
HAL Id: hal-01879950
https://hal.science/hal-01879950v1

Submitted on 24 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Run-time Detection of Prime+Probe Side-Channel
Attack on AES Encryption Algorithm

Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Naveed Bin
Raees Rao, Vianney Lapotre, Guy Gogniat

To cite this version:
Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Naveed Bin Raees Rao, Vianney Lapotre,
et al.. Run-time Detection of Prime+Probe Side-Channel Attack on AES Encryption Algorithm.
Global Information Infrastructure and Networking Symposium (GIIS), Oct 2018, Thessaloniki, Greece.
�hal-01879950�

https://hal.science/hal-01879950v1
https://hal.archives-ouvertes.fr


Run-time Detection of Prime+Probe Side-Channel
Attack on AES Encryption Algorithm
Maria Mushtaq

Lab-STICC, University of South
Brittany, Lorient, France

maria.mushtaq@univ-ubs.fr

Ayaz Akram
University of California
Davis, California, USA

ayaz.akram@wmich.edu

Muhammad Khurram Bhatti
Information Technology University

Lahore, Pakistan
khurram.bhatti@itu.edu.pk

Rao Naveed Bin Rais
Ajman University, P.O.Box: 346

Ajman, UAE
r.rais@ajman.ac.ae

Vianney Lapotre
Lab-STICC, University of South

Brittany, Lorient, France
vianney.lapotre@univ-ubs.fr

Guy Gogniat
Lab-STICC, University of South

Brittany, Lorient, France
guy.gogniat@univ-ubs.fr

Abstract— This paper presents a run-time detection mech-
anism for access-driven cache-based Side-Channel Attacks
(CSCAs) on Intel’s x86 architecture. We demonstrate the de-
tection capability and effectiveness of proposed mechanism on
Prime+Probe attcks. The mechanism comprises of multiple ma-
chine learning models, which use real-time data from the HPCs
for detection. Experiments are performed with two different
implementations of AES cryptosystem while under Prime+Probe
attack. We provide results under stringent design constraints such
as: realistic system load conditions, real-time detection accuracy,
speed, system-wide performance overhead and distribution of
error (i.e., false positives and negatives) for the used machine
learning models. Our results show detection accuracy of > 99%
for Prime+Probe attack with performance overhead of 3−4% at
the highest detection speed, i.e., within 1−2% completion of 4800
AES encryption rounds needed to complete a successful attack.

Index Terms—Side-Channel Attacks, Prime+Probe, Detection,
Cryptography, AES, Machine Learning, HPCs.

I. INTRODUCTION

With technologies like Internet-of-Things (IoTs) and Cyber-
Physical Systems (CPS) in practice, the age of digital dis-
ruption has a renewed challenge of security and privacy.
Access-driven Cache-based Side-Channel Attacks (CSCAs)
are strong cryptanalysis techniques used to break the otherwise
strong cryptographic algorithms by targeting their execution at
hardware level [1]. In recent years, Intel’s x86 architecture has
been exposed to high resolution and stealthy CSCAs such as:
Prime+Probe [2], Flush+Reload [3], Flush+Flush [4], Evict
& Time [1], Prime & Abort [5], Spectre [6] and Meltdown
[7]. Modern-day processors do extensive sharing and de-
duplication for performance benefits. CSCAs exploit sharing
vulnerabilities in caches [6], [7] to retrieve information. Such
attacks rely on the presence of specialized instructions to
maneuver the state of shared caches.

The Internet of Things (IoT) rapidly closes the gap between
the virtual and the physical world. As significant amount of
information is processed through this expanding network, the
security of IoT devices and back-end services has become
increasingly important. Yet, SCAs pose a significant threat

to systems in practice, as the micro-architectures of proces-
sors, their access & timing information, power consumption
and electromagnetic emanation reveal sensitive information to
adversaries. While computational resources and performance
are often limited, many IoTs ecosystems deploy back-end
servers (often based on Intel’s x86 architecture) that collect
information for in-depth analysis, advanced customer services,
or feedback to actuators in the field. These back-end servers
can become a single-point failure for entire network if exposed
to such SCAs. Recent research shows that entire IoT network
can be exposed to SCAs [8] [3] [4] [2] [1] [5].

In order to mitigate against SCAs, both software- and
hardware-based protection techniques have been proposed in
recent years [9]. Such attacks can be prevented at different
levels such as system-level, application-level and hardware-
level [9]. Despite many efforts, mitigation techniques against
SCAs are still not perfect due to multiple reasons. One of the
foremost reasons is the fact that these techniques generally
attempt to protect against any given specific vulnerability
because an all-weather protection against such attacks is often
performance costly. Evidence suggest that attacks are becom-
ing sophisticated and stealthier such as Spectre & Meltdown.
Therefore, detection techniques can be used as a first line of
defense against such attacks.

This paper addresses the problem of accurate & early detec-
tion of Prime+Probe CSCA at run-time using ML techniques
in back-end servers that are used for IoT networks. Various
linear and non-linear ML models are used to perform detection
under stringent design constraints such as: real-time, fast
and accurate detection under minimal performance overhead.
These ML models use data from HPCs, in near real-time,
representing the pattern of memory accesses generated by
data-dependent cryptographic operations of AES being carried
out by underlying hardware. Using HPCs’ data, selected ML
models detect Prime+Probe attack during the course of AES
encryption rounds. We perform experiments with Prime+Probe
attack applied on two different implementations of AES, which
is considerably a fast encryption algorithm. The first version is



implemented by Gruss et al. [4], which is slower and recovers
half key. The second implementation is a faster version with
full key recovery that we have implemented ourselves in
order to conduct experiments for this paper. We demonstrate
the effectiveness of proposed detection mechanism on Intel’s
core i7-4770 CPU running on Linux Ubuntu 16.04.1 at 3.40-
GHz. We use PAPI (Performance Application Programming
Interface) library [10] to access HPCs on Intel’s Core i7
machines, which offers 100+ machine-specific events. Since
our detection mechanism targets access-driven CSCAs, we
considered only those relevant hardware events which are more
likely to be affected by Prime+Probe attack. We performed
experiments with a set of 12 most relevant events, presented
in Section II-C, in order to observe the impact of target
computational loads, i.e., crypto-operations and attacks. We
also provide guidelines on how only a subset of these 12
counters would be sufficient to train ML models for detection.
The main contributions of this paper are as follows:

1) We propose a run-time detection mechanism for Prime+Probe
class of access-driven CSCAs. The mechanism uses ML mod-
els and execution data of processes at real-time using the
HPCs. The novelty in our work comes from the coupling
of HPCs with ML models under stringent design constraints
such as: real-time, fast and accurate detection with minimal
performance overhead.

2) AES encryption algorithm is often used in IoTs. We demon-
strate successful detection of Prime+Probe attack on 02 differ-
ent implementations of AES using Intel’s x86 architecture.

3) We provide results under realistic system load conditions,
i.e., under No, Average and Full Load conditions. These load
conditions are achieved by running SPEC benchmarks, which
improves the applicability of proposed mechanism.

4) we provide discussion, complimented with experimental re-
sults, about detection accuracy, system wide performance
degradation, detection speed and distribution of error in terms
of false positives and false negatives for selected ML models.

Rest of the paper is organized as follows. Section II presents
necessary background & related work. Section III presents the
working principle of run-time detection mechanism. Section
IV provides experimental evaluation and discussion. Section
V concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Cache-based SCAs & Mitigation Techniques
Side channel attacks can destroy robust and substantial

cryptosystems such as AES, RSA, ElGamal, DSA and ECDSA
by exploiting micro-architectural features of underlying plat-
form. Memory access pattern and timing variations generated
by these cryptosystems on the underlying hardware platform
are significant sources of information leakage. In the last
decade, many cache-based side channel attacks have been
proposed that have exposed the micro-architectural vulnera-
bilities. In the follow-up, many mitigation techniques are also
proposed against these attacks [9]. Mitigation solutions being
proposed against these attacks are applicable at all levels.
For instance, Logical/Physical isolation includes Cache Col-
oring, Cloudradar, StealthMEM, CacheBar and Hardware Par-
titioning; Noise-based mitigation includes Fuzzy Times, By-
stander Workloads and Anti-correlated Noise; Scheduler-based

mitigation includes Obfuscation, Minimum Timeslice and
Cache Flushing; Partitioning time mitigation includes Server
Side Defences and Kernel Space Isolation; and constant-time
techniques include Cache Auditing and Flow-tracker. These
strategies, however, often provide protection against specific
leakage channel as they introduce significant performance
degradation because of cache reservation and blow-up code
size. Since, applying mitigation techniques in all cases is
expensive, therefore, SCA detection prior to mitigation can
help in applying countermeasure on need-basis.

While designing a SCA detection mechanism, the designer
should be mindful of three potential problems; 1) Detection
process approximates the overall system behavior and it can
lead to greater number of false positives and false negatives
at run-time, 2) Detection process can slow down the overall
program execution and can lead to significant performance
overhead at the cost of accurate detection and 3) Detection
may be accurate but the detection speed can sometimes be
very low, which detects the attack after a theoretical bound
of 50% of the attacker activity (which is considered sufficient
for a successful attack). We considered all these parameters as
evaluation metrics of our run-time detection mechanism.

B. Cache-based SCA Detection

In recent years, some CSCA detection solutions have ap-
peared. Some of them are implemented as user-level processes
while others operate at kernel-level. In addition, most of them
do not include evaluation of the proposed detection mechanism
under realistic system load conditions. Chiappetta et al. in
[11] used Neural Networks to build models using HPCs
data on benign and spy processes. The proposed mechanism
works for Flush+Reload attacks with high accuracy. However,
Neural Networks incur heavy performance cost and they are
not suitable for run-time early-stage detection. Mathias Payer
[12] proposed HexPADS which also uses HPCs’ data along-
with kernel information like page faults. If the number of
cache misses crosses a certain threshold, an attack situation
is reported. Experiments using variants of flush+reload and
prime+probe attacks show high detection accuracy with low
performance overhead for HexPADS. Demme et al. [13]
proposed a malware detector that uses used KNN, Decision
Trees, Random Forest and Artificial Neural Networks models
for prime-probe detection. Authors claim to have no false +ves.

Zhang et al. [14] proposed CloudRadar to detect SCAs
in cloud systems by correlating cryptosystem’s execution
on a VM with the anomalous behavior of caches. Using
Prime+Probe & Flush+Reload as case studies, authors claim
to have 100% accuracy with the worst case performance
overhead less than 5%. Alam et al. proposed a correlation-
based detection method for cache and branch predictor based
SCAs [15]. Similarly, Bazm et al. [16] relied on Intel cache
monitoring technology (CMT) and HPCs while using Gaussian
anomaly detection for detection of CSCAs in VMs. The
proposed mechanism shows very good accuracy in isolated
conditions but suffers from high false positives in noisy con-
ditions. Allaf et al. [17] used KNN model to detect malicious



loop activity within Flush+Reload attack. The proposed model
shows achieve good accuracy to detect Flush+Reload attack
but it suffers from two issues: firstly, it is performance-costly at
run-time due to the working principle of KNN, and secondly,
it would not work for other attacks like Prime+Probe. Peng et
al. [18] used cache miss rates and data-TLB miss rates to rec-
ognize CSCAs. They showed that CSCAs like Flush+Reload
have high cache miss rates but low d-TLB miss rates.
C. Selection of HPCs

The HPCs are particular hardware registers, which help
to access per-core, per-CPU and system wide profiling for
executing processes. Since our interest is to detect access-
driven CSCAs, we only consider the events that are plausibly
affected by these attacks. In order to best select these events,
we performed experiments on a set of 12 best suited events.
The set of events are presented in Table I. We collected
a system-wide profile for different hardware events under
Prime+Probe attack to form a data set of benign and malicious
behavior on the system. Data from these counters is used as
features for ML models. Out of these 12 events, only a subset
of 4− 5 events prove to be sufficient as features for our ML
models. Thus, we can discard the redundant features and save
run-time overheads. Sections III & IV elaborate what kind of
information these features offer.

TABLE I
SELECTED EVENTS RELATED TO CSCAS

Scope Hardware Event as Feature Feature ID
L1 Caches Data Cache Misses L1-DCM

Instruction Cache Misses L1-ICM
Total Cache Misses L1-TCM

L2 Caches Instruction Cache Accesses L2-ICA
Instruction Cache Misses L2-ICM
Total Cache Accesses L2-TCA
Total Cache Misses L2-TCM

L3-Caches Instruction Cache Accesses L3-ICA
Total Cache Accesses L3-TCA
Total Cache Misses L3-TCM

System-wide Total CPU Cycles TOT CYC
Branch Miss-Predictions BR MSP

III. RUN-TIME DETECTION OF PRIME+PROBE

This section provides details on the working principle of detection
method being used. Recently, various ML techniques are being
used in information security domain such as in [11], [12], [19],
[20], [15], [17]. Data classification is an important application of
Machine Learning and CSCA detection is basically one such binary
classification problem from machine learning prospective. Most of
the existing machine learning classifiers can be divided into two basic
categories of linear and non-linear models. We experimented with a
set of 12 popular classification machine learning models, 6 each from
both categories. Table II lists ML models being used in this work.

We performed experiments with all ML models listed in Table
II. However, we have finalized only 4 models for our detection
mechanism, namely; LDA, QDA, LR and SVM, based on the follow-
ing reasoning. Although, it is the most important one, classification
accuracy is not the only parameter to consider while deploying a high-
speed run-time CSCA detection mechanism. We reason that the other
most important parameter to examine while comparing ML models is
their implementation feasibility. ML models should be easy to embed
in the cryptosystem for run-time protection. They should also be able
to quickly provide their decision on detection based on the profiling of
processes using HPCs. Moreover, the performance overhead caused
to the cryptosystem’s own execution due to embedding of detection

should be reasonable. Upon analyzing the ML models in Table II on
these parameters, we have found these 4 models to be most suited
ones for run-time, fast & accurate detection with minimal overhead.

We collect the features using HPCs and train these ML models
on them. The data provides real-time behavioral information of
concurrent processes, including AES as victim, running on Intel’s
x86 architecture. We select these features based on two factors:
1) Their relevance to the type of SCAs the detection mechanism
is targeting and 2) their potential to provide better classification.
Based on these criteria, we use L1 data cache misses, L3 total
cache misses, L3 total cache accesses and Total CPU cycles as the
most relevant features in Prime+Probe detection. These features in
our experiments show linearity when the AES encryption operation
takes place. For ML models, the LDA is used for reduction in data
dimensionality and pattern classification. The focus of this model is
to operate a data set into lower dimensional space while providing
a distinguishable class for avoiding over-fitting, which is a common
problem to data dimensionality. QDA is a non-linear extension of
LDA, which builds a quadratic decision surface. Both LDA and QDA
assume normal distribution of the measurements. Logistic Regression
(LR) is used for defining linear set of relations. The LR model can
be used efficiently for prognosis, anticipation and error reduction. It
provides a sophisticated binary representation of dependent variables.
Whereas, Support vector machine (SVM), a supervised learning
model, provides a binary linear classification mapped in such a
way that different categories of data are separated or classified with
a clear distinction. Selection of specific ML models is based on
certain features like; achieving highest accuracy, less computational
complexity and less performance overhead during execution under
different cryptosystems. We experimented with 12 ML models &
selected the best 4 considering the mentioned features.

TABLE II
LIST OF ML MODELS USED FOR CSCA DETECTION

No. Machine Learning Model Category
1 Linear Regression (LR) Linear
2 Linear Discriminant Analysis (LDA) Linear
3 Support Vector Machine (SVM) Linear
4 Quadratic Discriminant Analysis (QDA) Non-linear
5 Random Forest (RF) Non-linear
6 K-Nearest Neighbors (KNN) Non-linear
7 Nearest Centroid Linear
8 Naive Bayes Linear
9 Perceptron Linear
10 Decision Tree Non-linear
11 Dummy Non-linear
12 Neural Networks Non-linear

There are three significant phases of our detection mechanism,
namely; the Training phase, Run-time profiling and Classification
phase and detection phase. In the first phase, we train ML models with
HPCs’ data collected from two scenarios: one with AES cryptosystem
under Prime+Probe attack and the other with no attack. Both scenar-
ios have variable load conditions. For this phase, we use roughly 1-
Million data samples with profiling through events excluding kernel
events. We configure events within the victim’s library to include
calls for starting and stopping the HPCs at run-time. In real-time
data profiling phase, the sampling granularity has a major influence
on victim’s (AES) performance when compared to normal execution.
Sampling granularity also affects detection speed and accuracy, which
are crucial for real-time detection. Our mechanism offers fine- and
coarse-grain profiling modes, which provide a trade-off between
detection speed and impact on performance. Fine-grain mode collects
samples at a very high frequency and it is able to detect Prime+Probe
attack relatively early with increased performance overhead. Whereas,
coarse-grain mode takes samples at a low frequency, which takes
relatively longer to detect the attack but it offers minimal performance
overhead. In both cases, our detection module can detect Prime+Probe
before its completion. In the detection phase, data from second phase



are passed on to the trained ML models in real-time. Based on these
data, each model classifies samples into Attack or No Attack classes
to report intrusion detection. Detection accuracy of each classifier
varies depending on the training. Detection speed and performance
impact, however, is subject to the sampling frequency.

IV. EXPERIMENTS AND DISCUSSION

We have experimented with two different implementations of
Prime + Probe (Prime+Probe) attack on AES cryptosystem. In
experiments, we refer them as PP Impl1 (slow half key retrieval)
and PP Impl2 (fast full key retrieval).

A. Detecting Prime+Probe: PP Impl1
1) Detection Accuracy: Detection accuracy is the most im-

portant indicator to assess a CSCA detection mechanism. We use
unbiased training data with equal number of attack and no-attack
samples. Table III shows the detection accuracy of the selected ML
models. The detection accuracy is very high for all ML models (close
to 100%) under all load conditions. The only exception is LDA under
NL and AL, where it still shows a detection accuracy above 95%. In
order to explain this high accuracy of all ML models we can have
a look at Figure 1 and 2, which show the distribution of hardware
events. In these figures, Y-axis depicts frequency of samples and X-
axis depicts magnitude of measured events. The results in green color
present normal execution of cryptosystem under no attack. Whereas,
the results in red color present abnormal execution of cryptosystems
under attack scenario. As visible in Figure 1, all used features show
clearly distinctive behavior under NL resulting into easy classification
for ML models. Under FL condition (shown in Figure 2), the used
hardware events start to overlap. However, two features (L3’s total
cache accesses total cache misses) still exhibit distinctive behavior
leading to good performance of ML models.

TABLE III
RESULTS USING SELECTED MODELS FOR PRIME+PROBE (PP IMPL1)

Model System
Condi-
tion

Accuracy
(%)

Speed
(%)

FP
(%)

FN
(%)

Overhead
(%)

LDA NL 95.15 2.1 0 4.85 3.48
AL 97.47 2.1 0 2.53
FL 100 1.1 0 0

LR NL 99.89 2.1 0.11 0 3.23
AL 99.97 2.1 0.03 0
FL 99.92 2.1 0.08 0

SVM NL 100 2.1 0 0 5.08
AL 100 2.1 0 0
FL 99.99 2.1 0 0.01

QDA NL 100 1.1 0 0 1.68
AL 99.99 1.1 0.01 0
FL 99.99 2.1 0.01 0

2) Detection Speed: Detection speed usually depends on the
sampling resolution of detection mechanism. This resolution also
impacts the performance overhead. In order to reliably estimate upper
4-bits of a secret key byte, Prime+Probe attack needs at least 4800
AES encryption rounds [4]. Therefore, the detection of Prime+Probe
would be useful only if it is achieved before completion of 4800
encryption rounds. Here, we define the detection speed as number of
encryption rounds needed to detect the attack, taken as a percentage
of 4800 encryption rounds (i.e., the upper bound). For instance, a
detection speed of 2.1% would mean that detection is achieved within
first 100 encryption rounds. Table III shows the run-time detection
speed achieved by all ML models while detecting PP Impl1. Our
ML models are able to detect the attack within first 100 encryption
rounds, which is well ahead of 4800 AES encryption rounds under
all load conditions.

Fig. 1. Selected HPCs under NL condition for AES encryption: With &
Without Prime+Probe Attack (PP Impl1)

Fig. 2. Selected HPCs under FL condition for AES encryption: With &
Without Prime+Probe Attack (PP Impl1)

3) Confusion Matrix: The CSCA detection is a classification
problem. Therefore, detection inaccuracy can be split into false
positives & negatives to analyze detection results. Table III shows
the detection inaccuracy of our ML models under all load conditions.
The percentage of false positives and negatives out of the evaluated
samples is very close to 0 in almost all cases.

4) Performance Overhead: Performance overhead, in terms of
slowdown, is a pertinent aspect to look into while embedding the
CSCA detection mechanism within encryption module. It determines
the applicability of the proposed detection mechanism. Performance
overhead is linked with the detection speed as higher resolution
can lead to higher performance overhead. Table III shows that the
performance overhead is generally low for our ML models while
performing run-time detection. We sample hardware events every 50
encryption rounds to make detection decisions. Since, the detection
speed is already very high, the sampling frequency of performance
counters can be relaxed which would lead to further reduction in
performance overhead.
B. Detecting Prime+Probe: PP Impl2

1) Detection Accuracy: Table IV shows the accuracy of used
ML models while detecting second implementation of Prime+Probe
attack on AES. Under all load conditions the ML models are able
to show pretty high accuracy (above 99%). Figure 3 and 4 show the
distribution of HPCs used for detection under attack and no-attack
cases for NL and FL system conditions respectively. As indicated in
these figures even under high load condition the distinction among
the used HPCs is good enough for detection of attack.

2) Detection Speed: Table IV illustrates that all ML models
show very high detection speed for the faster implementation of
Prime+Probe attack. The attack is detected at maximum by 100



encryption rounds in all cases, proving the capability of a prompt
response by our detection mechanism.

TABLE IV
RESULTS USING SELECTED MODELS FOR PRIME+PROBE (PP Impl2)

Model System
Condi-
tion

Accuracy
(%)

Speed
(%)

FP
(%)

FN
(%)

Overhead
(%)

LDA NL 99.96 2.1 0.003 0.037 3.59
AL 99.83 1.1 0.12 0.051
FL 98.03 2.1 1.86 0.11

LR NL 99.95 2.1 0.015 0.034 4.02
AL 99.70 2.1 0.28 0.020
FL 94.82 2.1 5.12 0.061

SVM NL 99.97 2.1 .0037 0.026 3.85
AL 99.96 2.1 0.012 0.028
FL 99.94 25.1 0.035 0.025

QDA NL 100 2.1 0 0 3.80
AL 99.99 1.1 0.01 0
FL 99.99 1.1 0.01 0

Fig. 3. Selected HPCs under NL condition for AES encryption: With &
Without Prime+Probe Attack (PP Impl2)

Fig. 4. Selected HPCs under FL condition for AES encryption: With &
Without Prime+Probe Attack (PP Impl2)

3) Confusion Matrix: Table IV shows the division of wrongly
classified samples by ML models into false positives & negatives. In
the majority cases, the %ages of false +ves & -ves is very low i.e.,
the inaccuracy is very low. In a couple of cases (LR & LDA with FL)
where inaccuracy is considerable, the majority of the mis-classified
samples belong to false positives.

4) Performance Overhead: Finally, the performance overhead
(shown in Table IV) of all ML models to perform online detection
of PP Impl2 attack is low and insignificant. Moreover, this detection
overhead can be further reduced by reducing the sampling frequency
of performance counters used for detection of the attack.

V. CONCLUSION
This paper presents experimental evaluation and the results on

the run-time detection of Prime+Probe CSCA on Intel’s x86 archi-
tecture using multiple machine learning models that collect real-
time data from the HPCs for fast & accurate detection on AES
cryptosystem. We argue that intelligent performance monitoring of
concurrently executing processes at hardware-level, coupled with ma-
chine learning methods, can enable early detection of high precision
and stealthier CSCAs. Our evaluation metric comprises of detection
accuracy, speed, system-wide performance overhead, realistic system
load conditions and confusion matrix for ML models. Our results
show detection accuracy of > 99% for Prime+Probe attack with
performance overhead of 3− 4% at the highest detection speed, i.e.,
within 1 − 2% completion of 4800 AES encryption rounds needed
to complete the attack.

REFERENCES

[1] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of aes,” CT-RSA, pp. 1–20, 2006.

[2] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar,
“Cache attacks enable bulk key recovery on the cloud,” vol. 9813. Santa
Barbara, CA, USA: CHES, 08 2016, pp. 368–388.

[3] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in USENIX Security 14, p. 719.

[4] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast
and stealthy cache attack,” in DIMVA, 2016, pp. 279–299.

[5] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen, “Prime+abort:
A timer-free high-precision l3 cache attack using intel TSX,” in 26th
USENIX Security Symposium (USENIX Security 17). Vancouver, BC:
USENIX Association, 2017, pp. 51–67.

[6] P. K. et al, “Spectre attacks: Exploiting speculative execution,” 2018.
[7] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,

P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown.”
[8] “https://threatpost.com/mixed-signal-microcontrollers-open-to-side-

channel-attacks/134793/,” 2018.
[9] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-

tural timing attacks and countermeasures on contemporary hardware,”
IACR Crypt. ePrint Arch., p. 613, 2016.

[10] “Papi,” 2018, http://icl.cs.utk.edu/papi/.
[11] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-

based side-channel attacks using hardware performance counters,” Appl.
Soft Comput., vol. 49, no. C, pp. 1162–1174, Dec. 2016.

[12] M. Payer, “Hexpads: a platform to detect stealth attacks,” in Inter-
national Symposium on Engineering Secure Software and Systems.
Springer, 2016, pp. 138–154.

[13] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware detection
with performance counters,” in ACM SIGARCH Computer Architecture
News, vol. 41, no. 3. ACM, 2013, pp. 559–570.

[14] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side-
channel attack detection system in clouds,” in International Symposium
on Research in Attacks, Intrusions, and Defenses, 2016, pp. 118–140.

[15] M. A. et al, “Performance counters to rescue: A machine learning
based safeguard against micro-architectural side-channel-attacks,” Crypt.
ePrint Arch., 2017, https://eprint.iacr.org/2017/564.

[16] M.-M. Bazm, T. Sautereau, M. Lacoste, M. Sudholt, and J.-M. Menaud,
“Cache-based side-channel attacks detection through intel cache moni-
toring technology and hardware performance counters,” in IEEE FMEC,
3rd Int’l Conf. on.

[17] Z. Allaf, M. Adda, and A. Gegov, “Confmvm: A hardware-assisted
model to confine malicious vms,” in UKSim2018: UKSim-AMSS 20th
International Conference on Modelling & Simulation. IEEE, 2018.

[18] S.-h. PENG, Q.-f. ZHOU, and J.-l. ZHAO, “Detection of cache-based
side channel attack based on performance counters,” DEStech Transac-
tions on Computer Science and Engineering, no. aiie, 2017.

[19] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, V. Lapotre, and
G. Gogniat, “Nights-watch: A cache-based side-channel intrusion detec-
tor using hardware performance counters,” in ISCA’18 Int’l Workshop
on Hardware and Architectural Support for Security and Privacy. Los
Angeles, CA, USA: ACM, 2018, pp. 1:1–1:8.

[20] Z. Allaf, M. Adda, and A. Gegov, “A comparison study on flush+reload
and prime+probe attacks on aes using machine learning approachess,”
UK Workshop on Computational Intelligence, pp. 203–213, 2017.


