10 0 3.12

0
3.83 3.96 3.79 0.03 3.81

EE cthres = 2 2.61 2.40 2.64 0.03 2.67 3.53 4.24 3.49 0.04 3.53
ε-constraint EE 2.21 2.08 1.70 0 1.58 3.74 2.42 2.78 0.02 2.63

traffic in 3 GHz, however, the BH power consumption of MPL
increases a lot (see Fig. 7) due to low bandwidth availability
at this frequency band leading to very low energy efficiency.

In Table II, the average network spectral efficiency as
well as the average blocking probability is presented for all
algorithms and BH technologies. As it can be observed, the
considered algorithms that aim at the maximization of the
spectral efficiency (i.e., ε-constraint SE, EE with cthres = 0,
BH-aware) achieve the highest spectral efficiency for all BH
technologies, since the UEs are connected to the BSs that
require the minimum spectrum resources for their QoS require-
ments to be fulfilled. On the contrary, RSRP and RE achieve
slightly lower spectral efficiency, as the UEs, under high traffic
load conditions, may be connected to BSs that require more
spectrum resources. MPL, unlike the rest of the algorithms,
presents much lower spectral efficiency, since it associates the
UEs independently of their SINR. Hence, it is very likely that
a UE is associated to a BS with low SINR, thus requiring more
spectrum resources to achieve the same throughput. This holds
also for EE cthres = 1, 2 since energy efficiency is increased
at the expense of lower spectral efficiency, which becomes
even lower in ε-constraint EE, where energy efficiency is
maximized. However, in overloaded networks (e.g., hotspot
traffic in 3 GHz), ε-constraint EE achieves higher spectrum
efficiency in order to ensure lower blocking probability.

In terms of blocking probability, the optimal solutions ε-
constraint EE and ε-constraint SE present always the highest
performance. The performance of the EE algorithm, however,
depends on the selected threshold value and the employed
scenario, as already explained. Specifically, under network
overloading conditions, higher threshold values result in lower
spectral efficiency as well as higher blocking probability.

Regarding the different BH technologies, notice that for 60
GHz all algorithms present the lowest blocking probability.
This stems from the fact that, contrary to the other BH
technologies, mmWave links do not become the network
bottleneck due to their very high bandwidth availability. On
the other hand, 3 GHz shows the worst performance especially
for hotspot scenarios where the BH traffic is higher.

VI. CONCLUSION

We studied the user association problem in a HetNet, where
several SCs forward their traffic through the BH to the neigh-
boring SCs until it reaches the core network. We aimed at the
joint maximization of network energy and spectrum efficiency,
without compromising the UE QoS. The problem was formu-
lated as an ε-constraint problem, which considers both the AN

and BH energy consumption. The trade-off between energy
and spectrum efficiency was analytically studied by deriving
the exact Pareto front points of the problem for different
BH technologies. The provided solutions can be used as a
benchmark for the performance evaluation of user association
algorithms. Moreover, a low-complexity adaptive algorithm
was proposed, which was shown to be able to select any
point of the Pareto front, by accordingly modifying the spectral
efficiency target cthres, and thus, to achieve a good trade-off
between the aforementioned metrics. The proposed algorithm
was also compared with existing user association solutions
under different BH technologies. Our results indicated that i)
the proposed algorithm achieves notable energy and spectrum
efficiency gains and that ii) mmWave is a promising solution
for high capacity and low energy consumption multi-hop BH.
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