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Abstract

The motivation of this work is to propose a general methodology to deal with
complex nonlinear mechanical behaviors in the context of identification and
model updating problems. We follow here the principle of the modified Consti-
tutive Relation Error that is an energy-based functional suited to the solution
of inverse problems, and originally used in the context of elasticity and elasto-
dynamics problems with potentially highly corrupted experimental data. In the
paper, we develop and analyze an extended formulation of the modified Consti-
tutive Relation Error functional in order to deal with a wide class of nonlinear
mechanical behaviors. The general idea in the construction of the functional
is to ensure a strong mechanical content by referring to the thermodynamical
framework. In addition, a dedicated numerical process sharing similarities with
the LaTIn method is proposed in order to allow effective inversion with rea-
sonable computational cost. The performance of the developed procedure is
analyzed on 2D elastic-damage and 3D elasto-visco-plastic cases.
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1. Introduction

Nowadays a main limitation in the numerical simulation of structural
mechanics problems comes from the setting of input model parameters. Indeed,
the last two decades have seen major advances in terms of : (i) computing
infrastructure, with the increasing use of supercomputers as illustrated in Fig-
ure 1 ; (ii) computational methods, involving strongly parallelized algorithms
such as direct parallel solvers, domain decomposition methods, or multigrid
methods. With this large amount of numerical resources, a wide variety of
complex problems can now be solved efficiently. Nevertheless, in order to
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Figure 1: Evolution of computational resources during these last 16 years (mean over the five
first French clusters in the TOP500 Supercomputer list [54])

perform meaningful simulations (i.e. with quantitative output information)
considering complex mechanical behaviors, a key point is the accurate choice
of the values of input parameters in such models. The present work enters in
this framework.
In order to perform numerical simulations which are relevant representations
of a physical system, a classical procedure is to fit model input parameters
with respect to available observations on the system. The identification of
these parameters is then performed solving an inverse problem that exploits
a combination of model and experimental data. In the context of inverse
problems, there is a wide range of approaches in the literature. We can
basically distinguish two classes of approaches: (i) deterministic ones usually
based on the minimization of a functional with the addition of a regularization
term [14, 10]; (ii) stochastic ones in which the inverse problem is formulated
using the Bayesian framework and therefore described in terms of probability
densities [55, 34, 57]. In the remainder of the paper, we focus on the first
class and we deal with a specific tool referred to as the modified Constitutive
Relation Error (mCRE).
The mCRE was initially introduced in [41]. It is based on the constitutive
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relation error (CRE) concept which makes use of duality and convexity
properties when formulating material constitutive laws [50, 17, 29]. This
latter concept has been widely used over the last 40 years for the verification
of computational mechanics models, i.e. the derivation of a posteriori error
estimates in order to assess the quality of finite element calculations (see [42, 39]
for an overview). During the 90s, the CRE concept was extended to model
identification/updating and originated the mCRE method. First introduced for
linear dynamics models [41, 19, 44, 9], this method was later successfully used in
many calibration applications including defects [13], uncertain measurements,
behaviors, or loadings [23, 43, 25, 16], or even corrupted measurements [2, 26].
It was also used in the context of full-field measurements [5, 27, 52, 8], or
in conjonction with reduced order modeling [12, 15] and data assimilation
tools [48]. After initial studies in which measurements were basically included
as additional admissibility constraints in the CRE concept, the more flexi-
ble and effective mCRE strategy was developed. This strategy consists in
relaxing constraints on measurements and other uncertain data, proposing a
general framework in which reliable theoretical and experimental information
(equilibrium, sensor position,...) is favored to define admissibility spaces, and
residual on complementary information (material behavior, sensor values,...) is
measured; a nice review on the mCRE philosophy is given in [33]. The mCRE
strategy acts in an iterative two-steps algorithm, in which optimal admissible
fields are first computed (with respect to both model and observations), before
minimizing the obtained mCRE functional with respect to model parameters.
The use of mCRE presents interesting advantages for model identification or
updating [53]: (i) it has excellent capabilities to localize structural defects
spatially; (ii) it naturally contains a regularization procedure due to the
employed hierarchical updating; (iii) it is very robust with respect to noisy
measurements or corrupted data; (iv) it has good convexity properties inducing
the identification of a global minimum.

In the present work, we wish to extend the mCRE concept for parameter
identification and model updating in the context of nonlinear material behaviors
encountered in structural mechanics applications. Such complex behaviors
have now become usual when dealing with inverse problems [20, 21, 22, 46, 6].
Using CRE-type identification tools, some works proposed pioneering method-
ologies [3, 46, 7] but these are specific and functionals which are introduced are
tuned to the considered problem, with empirical considerations. Here, we wish
to define a general approach for the definition of the mCRE functional and the
associated minimization process to be used. For that purpose, we adopt the
approach that extends the original CRE concept to complex nonlinear models
proposed in [40, 45, 38] in the context of model verification. Issued from a
sound thermodynamical background, this extension is based on the fact that
a large class of material behaviors (with so-called standard formulation [31])
can be described in terms of state equations and evolution laws which are
defined by means of convex and dual (in the Legendre-Fenchel sense) potentials;
these are usually related to free energy and dissipation. Therefore, a suitable
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CRE measure defined by Legendre-Fenchel residuals and sharing similarities
with the so-called symmetrized Bregman divergence [18] can be defined from
these potentials; it is in practice applied to an admissible solution satisfying
kinematic constraints and balance equations. We propose to use this measure in
the mCRE functional, thus performing a natural transition between CRE and
mCRE for nonlinear models. Even though it applies to all material behaviors
with standard formulation, the proposed methodology is here detailed in the
context of (visco-)plasticity with possible softening (isotropic damage).
A second advance in the paper is the introduction of a specific numerical
strategy, taking in account the structure of the constructed nonlinear mCRE
functional, in order to perform inversion in an effective way and with a reason-
able CPU cost. This strategy has a strong physical background and is closely
related to the LaTIn method [35, 37, 11]; it allows to perform the solution for
a large variety of material behaviors and is dedicated to multi-resolution with
restart procedure, that is the reuse of a computed LaTIn space-time solution
as the initialization of another iterative LaTin procedure with other material
or loading parameters.
The overall methodology which is proposed in this paper is illustrated on two
numerical experiments in order to assess its performance. In particular, a
real-case application involving a 3D elasto-visco-plastic structure is proposed.

The paper is organized as follows: Section 2 is devoted to the introduction
of the reference nonlinear model considered throughout the work, as well as to
the presentation of the original mCRE concept applied to linear problems; in
Section 3 we present in details the proposed general formulation of the mCRE
functional, which is applicable to both linear and nonlinear inverse problems
in structural mechanics; an associated numerical strategy that enables to lead
the inversion process in an effective way is developed in Section 4; in Section 5
we illustrate and analyze the performance of the proposed approach on two
numerical experiments; eventually, conclusions and prospects to this work are
drawn in Section 6.

2. Formulation of the inverse problem

2.1. Reference identification problem

We consider the quasi-static evolution of an open bounded body Ω over the
time interval It = [0, T ]. We denote ∂Ω the boundary of Ω and assume that
∂Ω = ∂Ωu ∪ ∂ΩT , with ∂Ωu ∩ ∂ΩT = ∅, ∂Ωu being the support of Dirichlet
boundary conditions and ∂ΩT the support of Neumann boundary conditions.
Assuming small deformations and isothermal conditions, the considered non-
linear structural mechanics problem which describes the evolution of the body
over the space-time domain reads: find the displacement field u(x, t) and the
stress field σ(x, t) with (x, t) ∈ Ω× It which satisfy:

1. the kinematic constraints

u = ud ∀(x, t) ∈ ∂Ωu × It (1)
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2. the balance equations

{
divσ + fd = 0 ∀(x, t) ∈ Ω× It
σ · n = Td ∀(x, t) ∈ ∂ΩT × It

(2)

3. the (nonlinear) constitutive relation:

σ = A(ε̇|τ , τ ≤ t) ∀(x, t) ∈ Ω× It (3)

as well as initial conditions. ε = ∇S(u) denotes the linearized strain tensor,
while fields ud, fd, and Td represent the prescribed loading in terms of displace-
ments, body forces, and tractions, respectively. In the particular case where a
linear elasticity model is considered, the constitutive relation (3) reads:

σ = Cε(u) (4)

where C is the Hooke tensor.

In the framework of numerical simulation and computational mechanics,
the classical procedure (referred to as the direct problem) consists in solving
(1-3) from inputs (geometry, materials, boundary conditions, loadings, . . . )
in order to determine outputs (u,σ). This may be performed using the
finite element method. In the context of parameter identification and model
updating, the procedure is inverted and leads to an inverse problem: from a
subset of inputs and additional outputs (i.e. measured observations on the
physical system), it consists in identifying the missing input data. In other
words, from experimental observations and a numerical model, we search
to identify the unknown input parameters of the numerical model which al-
low the best match between the model predictions and the observations at hand.

Focusing on its solution by deterministic approaches, the general formulation
of an inverse problem reads:

ξsolution = argmin
ξ∈P

J (ξ; s) (5)

where ξ are unknown model parameters to be identified, s are observations,
and J is a given (least-square-type) cost function that involves the gap between
observations s and outputs u(ξ) reconstructed from (parts of) the model with
input parameters ξ. This cost function usually incorporates a regularization
term as well [56], in order to circumvent numerical difficulties associated with
the ill-posed feature of inverse problems in most practical applications. The
solution to (5) can be performed by means of usual numerical approaches such as
first order steepest descent methods (with the adjoint state method to evaluate
gradients) or the Levenberg-Marquardt algorithm.
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2.2. The original modified Constitutive Relation Error

Among all possible cost functions, and temporarily focusing on linear elastic-
ity problems, we detail here the modified Constitutive Relation Error (mCRE)
functional initially introduced in [41]. It is an energy functional based on two
terms: (i) a modeling error term which measures the residual in the constitutive
equation (CRE measure); (ii) a measurement discrepancy term. Using notations
introduced previously, the mCRE functional Em is defined as:

E2
m (uad,σad; ξ) =

1

2

∫

It

∫

Ω

(σad − C : ε(uad)) : C−1 : (σad − C : ε(uad)) dxdt

+
γ

2

∫

It

‖Πuad − s‖22dt (6)

where (uad,σad) ∈ Uad × Sad are displacement vector and stress tensor,
respectively, which are admissible i.e. which satisfy kinematic constraints (1)
and balance equations (2) (in the weak sense of FE analysis usually), ‖ · ‖2 is
the classical (potentially weighted) Euclidean norm, and γ ∈ R+ is a scalar
coefficient that weighs the influence of the measurement discrepancy term
besides the modeling error term. In practice this weighting coefficient is chosen
by means of methods similar to these used to compute the Tikhonov regular-
ization coefficient, for instance L-curve, Morozov [51], or Arcangeli [4] principles.

The inverse problem solution using the mCRE functional is defined as the
result of the following nested minimization problem:

ξsolution = argmin
ξ∈P

min
(uad,σad)∈Uad×Sad

E2
m (uad,σad; ξ) (7)

In practice this problem is addressed using an alternated minimization. The
approach was used in many inverse problem applications in the literature, see
for instance [16, 9, 8] for recent applications, or [52, 8, 33] for heterogeneous
material properties field identification involving observations coming from
digital image correlation. Furthermore, its robustness when considering
highly corrupted data was demonstrated in [26]. Nevertheless, the modified
Constitutive Relation Error solution has the drawback to be computationally
expensive, particularly for evolution problems in which the admissible fields
computation requires a specific numerical treatment in order to be numerically
competitive [26, 9, 48].

Until now, and in spite of its large advantages, a main limitation of the
original formulation of the mCRE functional comes from its lack of abstrac-
tion. Actually, the functional was clearly defined in the case of linear elasticity
behavior alone, with static or dynamic regimes. From the best of our knowl-
edge, there are very few references attempting to apply the mCRE approach
to nonlinear problems [3, 46, 53, 24, 7]; most of them deal with elastic damage
behavior and introduce a functional which is not strictly speaking a sound and
natural definition of the mCRE functional in the nonlinear context. This is to
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circumvent this issue that we propose in the following a general formulation
of the mCRE approach which enables to deal with a large class of nonlinear
material behaviors.

3. General formulation of the modified Constitutive Relation Error

3.1. The CRE concept for nonlinear material behaviors

In order to extend and generalize the concept of the modified Constitutive
Relation Error to nonlinear behaviors, we choose to start from the origin of
this functional that is the theory of the Constitutive Relation Error (CRE)
used for a posteriori discretization error estimation in the FEM context
(see [42, 39] for an overview). From its original definition for linear thermal
or elasticity problems, several extended formulations of the CRE concept have
been proposed over the years in the case of nonlinear behaviors [42]. The first
one (referred to as the Drucker error), was introduced for dynamics problems
and is based on the Drucker material stability principle. The second one,
introduced in [40] and referred to as the dissipation error, is based on the
definition of a residual associated to dissipation phenomena alone. The last
and more general one, introduced in [45, 38], is used in the present paper as
a starting point for the extension of the mCRE to nonlinear behaviors. It is
described in the remainder of this section considering the large class of material
behaviors with standard formulation.

In the general definition of the CRE functional given in [45, 38], a key point is
the formulation of the nonlinear constitutive relation (3) in terms of state equa-
tions and evolution laws [30, 31, 47]. Using the thermodynamical framework,
we introduce the convex Helmholtz free energy potential ψ:

ψ := ψ(T, ε, εp, Vi) = ψ(T, εe, Vi) (8)

that depends on state variables, i.e. observable variables (temperature T and
strain tensor ε) and internal variables: (i) the inelastic part εp of the strain
tensor, such that ε = εe+εp; (ii) additional internal variables Vi. Then, the two
first principles of thermodynamics lead to the Clausius-Duhem inequality (9):

(σ − ∂εeρψ) : ε̇e − ρ (s+ ∂Tψ) Ṫ −
∑

i

∂Viρψ ◦ V̇i + σ : ε̇p −
q · ∇T
T

≥ 0 (9)

where ρ is the mass density, s is the entropy, and q is the thermal flux. The
notation ∂∗ refers to the (generalized) gradient with respect to ∗. Consequently,
considering non-dissipative transformations leads in particular to the relation:

σ = ∂εeρψ (10)

Similarly, we can introduce thermodynamical loads associated with internal vari-
ables Vi:

Yi = ∂Viρψ (11)
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so that (9) can be recast in the following condensed format:

σ : ε̇p −Yi · V̇i −
q · ∇T
T

≥ 0 (12)

We mention that (10) and (11) constitute the state equations of the material
behavior. It is shown in [37] that considering the large class of material
behaviors with normal formulation, it is always possible to define sets Vi and
Yi (using a change of variables if required) so that state equations are linear,
i.e. the free energy potential ψ is quadratic.

By duality, we can define the Gibbs free energy potential, denoted ψ?, as
the Legendre-Fenchel transform of the Helmholtz free energy (8):

ψ? (T,σ,Yi) = sup
εe,Vi

(σ : εe + Yi ·Vi − ψ (T, εe,Vi)) (13)

so that ψ (T, εe,Vi) + ψ? (T,σ,Yi) − σ : εe − Yi · Vi ≥ 0. Then, it can be
shown [50] that state equations can be equivalently recast as:

ψ (T, εe,Vi) + ψ? (T,σ,Yi)− 〈(σ,Yi) , (εe,Vi)〉 = 0 (14)

where we introduced the notation 〈(σ,Yi) , (εe,Vi)〉 = σ : εe + Yi ·Vi.

Remark 1. As thermal effects are not considered in the present work (isother-
mal conditions), the temperature variable T will be deliberately omitted in the
remainder of the paper.

The inequality (12) reflects the dissipative evolution phenomena associated
with the nonlinear material behavior. In particular, it prescribes a consistency
condition on the pair of variables ((εp,Vi), (σ,Yi)) in order to ensure that the

intrinsic part σ : ε̇p−Yi · V̇i of the dissipation remains positive. To satisfy the
previous condition, it is usual and convenient to introduce a convex dissipation
pseudo-potential, denoted ϕ(ε̇p,−V̇i), as well as its dual potential (defined using
the Legendre-Fenchel transform):

ϕ?(σ,Yi) = sup
ε̇p,V̇i

(〈
(σ,Yi) , (ε̇p,−V̇i)

〉
− ϕ

(
ε̇p,−V̇i

))
(15)

Then, evolution laws are defined from the gradients of potential ϕ (or ϕ?),
involving an operator B:

(ε̇p,−V̇i) = B ((σ,Yi)) = ∂(σ,Yi)ϕ
?(σ,Yi) (16)

so that the Clausius-Duhem inequality (12), which comes down to positive def-
inite properties of the operator B:

(σ,Yi) · B ((σ,Yi)) ≥ 0 (17)

is naturally satisfied since dissipation pseudo-potentials are chosen convex and
such that ϕ(0,0) = ϕ?(0,0) = 0.
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Remark 2. It can be shown in some cases that there is a relation which links
the free energy and dissipation potentials. This additional relation comes from
the Drucker-Illuyshin postulate and refers to the class of generalized standard
materials [30, 31, 49].

From the previous thermodynamical formulation of nonlinear behaviors, a
general CRE measure was derived in [45] by means of residuals on: (i) the
state equations; (ii) the evolution laws. These residuals are defined using the
Legendre-Fenchel inequality applied to the corresponding thermodynamical po-
tentials. They read:

• residual on the state equations:

ηψ(εe,Vi,σ,Yi) = ψ(εe,Vi) +ψ?(σ,Yi)− 〈(σ,Yi) , (εe,Vi)〉 ≥ 0 (18)

• residual on the evolution laws:

ηϕ(ε̇p,−V̇i,σ,Yi) = ϕ(ε̇p,−V̇i) +ϕ?(σ,Yi)−
〈

(σ,Yi) , (ε̇p,−V̇i)
〉
≥ 0

(19)

We notice that the Legendre-Fenchel duality yields ηψ = 0 (resp. ηϕ = 0) when
state equations (resp. evolution laws) are satisfied.

For the sake of simplicity, we denote Σ = (εe, εp,Vi,σ,Yi) the whole set
of variables. From the two residuals (18,19), the local in space and time CRE
measure eCRE is defined as:

e2
CRE(Σ) = ηψ (Σ) +

∫ t

0

ηϕ (Σ) dt ∀x ∈ Ω,∀t ∈ It (20)

and a global measure can be obtained by integration over the space-time domain.

3.2. Extension of the mCRE functional

We now propose a general formulation of the mCRE functional based on the
CRE formulation described previously. In order to extend the mCRE functional
to nonlinear behaviors, we thus consider as a starting point the local error
formulation (20), that we integrate over the whole space-time domain, and we
augment the resulting functional by a measurement discrepancy term in a spirit
similar to what was done in the original linear formulation of the mCRE (6).
The resulting mCRE functional thus reads:

E2
m (Σ, ξ) =

∫

It

∫

Ω

ηψ (Σ) dxdt +

∫

It

∫

Ω

∫ t

0

ηϕ (Σ) dτdxdt +
γ

2

∫

It

‖Πu− s‖22dt

(21)
The functional (21) is general and can be used with a large class of nonlinear
behaviors. Indeed, only minimalistic assumptions on the material behavior
are made since a thermodynamical formulation in terms of free energy and

9



dissipation pseudo-potentials is required, which is the framework of standard
formulations [31]. In addition, as it is naturally derived from the thermody-
namical framework, this functional keeps advantages associated with convexity
properties. We can observe that the functional (21) is composed as a sum of
integral terms: (i) the two first integrands come from the Legendre-Fenchel
inequality; (ii) the last term is a least-square error term.

From this extended formulation of the mCRE functional we define the in-
verse problem in the same way as in the linear case (see Section 2.2). Therefore,
the solution to the identification or model updating process corresponds to the
parameter set ξsolution which satisfies the following nested minimization prob-
lem:

ξsolution = argmin
ξ∈P

min
F(Σad)=0

E2
m (Σad; ξ) (22)

The constraints F(Σad) = 0 correspond to the notion of admissibility and
require that the set of variables Σad satisfies: (i) the balance equations; (ii) the
Neumann and Dirichlet boundary conditions; (iii) the initial conditions.

In practice this problem is solved by means of an alternated minimization
scheme:

1. for a given parameter vector ξ(k), an optimal admissible set Σ̃ad is com-
puted by solving:

Σ̃ad = argmin
F(Σad)=0

E2
m

(
Σad; ξ

(k)
)

(23)

2. from this admissible set Σ̃ad, a new parameter vector is computed by
solving:

ξ(k+1) = argmin
ξ∈P

E2
m

(
Σ̃ad; ξ

)
(24)

The more expensive and difficult operation in this approach is the first mini-
mization; we propose in the next section a dedicated procedure to address this
issue.

4. Practical solution to the identification problem

In this section we present a specific numerical approach for the computation
of optimal admissible fields (first minimization in the previous inversion scheme)
based on the mathematical properties of the nonlinear mCRE functional. We
also detail technical aspects associated with the global inverse problem solution
deployed in this framework.
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4.1. First step - computation of optimal admissible fields

The first stage of the inverse problem solution using the modified Consti-
tutive Relation Error is the computation of an optimal admissible set Σ̃ad for
a given parameter vector ξ. This computation is defined in terms of the con-
strained minimization (23) where the constraints are defined as:

F(Σad) = 0⇔





divσad + fd = 0 ∀(x, t) ∈ Ω× It
uad = ud ∀(x, t) ∈ ∂uΩ× It
σad · n = Td ∀(x, t) ∈ ∂TΩ× It

(25)

in addition to initial conditions.
A possible methodology to solve the minimization (23) would be to introduce a
Lagrange multiplier field in order to take into account the previous constraints
(mainly the equilibrium equations) into the mCRE functional and write the
stationarity conditions of the associated Lagrangian. Although this approach
is feasible, it has some disadvantages: (i) stationarity conditions may be very
complex to express; (ii) the integration of history in the term associated to dis-
sipation (residual on evolution laws) implies to introduce, during the calculation
of stationarity conditions, an incremental time discretization scheme.
In order to avoid these drawbacks, especially the second one, we investigate here
another approach. The proposed solution scheme is based on the observation
that the mCRE functional is a sum of positive terms. Indeed, the two first
terms of the functional are derived from the Legendre-Fenchel inequality and
are therefore necessarily positive by definition, while the last term is the square
of a norm. From this statement, we choose to split in two parts the mCRE
functional and then to transform the initial constrained minimization under the
form of two coupled minimizations. The splitting of the functional is performed
as follows:

• in a first functional we consider the residual on state equations and the
measurement discrepancy term:

E2
ψ

(
Σψ
)

=

∫

It

∫

Ω

ηψ(Σψ)dxdt +
γ

2

∫

It

‖Πu− s‖22dt (26)

• in a second functional we consider the residual on evolution laws:

E2
ϕ(Σϕ) =

∫

It

∫

Ω

∫ t

0

ηϕ(Σϕ)dτdxdt (27)

The two constrained sets of variables Σψ and Σϕ, subsets of Σ, are defined in
the following way:

• Σψ is the variable set considered when dealing with the functional E2
ψ. In

this set, all internal variables driven by the material evolution law (i.e.
damage variable, plastic strain, cumulated plasticity, . . . ) are fixed and
only u (or ε(u) = εe + εp) and σ are unknown;
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• Σϕ is the variable set considered when dealing with the functional E2
ϕ. In

this set, the variable ε(u) is fixed, and all other variables are unknown.

Remark 3. The sets Σψ and Σϕ, introduced to ensure a better understanding
of the proposed approach, correspond to the original parameter set Σ in which
some variables are unknowns and others are fixed. They enable to consider
reduced minimization spaces that ensure convergence of the fixed point strategy
defined below (see the proof given in [37, Section 4.5.3, Theorem 1] for the
general framework of the LaTIn method). The only variable computed in both
minimizations is the stress tensor σ.

From this splitting, we define the computation of the optimal admissible set
as the solution to the following coupled system:





min
F(Σψ

ad)=0
Eψ(Σψ

ad)

min
F̂(Σϕ

ad)=0
Eϕ(Σϕ

ad)
(28)

Constraints F(Σψ
ad) = 0 involve equilibrium equations and boundary conditions,

while constraints F̂(Σϕ
ad) = 0 involve initial conditions alone. Each constrained

minimization problem can be solved by introducing Lagrange multipliers. In
practice, the two problems are solved alternatively with a fixed point algorithm.

4.2. First step - details on the fixed point algorithm

We detail below the two problems to be solved alternatively:

1. constrained minimization of Eψ:

min
F(Σψ

ad)=0
Eψ(Σψ

ad) (29)

Introducing a Lagrange multiplier field and writing stationarity conditions
leads to the formulation of a problem which is global over the whole space
domain but which is linear. Its solution at iteration n+1 of the algorithm
is denoted Σ̂(n+1/2);

2. constrained minimization of Eϕ:

min
F̂(Σϕ

ad)=0
Eϕ(Σϕ

ad) (30)

Introducing a Lagrange multiplier field and writing stationarity conditions
leads to the formulation of a nonlinear evolution problem but which is
local in space (i.e. defined at the integration point level). Its solution at
iteration n+ 1 of the algorithm is denoted Σ(n+1).

The splitting of the mCRE functional thus leads to the formulation of: (i) a
linear and global in space problem; (ii) a nonlinear and local in space problem.
Both problems are global in time. This invites to use a solution scheme similar
to the Large Time Increment (LaTIn) method [35, 37]. The solution process
we propose, inspired from the LaTIn method, is based on the definition of two
spaces:

12



• a linear space:
Ad = arg min

F (Σψ
ad)=0

Eψ(Σψ
ad; ξ) (31)

• a local space:
Γ = arg min

F̂ (Σϕ
ad)=0

Eϕ(Σϕ
ad; ξ) (32)

These two spaces define the solution to problem (23), i.e. the optimal admissible

set Σ̃ad according to the mCRE functional (21) corresponds to the intersection
of the two spaces (33):

Σ̃ad = Ad ∩ Γ (33)

In Figure 2 we give a graphical representation, classical in the framework of the
LaTIn method, of the successive minimization solutions in Ad and Γ leading to
Σ̃ad.

�

Ad

e⌃ad

⌃(n)

⌃̂
(n+1/2)

⌃(n+1)

Figure 2: Graphical interpretation of the LaTIn method

Eventually, and still in the spirit of the LaTIn method, a link between the
two minimization problems is made by means of two parameters of the solution
scheme which are the up and down directions, respectively denoted E+ and E−.
These are introduced in the two stages of the numerical method:

local stage : given Σ(n) ∈ Ad, find Σ̂(n+1/2) ∈ Γ such that

(
Σ̂(n+1/2) −Σ(n)

)
∈ E+ (34)

Different choices are possible for E+ and are discussed in [37]. Here,
we consider the up direction that consists in imposing the strain tensor
computed at the previous linear stage i.e. ε̂(n+1/2) = ε(n). It is referred as
“infinity” direction in the literature, as it corresponds to a vertical slope
in the graph of Figure 2. Considering such a direction leads to a nonlinear
local problem driven in terms of strain which ensures a better convergence.
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linear stage : given Σ̂(n+1/2) ∈ Γ, find Σ(n+1) ∈ Ad such that

(
Σ(n+1) − Σ̂(n+1/2)

)
∈ E− (35)

The optimal choice for E− is obviously the tangent direction to the local
space Γ, similarly to a classical Newton approach. Nevertheless, this choice
requires to compute tangent operators at each iteration. For a sake of
simplicity, we choose here to consider an elastic down direction, i.e. we
use the elastic stiffness matrix. In the particular case of damage problem,
we use the stiffness matrix computed from the damaged material.

A more practical explanation of the LaTIn method is the description of the
material integration step. Indeed, in a classical incremental Newton approach
the material integration is realized in a single step at each integration point for
a given time increment (more detailed explanations on this vision can be found
in [28]). Conversely, in the numerical approach we propose here and in the same
way as in the LaTIn method, the material integration step is performed in two
stages:

1. the local integration: it corresponds to the integration of the evolution
laws, i.e. the computation of the nonlinear evolutions. This stage only
implies computations at the integration point level, so that this stage
can be strongly parallelized. More precisely, at a given iteration, the
entire evolution of the internal variables characterizing the nonlinearities
is computed from the whole history coming from the linear space Ad;

2. the linear integration: it corresponds to the evaluation of the state equa-
tions. This stage implies computations at the integration point level and
an assembly stage to compute a global linear system (stiffness matrix and
internal reactions). This step is obviously performed knowing the entire
evolution of the internal variables coming from the local integration step.
The time aspect is taken into account by solving an incremental linear
system explicitly.

A graphical representation of the integration process, inspired by a similar
representation used in [28] for the Newton method, is drawn in Figure 3.

Remark 4. The minimization of the functional in terms of residual on state
equations and measurement discrepancy, performed in the linear stage, leads to
an incremental linear system of the following form:

[
K −K

γΠTΠ K

]{
∆U
∆Λ

}
=

{
Fext
Fobs

}
(36)

where K is a stiffness matrix. In order to avoid the expensive factorization of a
2 ·ndof × 2 ·ndof matrix (ndof being the number of dofs in the direct problem),
a natural approach consists in performing the solution in two parts:

1.
(
K + γΠTΠ

)
∆U = Fext − Fobs
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linear problem
Σ(n)(∀t)

̂local problem
∆ε̂

Σ̂
(n+1/2)

(t ≤ t(k))
Behavior
E+

integrate_local()

Σ̂
(n+1/2)

(t = t(k+1))

(a) Local stage

linear problem
∆ε

Σ(n+1)(t ≤ t(k))

̂local problem

Σ̂
(n+1/2)

(∀t)

Behavior
E−

integrate_linear()

Σ(n+1)(t = t(k+1))

Fint
K

(b) Linear stage

Figure 3: Material integration in the proposed solution scheme (n refers to the iterations of
the LaTIn solver, while k refers to loading increments)

2. K∆Λ = Fext + Fobs − γΠTΠ∆U

The issue with this latter approach comes from the fact that it is then necessary
to perform two factorizations: (i) the first one for

(
K + γΠTΠ

)
; (ii) the second

one for K. Consequently, the complexity of the solution, initially in O((2 ·
ndof )3), becomes in 2 · O(n3

dof ). Nevertheless we can observe that the two
matrices to be factorized are very similar, so that the computational cost can
be again reduced using the Sherman-Morrison-Woodbury formula:

(
K + γΠTΠ

)−1
= K−1 −K−1γΠT

(
1 + γΠK−1ΠT

)−1
ΠK−1 (37)

It is then necessary to compute only one factorization of K and another one
for 1 + γΠK−1ΠT which is a low rank matrix of size nobs × nobs that is to
say a very small matrix in the case of sparse sensor placement. Using (37), the
computational complexity to solve the system (36) decreases from O((2 ·ndof )3)
to O(n3

dof ) + O(n3
obs) which represents a real computational saving especially

when considering representative industrial cases.
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4.3. Second step - minimization over the parameter space

In the proposed mCRE approach, the second step at the k-th iteration of
the inverse problem solution is the minimization of the mCRE functional with
respect to parameters (for fixed Σ̃ad):

ξ(k) = argmin
ξ∈P

Em
(
Σ̃ad, ξ

)
(38)

In order to solve this minimization problem, the various optimization methods
available in the literature can be used. Nevertheless, a convenient approach is
to use the fact that to compute the optimal admissible set Σ̃ad, stationarity
conditions of a Lagrangian L defined from the functional to be minimized have
been searched. Therefore it is natural to solve the minimization problem (38)
using the adjoint approach [21]. Indeed, considering the adjoint framework, the
gradient of the cost function to be minimized is easily computed at ξ = ξ(k) as:

∇ξE2
m(Σ̃ad, ξ

(k)) =
∂

∂ξ
L
(
Σ̃ad, ξ

(k),λ
)

(39)

where λ denotes the Lagrange multiplier field. This gradient is then used as a
constant descent direction in the iterative gradient method used to solve (38).
This approach is similar to that used in [15].

5. Numerical results

In this section, we illustrate the methodology and computation strategy on
two numerical experiments involving parameter identification with nonlinear
behaviors. In both cases, the identification process required between 10 and
15 LaTIn sub-iterations at iteration 1 of the process, then between 3 and 5
sub-iterations at other iterations. This decrease in the number of sub-iterations
from iteration 2 is due to the fact that the LaTIn initialization is then performed
from fields computed at the previous iteration.

5.1. Parameter identification with an elastic damage behavior

5.1.1. Specific formulation for the computation of the optimal admissible set

In this first example we consider an elastic damage behavior, with isotropic
damage. In order to circumvent some numerical difficulties associated with
softening behaviors (in particular mesh dependency related to loss of ellipticity),
we choose here to consider a regularizing delay-damage model as introduced
in [36, 1, 53]. The delay-damage model is formulated as:




ḋ = k

a

(
1− exp

[
−a
〈
Y−Y0−β
Yc−Y0

〉
+

])

−α̇ = −ḋ
(40)

where d ∈ [0, 1] is the damage variable, α is an internal variable used to model
the strain hardening (β is the associated thermodynamical load), Y = 1

2ε : C : ε,
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Yc and Y0 are material parameters (energy rates), and k and a are parameters of
the evolution law. For this behavior, the free energy and dissipation potentials
are defined as:

ψ(σ, d, α) =
1

2

σ : C−1 : σ

1− d +
(Yc − Y0)

3
α3 + Ψd≤1 (41)

ϕ?(Y, β) =
k

a

[
〈Y − Y0 − β〉+ +

Yc − Y0

a

(
exp

(
−a〈Y − Y0 − β〉+

Yc − Y0

)
− 1

)]
(42)

where Ψ is the indicatrix function. The two dual associated potentials then
read:

ψ?(ε, Y, β) = Y +
2

3

|β|3/2√
Yc − Y0

+ ΨY≤ 1
2ε:C:ε (43)

ϕ(ḋ,−α̇) = ḋ
(a− 1)Y0 + Yc

a
+

(
k

a
− ḋ
)

ln
(

1− a

k
ḋ
)

(44)

Remark 5. This particular choice for gathering variables into primal and dual
potentials (for instance, the stress field σ appears here in the primal potential
ψ) enables to preserve convexity properties when considering damage effects.
The reader is referred to [45, 38] for full details on this technical aspect.

From these potentials we define the mCRE functional, as well as contribu-
tions E2

ψ and E2
ϕ to this functional, as described in Section 4. Then we set up

a solution scheme in the spirit of the LaTIn method for the optimal admissi-
ble fields computation. As described previously, the two following spaces are
introduced:
Linear space Ad associated with the solution to:

min
F (Σψ

ad)=0
E2
ψ(Σψ

ad) (45)

In order to solve this constrained minimization problem, we introduce a field of
Lagrange multipliers, denoted λ, which leads to the definition of the Lagrangian:

L(Σψ,λ) = E2
ψ(Σψ) +

∫

It

∫

Ω

λ · (divσ + f) dxdt (46)

The minimization problem, with frozen variables Σϕ, then comes down to ful-
filling stationarity conditions of L. All developments done, the stationarity
conditions lead to the following differential equations system:





∫

It

∫

Ω

δλ · (divσ + f) dxdt = 0
∫

It

∫

Ω

σ : ε(δu)dxdt +

∫

It

γ〈Πu− s, δu〉dt = 0

∫
It

∫
Ω
δσ :

(
1

1−dC
−1 : σ − ε

)
dxdt +

∫

It

∫

Ω

λ · div δσdxdt = 0

(47)

17



Local space Γ associated with the solution to:

min
F̂ (Σϕ

ad)=0
E2
ϕ(Σϕ

ad) (48)

Stationarity conditions of the associated Lagrangian lead to the following non-
linear differential system:





∫

It

∫

Ω

∫ t

0

δα̇βdτdxdt = 0
∫

It

∫

Ω

∫ t

0

δβ

(
α̇+

k

a

〈Y − Y0 − β〉+
|Y − Y0 − β|

[
exp

(
−a 〈Y − Y0 − β〉+

Y0 − Yc

)
− 1

])
dτdxdt = 0

∫

It

∫

Ω

∫ t

0

δY

(
k

a

〈Y − Y0 − β〉+
|Y − Y0 − β|

[
exp

(
−a 〈Y − Y0 − β〉+

Y0 − Yc

)]
− ḋ
)

dτdxdt = 0
∫

It

∫

Ω

∫ t

0

δḋ

(
(a− 1)Y0 + Yc

a
− Y − ln

(
1− a

k
ḋ
)
− 1

)
dτdxdt = 0

(49)
In practice, time integration for the solution in this local stage is performed
using an explicit Euler scheme.

5.1.2. Identification of a damage model parameter in a DCB test

The problem we consider to illustrate the method using the softening behav-
ior of Section 5.1.1 is a debonding test on a laminated composite, more precisely
a Double Cantilever Beam (DCB) test, on which we search to identify the dam-
age law parameter Y0. The structure and boundary conditions are described in
Figure 4. It is made of a two-ply composite material in which plies have a linear
elastic behavior while the interface between the two plies has an elastic damage
behavior.

Elastic ply

Elastic ply

Elastic-damage interface

ud

ud

Figure 4: The considered structure with elastic damage behavior: boundary conditions and
position of sensors

The structure is clamped on its right side while the external loading is made
of a prescribed symmetric displacement, applied incrementally with linear evo-
lution, on part of the boundary (see Figure 4). The material parameters used
for this example are given in Table 1.
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Parameter Eply νply Einterface νinterface a k Y0 Yc
Value 120 GPa 0.3 57 GPa 0.3 1. 0.05 0.05 0.23

Table 1: Material parameters used for the composite debonding example

The space discretization (finite element mesh) used in the simulation is rep-
resented in Figure 5. This mesh made of 3-node triangle elements is deliberately
excessively fine (25,000 dof) in order to catch at best the evolution of damage
phenomena. The direct problem solution, used in order to simulate synthetic
observation data, is given in Figure 6; we clearly observe the evolution of dam-
age along the interface. The observations considered for this example are dis-
placements at points represented in Figure 4. In addition a 1% (referring to a
relative standard deviation) measurement noise is considered and introduced as
a Gaussian white noise [32] in both space and time.

Figure 5: Elastic damage behavior example - finite element mesh

In Figure 7 we plot the evolutions during the iterations of the identification
process of: (i) the mCRE functional; (ii) the relative error on the identified
parameter Y0. We first observe that the proposed inverse problem solution
seems to offer a really effective identification method since, at convergence (af-
ter only 20 iterations), the obtained relative error on the identified parameter
is 1.9%. Nevertheless a surprisingly low evolution of the mCRE functional can
be observed and is associated to the small variability magnitude of the func-
tional to the identified parameter, as it can be observed in Figure 7a; a similar
evolution was observed in [7]. Another possible explanation of this small de-
crease magnitude may be associated to the choice of the weight coefficient γ
in the mCRE functional. This coefficient may be determined using a L-curve
approach in order to have a similar weight between the modeling error term and
the measurement discrepancy term (see for instance [15]). Here, in the context
of nonlinear behaviors, such an approach becomes really expensive and we chose
here not to compute an optimal value for the coefficient γ but rather use an em-
pirical value. This value is obtained from L-curve approach the considering the
same inversion problem but with a fully elastic behavior (no damage).
We also represent in Figure 8 the magnitude and components of primal field u
and dual field λ at the first iteration of the identification process using mCRE.
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(a) Step 1 (b) Step 5

(c) Step 9 (d) Step 15

(e) Step 17 (f) Step 20

Figure 6: Elastic damage behavior example - damage evolution along the interface

An interesting observation is the spatial distribution of the dual field λ (field of
Lagrange multipliers) which ensures admissibility conditions i.e. balance equa-
tions; it is mainly concentrated in the vicinity of the damaged interface, showing
that there is a strong constraint to decrease the opening between the two plies.
This is consistent with the fact that, the initial guess for Y0 being small, the
model tends to lead to a more important opening compared to the reference
solution during the first iterations of the identification procedure.

5.2. Model updating with a visco-plastic behavior

5.2.1. Specific formulation for the computation of the optimal admissible set

In this second example we consider a Prandlt-Reuss visco-plastic behavior
with linear isotropic hardening. For this behavior the free energy and dissipation
potentials are defined as:

ψ(ε, εvp, p) =
1

2
(ε− εvp) : C : (ε− εvp) + g(p) (50)

ϕ?(σ, R) =
kv

nv + 1

〈
‖σD‖ − (R+R0)

〉nv+1

+
(51)
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Figure 7: Elastic damage behavior example - evolution during the iterations of the mCRE
functional and of the relative error on the identified parameter

(a) Primal magnitude ‖u‖ (b) Dual magnitude ‖λ‖

(c) Primal component ux (d) Dual component λx

(e) Primal component uy (f) Dual component λy

Figure 8: Elastic damage behavior example - representation of primal and dual fields u and
λ at iteration 1 of the inversion process

with εvp the visco-plastic strain, p the cumulated plasticity, g(p) the potential
of the isotropic hardening law chosen as linear i.e. R(p) = R0 + khp, and R the
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hardening variable. The associated dual potentials read:

ψ?(σ, R) =
1

2
σ : C−1 : σ + g?(R) (52)

ϕ(ε̇vp,−ṗ) = R0‖ε̇vp‖+
1

(nv + 1)knvv
‖ε̇vp‖nv+1 (53)

From these potentials we define the mCRE functional and contributions E2
ψ and

E2
ϕ. We introduce the associated spaces:

Linear space Ad associated with the solution to:

min
F (Σψ

ad)=0
E2
ψ(Σψ

ad) (54)

In order to solve this constrained minimization problem, we introduce a field of
Lagrange multipliers, denoted λ, which leads to the definition of the Lagrangian:

L(Σψ,λ) = E2
ψ(Σψ) +

∫

It

∫

Ω

λ · (divσ + f) dxdt (55)

The solution to the minimization problem, with frozen variables Σϕ, then comes
down to the satisfaction of the Lagrangian stationarity conditions. All devel-
opments done, these stationarity conditions lead to the following differential
equations system:




∫

It

∫

Ω

δλ (divσ + f) dxdt = 0
∫

It

∫

Ω

δσ :
(
C−1 : σ − εe − ε(λ)

)
dxdt = 0

∫

It

∫

Ω

ε[δu] : (C : (ε(u)− εvp)− σ) dxdt−
∫

It

γ 〈Πu− s,Πδu〉dt = 0

(56)
Local space Γ associated with the solution to:

min
F̂ (Σϕ

ad)=0
E2
ϕ(Σϕ

ad) (57)

Stationarity conditions of the associated Lagrangian lead to the following non-
linear differential equation:

∫

It

∫

Ω

∫ t

0

δσ :

(
(nv + 1)

〈‖σD‖ − (R+R0)〉nv+1
+

|‖σD‖ − (R+R0)|
σD

‖σD‖ − ε̇
vp

)
dτdxdt (58)

In practice, time integration for the solution in this local stage is performed
using an implicit Euler scheme.

5.2.2. Model updating on a turbine blade

In order to illustrate the model updating using the mCRE in the context of
visco-plastic behavior, we address the updating of an external load on a turbine
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blade1. Boundary conditions are classical for this kind of problem: (i) normal
displacement set to zero on the blade foot; (ii) body force corresponding to a
centrifugal loading.

Figure 9: Visco-plastic behavior example - turbine blade geometry (left) and mesh (right)

In order to perform all computations (simulation of observation data and
solution to the inverse problem), we used a mesh made of 1,099,544 four-nodes
tetrahedra which leads to a 918,000 dofs problem and 4,398,176 integration
points. This mesh was created from the Salome software and using the Netgen
library; it is represented in Figure 9.

The inverse problem to be solved consists in updating the centrifugal load,
defined by the following formula (59) and applied to the blade (only the longi-
tudinal component of the load is considered):

fcentrifugal(x, y, z, t) = ρω2x · t (59)

with x the longitudinal space coordinate along the blade. In practice, the
parameter to be updated is the angular speed ω.

The material parameters used in this example are given in the Table 2.

Parameter E ν R0 khardening nv kv
Value 200 GPa 0.3 400 MPa 10 GPa 7 400

Table 2: Material parameters used for the turbine blade example

First we solve the direct problem in order to simulate observations. We
consider 16 displacement sensors, 8 set on the intrado of the blade and 8 set
on the extrado. We consider in addition a 1% measurement noise represented
by a Gaussian white noise. In Figure 10 we plot the cumulated plasticity at

1The geometry used for this example comes from the web site Grabcad (www.grabcad.com).
represented in Figure 9
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different time increments. We observe the classical plasticity profile for this
kind of problem, that is a plasticity initiation in the junction between the foot
and the body of the blade then a propagation in the blade after some increments.

(a) Increment 2 (b) Increment 6 (c) Increment 10

Figure 10: Visco-plastic behavior example — Cumulated plasticity in the blade

In Figure 11 we represent during the iterations of the identification process:
(i) the evolution of the mCRE functional; (ii) the evolution of the relative error
between the identified parameter ω and the exact one. We observe that the
obtained results are very similar to those obtained in the previous example.
However, there is a monotonous and very fast decrease of both mCRE functional
and relative error on the updated parameter, with only 10 iterations needed for
convergence. We can explain this higher convergence speed (compared to the
previous example) by the fact that in this case we search to identify a parameter
which is more macroscopic. Indeed we consider a global external load parameter
that is a really sensitive parameter in the response of the model, in comparison
to the previous example where we identified a parameter at the level of the
damage law, i.e. a more microscopic scale parameter. At convergence, we
obtain a relative error of 1.23% on the parameter, error level that we consider
as acceptable given the measurement noise level and the number of sensors
considered.

6. Conclusions and prospects

We proposed in this work a general formulation of the concept of modified
Constitutive Relation Error applicable for the solution of inverse problems with
both linear and nonlinear mechanical behaviors. Based on a sound thermody-
namical formulation of the material behavior, the defined mCRE functional has
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Figure 11: Visco-plastic behavior example - evolution during the iterations of the mCRE
functional and of the relative error on the identified parameter

a very strong physical background in comparison to more classical least-square
functionals. Furthermore, it is associated with convenient convexity properties
inherited from the thermodynamical potentials (provided the large class of mate-
rials with standard formulation is considered). We also investigated a dedicated
solution strategy based on a splitting of the mCRE functional, in a similar way
as in the LaTIn method. We illustrated the approach on two practical examples
which confirmed the accuracy and numerical effectivity of the obtained inverse
problem solution, even when considering a small number of measurement points
and additional measurement noise.
Forthcoming research works are twofold: (i) the use of this general formulation
of the modified Constitutive Relation Error in order to extend to nonlinear be-
haviors the Modified Kalman Filter data assimilation process described in [48];
(ii) the use of model reduction methods, especially the Proper Generalized De-
composition, in order to further speed-up the admissible fields computation
step as initially investigated in [12, 15]. A longer term investigation will address
problems involving instability phenomena, for which a small value of the error
does not necessarily mean that the calculated solution is very close to the exact
solution. This last point constitutes a major difficulty and remains an open
question in V&V activities.
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