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Abstract

Thomas’s necessary conditions for the existence of multiple steady states in
gene networks have been proved by Soulé with high generality for dynamical
systems defined by differential equations. When applied to (protein) reaction
networks however, those conditions do not provide information since they are
trivially satisfied as soon as there is a bimolecular or a reversible reaction.
Refined graphical requirements have been proposed to deal with such cases.
In this paper, we present for the first time a graph rewriting algorithm for
checking the refined conditions given by Soliman, and evaluate its practi-
cal performance by applying it systematically to the curated branch of the
BioModels repository. This algorithm analyzes all reaction networks (of size
up to 430 species) in less than 0.05 second per network, and permits to con-
clude to the absence of multistationarity in 160 networks over 506. The short
computation times obtained in this graphical approach are in sharp contrast
to the Jacobian-based symbolic computation approach. We also discuss the
case of one extra graphical condition by arc rewiring that allows us to con-
clude on 20 more networks of this benchmark but with a high computational
cost. Finally, we study with some details the case of phosphorylation cycles
and MAPK signalling models which show the importance of modelling the
intermediate complexations with the enzymes in order to correctly analyze
the multistationarity capabilities of such biochemical reaction networks.
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Systems biology

1. Introduction

The wide variety of cells in a multicellular organism show that cells with
identical copies of DNA may differentiate in different cell types. In the late
40’s, Max Delbruck at Caltech suggested that each type of cell could cor-
respond to a distinct steady state in the dynamics of their shared gene ex-
pression network. In order to analyze such large networks, René Thomas
conjectured in 1980 that the existence of a positive (resp. negative) feed-
back loop was a necessary condition for multistationarity (resp. sustained
oscillations) [32]. Those conjectures were later proved in various formalisms
(Boolean or discrete transition systems, differential equations) with various
degrees of generality. In 2003, Christophe Soulé finally proved Thomas’s
necessary condition for multistationarity with full generality for dynamical
systems defined by differential equations [30].

In his mathematical formalization of the conjecture, Soulé considers a
differentiable mapping F from a finite dimensional real vector space to itself,
and for each point a, the directed graph G(a) where the arcs are the non-zero
entries of the Jacobian matrix of F , labeled by their sign. He shows that if
F has at least two non-degenerate zeroes, there exists a such that G(a) has
a positive circuit.

When applied to (protein) reaction networks however, Thomas’s neces-
sary condition for multistationarity fails short since it is trivially satisfied as
soon as there exists either a bimolecular or a reversible reaction. Indeed,
a bimolecular reaction such as a complexation reaction immediately creates
a mutual inhibition between the two reactants, i.e. a positive circuit, and a
reversible reaction produces a mutual activation, i.e. again a positive circuit,
making Thomas’s necessary condition always true in those networks.

Nevertheless, reaction models are widespread in computational systems
biology and it would be very desirable to be able to predict the absence of
multistationarity by systematically checking such conditions with efficient
algorithms. For instance, the BioModels database2 [4] is a repository of
more than 600 hand-curated models written in the Systems Biology Markup
Language (SBML) [16] mostly with reaction rules, over several tenths or

2http://biomodels.net/
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hundred of molecular species. There are hundreds more models in the non-
curated branch, and thousands of models imported from metabolic networks
databases with even larger numbers of reactions and species.

Soulé’s proof, as most preceding and following proofs, uses the fact that
the existence of multiple steady states implies a non-injectivity property
which is shown to be equivalent to a determinant being zero for some values
of reaction rate constants. One approach, called the Jacobian approach, is
thus to use symbolic computation methods to directly compute the roots
of that determinant. If it is non-zero, one can conclude to the absence of
multistationarity. This is the approach taken by Feliu and Wiuf in [13].
Interestingly, they evaluated their algorithm, implemented in Maple 16, on
the curated branch of BioModels (323 networks in their case), showing that
31,6% were injective and that only 8,3% of the networks of this benchmark
caused memory overflow by that method. On the sequences of r phosphory-
lation cycles of [34], they could check non-injectivity up to r = 17 cycles in
1200 seconds.

In this paper, we follow the alternative graphical approach to multista-
tionarity analyses. We describe a graph rewriting algorithm which deals
with sequences of r = 1000 phosphorylation cycles in a second, and ana-
lyzes the curated branch of BioModels (506 networks in our case) with a
maximum computation time of 50 milliseconds per network (including large
networks of size up to 430 species), while concluding to the non existence
of multiple steady states in 160 networks of size up to 54 species in that
benchmark, i.e. with a similar ratio of 31.6% of results concluding to non-
multistationarity.

This algorithm is based on a refinement of the graphical requirements of
Soulé [30]given by the third author in [29] as a necessary condition for the
existence of multiple steady states in (biochemical) reaction networks. Sim-
ilar graphical requirements have also been given in [2] without restriction to
mass-action law kinetics, but to our knowledge, it is the first time that they
are implemented and evaluated systematically in model repositories. For
instance, we are not aware of similar evaluations obtained with the Chemical
Reaction Network Toolbox3 for systematically checking the graphical condi-
tions for multistationarity of Feinberg’s Chemical Reaction Network Theory
(CRNT) [12, 5].

3https://crnt.osu.edu/toolbox-history-and-explanation
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More specifically, we present a series of graph rewriting algorithms for
checking the different graphical requirements of [29], and analyze their prac-
tical performance in the curated models of BioModels, in order to:

• evaluate when the original condition of Thomas allows us to rule out
multistationarity;

• evaluate when the following three extra conditions given in [29] become
conclusive, namely:

1. the positive circuit must not come from twice the same reaction;

2. the positive circuit must not come from a reaction and its reverse
reaction;

3. the positive circuit must not involve all species of a conservation
law;

• evaluate when even stronger conditions based on the rewirings detailed
in [30, 29] are necessary to conclude, namely

1. by sign change of incoming arcs on a set of species,

2. or by permuting the arcs to a set of target species.

For this study, we used our software modelling environment BIOCHAM4 [9,
3] to load all models from the curated branch of BioModels, improve their
writing in SBML with well-formed reactions using the algorithm described
in [6], compute the conservation laws [28], compute their influence multi-
graph labelled by the reactions [8, 11] and export the labelled multigraph
in the Lemon library format5. Then we used an implementation in C++ of
the algorithm presented in this paper to search for positive circuits with the
different refined conditions on the labelled influence multigraph, and eval-
uate their respective contributions for the analysis of multistationarity in
BioModels. All the computation times obtained with this algorithm given
in this paper were obtained on a standalone desktop Linux machine with an
Intel Xeon 3.6 GHz processor6.

4http://lifeware.inria.fr/biocham4
5http://lemon.cs.elte.hu/
6For the sake of reproducibility, our programs and data are available at https://

lifeware.inria.fr/wiki/Main/Software#JTB18
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The rest of this article is organized as follows. The next section presents
the refined necessary conditions for multistationarity in reaction networks de-
scribed in [29] and detailed here with five levels of conditions. The following
section presents a graph rewriting algorithm for checking those conditions,
and evaluates its computational complexity. Section 4 shows the remarkable
performance of this algorithm by applying it systematically to the curated
part of the model repository BioModels, including models out of reach of
Jacobian-based symbolic computation methods, and details the effect of the
five levels of refined conditions in this benchmark. Section 5.1 considers the
models of double phosphorylation cycles of Wang and Sontag [34] and shows
a very low quadratic empirical complexity of the graphical algorithm, again
in sharp contrast to symbolic computation methods. Section 5.2 focusses
on model 270 of ERK signalling that contains 33 species and 42 reactions
resulting in an influence multigraph of 126 arcs with many positive and neg-
ative feedback loops, yet for which our graphical algorithm demonstrates the
absence of multistationarity. These examples illustrate the importance of
modelling the intermediate complexes in enzymatic reactions to obtain mul-
tiple steady states, and show the sensitivity of both the dynamical properties
of the models and of our graphical conditions to the writing of enzymatic
reactions with or without intermediate complexes. We conclude on the re-
markable performance of the graphical approach to analyze multistationarity
in reaction models of large size, and on some perspectives to further improve
our algorithm and generalize this approach.

2. Necessary Condition for Multistationarity in Reaction Networks

Let us consider a biochemical reaction system with n species S1, . . . , Sn

and m reactions R1, . . . , Rm. Using notations from [19] we write:

Rj =
n∑

i=1

yijSi −→
n∑

i=1

y′ijSi

The y and y′ represent the stoichiometric coefficients of the reactants and
products of the reaction. The rate law associated with reaction Rj will be
written vj. This defines a dynamical system, in the form of an Ordinary
Differential Equation (ODE): ẋ = F (x) where xi is the concentration of
species Si and

fi(x) =
∑
j

vj(x) · (y′ij − yij)

5



This kind of reaction-based system encompasses most of the systems bi-
ology models developed nowadays and made available in model repositories
like BioModels. In particular, SBML reaction models can be translated with
our notations, basically by splitting reversible reactions into forward and
backward reactions, and by including modifiers on both sides of the reaction.

Reaction systems are often graphically represented as a Petri-net, i.e., a
bipartite graph for species and reactions [17, 18]. Using the same bipartite
vertices but different arcs and labels, it is possible to represent the Directed
Species-Reaction (DSR) graph of Kaltenchbach [19]. This graph is a variant
of the DSR graph of [1, 2] with different labels and no sign. Here the arcs of
the DSR graph are defined and identified by their label λ as follows:

λ(Si, Rj) =
∂vj
∂xi

λ(Rj, Si) = y′ij − yij

If λ is zero, then there is no arc. λ is extended to paths (resp. subgraphs) as
the product of the labels of all arcs in the path (resp. subgraph). For a path
P , we shall write λSR(P ) (resp. λRS(P )) for the product of labels considering
only species to reaction (resp. reaction to species) arcs.

Intuitively, λSR represents the contribution of species to each reaction
rate, whereas λRS describes the stoichiometric effect of reactions on each
species. Fig. 1 shows the DSR graph for the chemical reaction network
corresponding to the enzymatic reaction S + E � ES −→ E + P .

E

R1

S ES R2 P

R−1

∂v1
∂E-1

∂v1
∂S

-1

1

∂v−1

∂ES

-11

∂v2
∂ES

-1

1

1

1

Figure 1: DSR graph of the enzymatic reaction: S + E � ES −→ E + P .
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Definition 1. [19] A species hamiltonian hooping of the DSR graph is a
collection of cycles covering each of the species nodes exactly once.

The set of all species hamiltonian hoopings will be denoted by H. Thanks
to the fact that λ(H) = λSR(H)λRS(H), Kaltenbach [19] proposed to group
all species hamiltonian hoopings having the same species-to-reaction arcs
using an equivalence relation noted ∼, writing [H] = {H ′ ∈ H | H ′ ∼ H} for
the equivalence class of a hooping H, and H/ ∼ for the quotient set.

Theorem 2.1 ([19]).

det(J) =
∑

[H]∈H/∼

Λ([H])λSR(H) with Λ([H]) =
∑

H′∈[H]

σ(H ′)λRS(H ′)

Considering Soulé’s proof of Thomas’s conjecture for dynamical systems [30]
and applying Thm. 2.1 to each sub-DSR-graph corresponding to a principal
minor of −J , [29] notes that a necessary condition for multistationarity is
that some term of the sum is negative. This again states the usual condition
about the existence of a positive cycle in the influence graph of J .

Now, the usual labelling of the arcs of the influence graph between molec-
ular species by the sign of the Jacobian matrix coefficient can be augmented
to contain not only the sign but also the reaction used for each arc. There
is thus an arc in this reaction-labelled influence multigraph for each species-
to-species path of length two in the DSR graph. This leads to a one-to-one
correspondence between hamiltonian hoopings of the reaction-labelled influ-
ence multigraph and species hamiltonian hoopings of the DSR graph. Fig. 2
illustrates this on the example of Fig. 1.

Let us denote by |H the restriction of the reaction system to a species
hooping H, i.e. the system where reactions {Ri | i ∈ I} not appearing in H
are omitted.

Theorem 2.2 ([29]). Let F be any differentiable map from Ω to Rn cor-
responding to a biochemical reaction system. If Ω is open and F has two
nondegenerate zeroes in Ω then there exists some a in Ω such that:

1. The reaction-labelled influence graph G of F at point a contains a pos-
itive circuit C;

2. There exists a hooping H in G, such that C is subcycle of H with
(Y ′ − Y )|H of full rank.

7



E

S ES P

R1

R1

R−1

R−1

R2

R2

R1

R1

Figure 2: Influence multigraph associated to the Michaelis-Menten reaction system of the
three reactions S + E � ES −→ E + P . The influence arcs are labelled both by their
sign, as usual and by the unique reaction from which they originate. Note for instance
that there are two positive arcs from ES to E. Negative self-loops are omitted for clarity

This theorem gives several graphical requirements for multistationarity.

Corollary 2.3. A necessary condition for the multistationarity of a bio-
chemical reaction system is that there exists a positive cycle in its influence
multigraph, using at most once each reaction.

This condition actually only requires the reaction-labelled influence multi-
graph. It is immediate to check that the mutual inhibition resulting from
bimolecular reactions—like that between E and S in our running example—
cannot fulfill these necessary conditions, since the same reaction—R1 in
Fig. 2—will be repeated twice.

Corollary 2.4. A necessary condition for the multistationarity of a bio-
chemical reaction system is that there exists a positive cycle in its influence
multigraph, not using both forward and backward directions of any reversible
reaction.

The mutual activation resulting from reversible reactions—like that be-
tween ES and S through R1 and R−1 in our running example—cannot thus
fulfill these necessary conditions. That condition is also a corollary of the
conditions given in [2] since, in their setting, reversible reactions give rise to
a unique undirected edge.
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Another information that can be extracted from the stoichiometry is the
(structural) conservation laws, i.e., P-invariants of the underlying Petri net,
or more simply the left kernel of the stoichiometry matrix. Finding all the
conservation laws of a biochemical model might be computationally expen-
sive, though in practice that does not seem to be the case [28].

Corollary 2.5. A necessary condition for the multistationarity of a bio-
chemical reaction system is that there exists a positive cycle in its influence
multigraph, not using all species involved in a conservation law.

In our running example, the species E and ES, mutually activated through
R1 and R2, form a conservation law, which violates the necessary conditions
for multistationarity. The three Corollaries 2.3, 2.4 and 2.5 thus rule out all
the cases for which Thomas’s condition was satisfied in this example.

Furthermore, in [30] and later in [29], the two following corollaries relying
on some particular graph rewirings were also mentionned without much clue
to check them:

Corollary 2.6. A necessary condition for the multistationarity of a biochem-
ical reaction system is that there exist positive cycles fulfilling condition 2 of
Theorem 2.2 in the influence multigraph corresponding to its Jacobian, and
in any graph obtained from it choosing a set of species and by reversing the
sign of all arcs that have as target some species belonging to that set.

Corollary 2.7. A necessary condition for the multistationarity of a biochem-
ical reaction system is that there exist positive cycles fulfilling condition 2 of
Theorem 2.2 in the influence multigraph corresponding to its Jacobian, and
in any graph obtained from it by choosing a permutation of the species and
by rewiring the arcs’ target according to the permutation.

3. Graph-Theoretic Algorithm for Proving Non-Multistationarity

3.1. Computing the Labelled Influence Multigraph of a Reaction Model writ-
ten in SBML

The signs of the arcs in the reaction-labelled influence multigraph of a
reaction system, are given by the sign of ∂vi/∂xj instead of that of ∂fi/∂xj.
Even without precise kinetic values, this can be easily computed under the
general condition of well-formedness of the reactions [8, 10]. This condition is

9



satisfied by the commonly used kinetics such as mass action law, Michaelis-
Menten and Hill kinetics, and provides a sanity check for the writing in SBML
of ODE models [6].

In the following, and to ensure in a simple and systematic way that the
structure of the reactions, and of the computed influence multigraph, do
correspond to the continuous dynamics of the model, all SBML models con-
sidered here are first automatically sanitized as explained in [6], by exporting
the system of ordinary differential equations, and reimporting it as a well-
formed reaction system. Algorithm 1 summarizes the main steps of this
procedure.

Algorithm 1 Algorithm for computing the labelled influence multigraph of
a reaction model written in SBML [6].

function extract labelled influence graph(sbmlModel)
Model ←load sbml model(sbmlModel)
System←compute odes(Model)
Model ←infer reaction model from odes(System)

. as explained in [6]
Graph←infer influence graph(Model)

. as explained in [11] but adding reactions as labels on the edges
return Graph

end function

This algorithm needs to determine the sign of a partial derivative. In our
implementation this is done by a simple symbolic derivation algorithm and a
heuristic to determine the sign of the expressions. In case of indeterminacy,
both signs are assumed. In general, the result that is computed is thus an
over-approximation of the real influence multigraph.

3.2. Absence of Positive Circuit with the Conditions of Cor. 2.3 2.4 2.5

Tarjan’s depth-first tree traversal of a graph provides a classical algorithm
for testing the existence of a circuit, by just checking the existence of a back
edge during this traversal [31]. Generalizing this algorithm to check the
absence of circuits satisfying the previous conditions on the signs and on the
reactions at the origin of the arcs is however non obvious. This may explain
why the previous refined graphical requirements had not been implemented
before.

10



In this section, we present an algorithm which proceeds by graph rewrit-
ing. This algorithm will generalize the following graph simplification rules
which show that a graph is acyclic if and only if it reduces to the empty
graph by using them [21, 24, 7]:

• IN0(v): Remove vertex v and all associated edges if v has no incoming
edge.

• OUT0(v): Remove vertex v and all associated edges if v has no out-
going edge.

• IN1(v): Remove vertex v if v has exactly one incoming edge and con-
nect this edge to all the outgoing edges of v.

• OUT1(v): Remove vertex v if v has exactly one outgoing edge and
connect all incoming edges to it.

In order to check the conditions of Cor. 2.3 2.4 2.5, we consider here
labelled multigraphs, where each arc is labelled by a couple: its sign and the
reaction from which it originates. Instead of stopping when the previous rules
do not apply, and conclude to the cyclicity of the graph if it is not empty,
we extend this set of rules to any number of incoming or outgoing edges and
add a restriction on the created edges that must satisfy the conditions of
the corollaries. This is described by the following single graph rewriting rule
which subsumes the four previous ones:

• INOUTi(v): Remove vertex v if v has exactly i incoming or outgoing
edges, and create the incoming-outcoming edges labeled by the product
of the signs and the union of the reactions if, and only if, those labels
satisfy the conditions of the corollaries.

This generic rewriting rule removes one vertex and all the attached edges
and creates a new edge for every pair of incoming-outgoing edge of the vertex
satisfying the conditions. When creating such arcs, the reactions and species
involved in the process are memorized in order to check the conditions given
by the previous corollaries and to eliminate the edges, now representing paths,
that do not respect them. In this way, this rewriting rule preserves all circuits
satisfying the conditions of the corollaries.

This rule is applied successively to the nodes of the graph by choosing
a vertex of minimum degree i at each step. This is done with a simple
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data structure that maintains the degree of each vertex. This algorithm
terminates when the first positive self-loop is found, denoting that a positive
circuit satisfying the conditions of the three Corollaries 2.3, 2.4 and 2.5 has
been found in the original graph, or when the graph is empty, proving that no
such circuit exists. The main steps of the decision procedure are summarized
in Alg. 2 and 3.

Algorithm 2 Acyclicity check.

function CheckAcyclicity(G)
while CountVertices(G) > 0 do

v ← vertex with the least number of incoming or outgoing arcs
RemoveVertex(v)

5: for L ∈ SelfLoops do
if L is positive then

return False
else

Delete L
10: end if

end for
end while
return True

end function

Proposition 3.1. The time complexity of Alg. 2 is O
(
k2n
)

where n the
number of nodes and k is the maximum degree of the graph.

Proof. Let us write ki the maximum indegree or outdegree of the graph after
the ith loop of Alg. 2 (k0 = k). The call to remove a vertex (Alg 3) is done
in at most k2

i steps and creates at most the same number of edges, we then
have the relation: ki+1 = k2

i which gives: ki = k2i .
Alg. 2 goes through at most n loops, therefore, the number of steps to

complete the algorithm is at most given by:

C(k, n) =
n∑

i=1

k2i 6
2n−1∑
j=1

k2j = O
(
k2n
)

12



Algorithm 3 Graph reduction preserving acyclicity.

procedure RemoveVertex(v)
for w −→l v ∈ IncomingEdges(v) do

for v −→m x ∈ OutgoingEdges(v) do
Create a new label n← l · v ·m
if n does not contain twice the same reaction, a reaction and its

inverse or all species of a conservation then
Create w −→n x

else
Discard n

end if
Delete v −→m x

end for
Delete w −→l v

end for
Delete v

end procedure

We do not know whether this doubly exponential complexity can be
reached in some networks. It is worth noting that this bound does not take
into account the fact that the number of edges strictly decreases when the
rule INOUTi is applied to vertices of degree i ≤ 1, nor that the edges that do
not satisfy the conditions of the corollaries are not created. Furthermore the
degree of the nodes in the initial graph is also a limiting factor as it is gen-
erally low in the context of biochemical networks [23]. These considerations
explain the much better practical complexity reported in Sections 4, and 5.1,
where we will show for instance that the time taken to analyze one model of
BioModels is empirically O(e log(n)) where e is the number of edges.

3.3. Sign Changes

We show here that the condition given by Corollary 2.6 can be done by
solving a linear system in Galois field GF (2), i.e. Z/2Z, in which each species
is a variable (valued to 1 if the sign of the incoming arcs needs to be reversed).
Each simple loop satisfying Corollaries 2.3, 2.4 and 2.5 in the graph is then
modelled by an equation on the sum of all the species involved in the loop,
equal to 0 if the loop is negative and 1 otherwise.

As an example, let us consider the influence graph shown in Fig. 3. This

13



graph contains two positive circuits which satisfy the three Corolaries 2.3, 2.4

and 2.5 (K
R1−→ MK

R2−→ K and K
R3−→ MpK

R4−→ K) and only one negative

circuit satisfying the same Corollaries (K
R1−→ MK

R2−→ Mp
R3−→ K). The

system associated to these three loops is therefore:
xK + xMK = 1
xK + xMpK = 1
xK + xMK + xMp = 0

If this system has a solution, then the reaction graph for which we reverse
the sign of every arc that has as target any species which variable evaluates
to 1 in the solution, does not contain any positive loop satisfying the three
Corollaries 2.3, 2.4 and 2.5.

K

M MpK Mpp

MK Mp

R1

R1

R3

R3

R1

R−1

R2
R−1

R1

R2

R3

R−3

R−3

R4

R3 R4

Figure 3: influence multigraph of M + K � MK −→ K + Mp � MpK −→ K + Mpp.
Negative self-loops are omitted for clarity

Solving such system can be done by using a simple Gaussian elimination.
This process is applied every time a new loop is found by adding the cor-
responding equation in the system and checking the new equation does not
yield a contradiction (which can only be the equation 0 = 1). This process
allows us not to compute every possible loop in the graph if a contradiction
emerges.

14



The previous system obtained from Fig. 3 has two solutions, one of which
is xK = xMp = 1 and the over variables are put to zero. Therefore, the
influence graph for which the sign of the incoming arcs for nodes K and
Mp are reversed (Fig. 4) does not contain any positive circuit satisfying
Corollaries 2.3, 2.4 and 2.5. The biochemical system cannot display any
multistationarity.

K

M MpK Mpp

MK Mp

R1

R1

R3

R3

R1

R−1

R2
R−1

R1

R2

R3

R−3

R−3

R4

R3 R4

Figure 4: influence multigraph of M +K �MK −→ K +Mp�MpK −→ K +Mpp for
which arcs ending in K and Mp have changed sign. Self-loops are omitted for clarity

Gaussian elimination can be done directly on the species involved in the
loop by noticing that adding two equations of the system in GF (2) corre-
sponds to taking the symmetric difference between the list of species of the
two loops involved and changing the sign accordingly. This last process is
described in Alg. 4. This function is to be incorporated in Alg. 2 by replacing
the body of the for loop starting on line 5, stopping on False and continuing
on True.

3.4. Permutations

Checking the condition given by Corollary 2.7 requires more computation
as we do not know beforehand the effects of applying a permutation on the
circuits of the graph.
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Algorithm 4 Gaussian Elimination

function AddToLoopSystem(l)
for m ∈ LoopSystem do

Let P ← Pivot(m)
if P ∈ l then

species(l)← species(l) ∆ species(m)
Sign(l)← Sign(l) + Sign(m)

end if
end for
if l is positive and Species(l) = ∅ then

return False
else

Add l to LoopSystem
Pivot(l)← FirstSpecies(l)
return True

end if
end function

As an example, if we apply a swapping between K and MpK in the
previous case of Fig. 3, i.e. changing the target of every edge that points
to K to MpK (including self-loops) and vice-versa, we obtain the graph

shown in Fig 5 for which there are 4 positive loops (K
R1−→ MpK

R4−→ K,

K
R1−→ MpK

R−3−−→ K, K
R3−→ MpK

R4−→ K and K
R1−→ MK

R2−→ Mp
R3−→ K).

Changing the sign of K would then transform those positive circuits into
negative ones and once again rule out the possibility for multistationarity.
Note that because of the conditions of the original theorems of [30] on the
diagonal of the Jacobian, only the vertices that have at least one incoming
and one outgoing arc are considered for rewiring. In other words IN0 and
OUT0 are performed before permutations.

Because we did not find any efficient algorithm to propagate target per-
mutation constraints, we restricted ourselves to simple permutations made
of one single swapping between tow molecular species not eliminated by IN0
and OUT0, and systematically tried beforehand in a generate-and-test man-
ner.
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Figure 5: influence multigraph of M +K �MK −→ K +Mp�MpK −→ K +Mpp for
which arcs ending in K and MpK have been swapped. Self-loops are omitted for clarity

4. Evaluation on the BioModels Repository

4.1. Reaction Networks from BioModels

To evaluate the information brought by the previous graphical require-
ments for multistationarity and the performance of our graph rewriting algo-
rithms, we downloaded the latest release of the BioModels database7 [4] and
applied our method in a systematic way. First, a labelled influence multi-
graph is extracted as per Alg. 1. Out of the 640 curated models, the extrac-
tion led to 506 models with a non-trivial influence multigraph. The other
models rely on events, assignment-rules, etc. to enforce their dynamics, or

7http://biomodels.net/, 31st release, dated 26th of June, 2017
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simply do not contain reaction but flux-balance constraints, gene-regulations,
etc. even after re-import of their ODE dynamics [6].

4.2. Results of the Graphical Algorithm

Conditions verified Number Nb of species Computation time
of graphs avg. max. avg. (s) max (s)

All graphs 506 21.24 430

No negative circuit 70 6.87 57 < 0.01 0.05

No positive circuit 48 3.42 18 < 0.01 < 0.01
Cor. 2.3 2.4 2.5 105 6.22 46 < 0.01 < 0.01
Cor. 2.3 2.4 2.5 2.6 160 8.23 54 < 0.01 0.05
Cor. 2.3 2.4 2.5 2.6 2.7 180 8.38 54 5.90 980.1

Table 1: Analysis of the 506 sanitized reaction models from the curated branch of the
BioModels repository. The table reports the proportion of models, and their size, for
which the non-existence of multiple steady states is proved using Thomas’s positive circuit
condition and using the refined conditions expressed in the corollaries described above. The
computation times are given for the whole set of models. The maximum computation time
is obtained for checking the last condition on model number 574.

Table 1 summarizes the results of our experiments. It is worth noting
that the maximum running time of 50ms for checking our main graphical
requirements is remarkably low. It concerns all models of the benchmark,
including the largest model number 235 that contains 430 species and an
influence multigraph of 1875 arcs.

Another observation is that not only the number of models for which the
absence of multistationarity is proved more than doubles when using Corol-
laries 2.3 2.4 2.5 on top of Thomas’s simple condition, the models that are
added are of much larger size than the one dealt with the original conditions.
Indeed with the simple condition, only very small models with less than 18
species and linear reactions were shown to have no multistationarity, whereas
the stronger conditions allow us to prove the absence of multistationarity in
models of size up to 46 species and including non-linear reactions. This is far
below the size of the biggest models of the BioModels repository (for which
the existence of multiple steady states is generally unknown) but shows that
the supplementary conditions do change the scope of use of the method.
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Figure 6: Number of models among the 506 curated reaction models of BioModels for which
multistationarity can be ruled out by using respectively original Thomas’s positive circuit
condition, Cor. 2.3 (no same reactions), 2.4 (no reversed reactions), 2.5 (no invariant)
and 2.6 (sign change), plus 2.7 (permutation).

Fig. 6 shows a Venn diagram which details the contribution of the different
graphical conditions. One can note that Cor. 2.5 was in fact useful in only
eight of the new models found with the other two corollaries combined. The
condition of Cor. 2.6 (sign change of all incoming edges to a set of vertices)
is responsible for concluding to the absence of multistationarity in 55 more
models, of size up to 54 species.

Corollary 2.7 allows us to rule out multistationarity in 20 new models, but
with the same maximum size. Even with the restriction to single transposi-
tions as explained above, the maximum running time on the whole bench-
mark becomes much higher than for the simpler conditions, by five orders
of magnitude. However, the increase in the number of models for which
multistationarity is proved not to be possible with this restricted strategy is
relatively high (20) and thus encouraging for further improvements. Indeed,
better heuristics or more efficient propagation of the permutation constraint,
might lead to even more conclusive results on even larger size problems.

19



4.3. Practical Complexity

Figure 7: Execution time of the 506 models of BioModels tested with Alg. 2 and 4 with
the conditions of Cor.2.3 2.4 2.5 2.6, relatively to the value of e log(n). The points in
blue represent the models for which multistationarity is proved impossible, and the ones
in red, those for which the algorithm exhibits a circuit that satisfies the conditions of the
Corollaries.

The computation times presented in Table 1 with the use of the first
four corollaries are far better than the theoretical complexity bound given
in Prop 3.1. It is known that reducing the graph with only the 4 original
rules IN0, IN1, OUT0 and OUT1 can be done with a time complexity in
O (e log(n)) [21] where e is the number of edges in the graph. In Alg. 2,
these simplification rules are in fact used with a higher priority than the
rule INOUTi which are taken with the increasing order on i. Fig. 7 plots
the computation time for each model relatively to the value of e log(n). The
linear shape of the curve suggests that the empirical time complexity on
BioModels is close to O (e log(n)), i.e. the complexity of the 4 original rules,
and that the extra rules INOUTi with i ≥ 2 (although used to conclude on
non multistationarity in 65 over the 160 models) do not significantly increase
the computation time apart from very few cases (models 014, 365 and 574)
up to 50ms.
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More precisely, the rule INOUTi is used with an average maximum value
of i = 3.5 and 139 models do not use more than i = 1 which explains why
it does not add much to the computation time. Models 014 and 365 use the
rule INOUTi with i = 36 and i = 98 respectively which explains their higher
computation time. Model 574 uses the rule INOUTi with i = 8 which is not
uncommon but this graph is dense and each node has at least a degree of
3. In this case, the simple rules with i = 0 or i = 1 that give a complexity
in O (e log(n)) are never used which basically explains why this model is the
longest to check.

4.4. Comparison to the Jacobian-based Symbolic Computation Method

In [13], Feliu and Wiuf have presented a symbolic computation algorithm
implemented in Maple 16 to directly check the existence of roots of some
matrix determinant which is equivalent to a non-injectivity property implied
by the existence of multiple steady states. That condition is in principle
stronger than the graphical requirements we consider. Interestingly, they
evaluated their algorithm on BioModels, with a version at that time of 365
curated models. Their method showed that 31.6% of the networks do not
have multiple steady states, i.e. the same proportion as us (160 out of 506
networks) when checking the first four corollaries, but their Maple program
failed by memory overflow on 8% of the networks whereas our maximum
computation time is 0.05s.

Furthermore, the proportion of conclusive analyses raises in our case to
35,5% (180 out of 506) by using the last corollary but currently with a high
computational cost and a restricted implementation of that condition.

5. Analysis of Multiple Phosphorylation Cycles and MAPK Sig-
nalling Models

5.1. Wang and Sontag’s Futile Phosphorylation Cycles

In [13], Feliu and Wiuf also evaluated their method on the the r-site
phosphorylation cycles of Wang and Sontag who showed the existence of
multiple steady states in those networks for r ≥ 2 [34]. The case r = 2,
schematized in Fig. 8, was extensively studied by Markevich et al. in [22]
in a series of models, numbered from 26 to 31 in the BioModels repository
(see [15] for the model reduction relationships between these models found
by subgraph epimorphisms), showing in all cases the existence of multiple
steady states.
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Figure 8: Fig. 1 of [22] displaying the general double-phosphorylation cycle involved in all
the models studied by Markevich et al. and by Wang and Sontag [34].

The symbolic computation method used by Feliu and Wiuf grew rapidly in
time as a function of the number r of phosphorylations, and became imprac-
tical after r = 17 for which it needed 1200 seconds. Our graphical method
has a very low computational complexity on these networks, taking only 1.2s
for r = 1000. It is worth noting that our method checks necessary conditions
for the non-injectivity of the system whereas the symbolic method of Feliu
and Wiuf directly determines that property. In both cases, though, one can-
not conclude that the system does have multiple stationary states since the
non-injectivity property is itself a necessary not sufficient condition.

Table 2 summarizes our results. The first two computation time columns
refer to the original model of Wang and Sontag in which each phosphorylation
and dephosphorylation transformation is modelled by three reactions with
mass action law kinetics with an explicit representation of the intermediary
complexes, by repeating the following pattern:{

E + Si � ESi → E + Si+1

F + Si+1 � FSi+1 → F + Si
(1)
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This gives the following differential equations:

dS0

dt
= −kon0S0E + koff0ES0 + lcat0FS1

dSi

dt
= −koni

SiE + koffi
ESi + kcati−1

ESi−1

−loni−1
Sif + loffi−1

FSi + lcatiFSi+1 , i = 1, ..., n− 1
dESj

dt
= konj

SjE −
(
koffj

+ kcatj
)
ESj , j = 0, ..., n− 1

dFSk

dt
= lonk−1

Skf −
(
loffk−1

+ lcatk−1

)
FSk , k = 1, ..., n

The computation times given in Table 2 indicate that, on these networks,
our method has an empirical complexity of the order of 10−3r2.

The third computation time column refers to the writing of the dephos-
phorylations with two intermediate complexes, as follows:{

E + Si � ESi → E + Si+1

F + Si+1 � FS?
i+1 → FSi � F + Si

(2)

This writing of the dephosphorylations corresponds to the first model of
Markevich et al. [22]. On this reaction pattern (2), our graph algorithm has
execution times similar to those obtained on reaction pattern (1). This is
due to the resemblance of their influence multigraphs. Nevertheless, the rule
INOUTi is used here with i ≤ 12, while on model pattern (1) it is used with
value at most 9. This is responsible for a slight difference in response time.

The second model of Markevitch et al. [22] is a reduction of the previ-
ous model using Michaelian kinetics. The intermediary complexes are elim-
inated but the writing of the kinetics for the dephosphorylation of Mp by
phosphatase MKP3, named v4 in the original article [22], is not a naive
Michaelis-Menten kinetics but the following one:

v4 =
kcat4 · [MKP3 ]tot · [Mp]/Km3

(1 + [Mpp]/Km3 + [Mp]/Km4 + [M ]/Km5)

Mpp appears as inhibitor in this kinetic expression to represent the seques-
tration of the phosphatase in the reversible last step of dephosphorylation,
Such a sequestration results in a negative influence of Mpp on M and a pos-

itive influence of Mpp on Mp (i.e., a positive term in ∂Ṁp
∂Mpp

) as this reaction
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r Jacobian Method [13] Graphical Method (Alg 2 & 4)
model (1) (1) (2) (3)

1 4 0.3 1.6 0.6
2 75 0.5 2 1
3 44 1 2 1
4 81 1 3 1
5 191 1 4 1
6 256 1 4 1
7 444 1 5 1
8 795 2 5 1
9 1169 2 6 2
10 2195 2 6 2
11 3998 2 6 2
12 7696 2 7 2
13 15180 2 7 2
14 32180 3 7 2
15 67740 3 7 2
16 171700 3 8 2
17 1199000 4 8 2
50 × 12 17 4
100 × 26 40 6
500 × 343 549 34
1000 × 1200 1874 98

Table 2: Execution times given in milliseconds for the analysis of the r-site phosphory-
lation system of [34], first as reported in [13] for the Jacobian method using symbolic
computation, then obtained with our graphical algorithm on the same model and on two
variants concerning the writing of the dephosphorylation and phosphorylation reactions.

consumes Mp to produce M. Intuitively the fact that Mpp can actively se-
questrate the phosphatase MKP3 makes it inhibit the dephosphorylation of
Mp and therefore stabilizes Mp. Therefore, while the positive circuit between
Mp and Mpp by v2 and v3 that can be easily seen from Fig. 8 is immediately
rule out since v2 and v3 are opposite reactions, the complex Michaelian kinet-
ics of [22] gives rise to a completely different positive circuit between those
two species (with kinetics v4 and v2). This circuit cannot be removed by
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sign-changes or any single swap and is indeed responsible for the appearance
of bistability in those models.

The fourth computation time column refers to that model structure, with
catalytic reactions instead of intermediary complexes, but using mass action
law (or simple Michaelis-Menten) kinetics, with the following pattern:{

E + Si → E + Si+1

F + Si+1 → F + Si
(3)

The differential equations for this pattern with simple Michaelis-Menten ki-
netics are as follows :

dS0

dt
= − V0ES0

K0 + S0

+
V ∗0 fS1

K∗0 + S1
dSi

dt
= − ViESi

Ki + Si

+
ki−1ESi−1

Ki−1 + Si−1

+
V ∗i fSi+1

K∗i + Si+1

−
V ∗i−1fSi

K∗i−1 + Si

, i = 1, ..., n− 1

dSn

dt
=

Vn−1ESn−1

Kn−1 + Sn−1

−
V ∗n−1fSn

K∗n−1 + Sn

In this modelling of the system, the possibilities of multistationarity disap-
pear, and this is shown by the result of our graphical algorithm. On large
instances, the computation time is also significantly lower. This is because
the graph does not contain any positive cycle satisfying our conditions, and
the graph algorithm has only to remove nodes using the rule INOUTi with
i ≤ 1.

5.2. MAPK Signalling Models

Double phosphorylation cycles are integral parts of MAPK signalling cas-
cades and one might expect to observe multistationarity in MAPK models.
However, as shown in the previous section, this depends on the way the
phosphorylation and dephosphorylation reactions are modeled.

Model 270 of the BioModels database describes a complete Epo-induced
ERK signalling cascade, from receptor binding to cell fate decision, corre-
sponding to the distributive model of [26], schematized in Fig. 9. It in-
cludes four reversible double-phosphorylation stages (MEK2, MEK1, ERK1
and ERK2) and many dummy variables introduced at the beginning of the
cascade to encode delay ordinary equations into simple ODEs. The result-
ing reaction model has 33 species and 42 reactions, and leads to a labelled
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Figure 9: Figure 1A of [26], on the right is the distributive model encoded as model 270
in the BioModels repository. Several other variables appear in the model because of the
encoding with ODEs of Delay Differential Equations involved close to the receptor.

influence multigraph containing 126 arcs with many positive and negative
feedback loops.

During the run of Alg. 2, only 2 paths are removed thanks to one of the 9
conservation laws (Cor. 2.5), but 58 are removed thanks to Cor. 2.3 and 2.4,
resulting in no single positive feedback loop satisfying the conditions of our
theorem.

The fact that multistationarity is not possible for such a model is con-
sistent with the data shown by the authors in the article, i.e. functional
dose-response diagrams without hystereses. This is however not evident, nor
perhaps expected, from the model itself since memory effects resulting in
hysteresis might have been possible at many different places in the network
due to the dephosphorylation loops. However, as explained in the previ-
ous section with model 3 this is not the case when simple Michaelis-Menten
kinetics are used.

These examples show that the existence of multiple steady states in re-
action networks is sensitive to the explicit representation of the intermediate

26



complexes in enzymatic reactions, or at least to the explicit inclusion of their
inhibitors (by sequestration) in the kinetics. Interestingly, our refined condi-
tions are similarly sensitive to these subtle modelling choices and allow us to
conclude differently according to the impact of the writing of the reactions
on the multistationarity properties of the system. The role of intermediate
complexes in multistationarity was analysed in detail in [14]. In particular,
it was shown that if the network does not have conservation laws, then mul-
tistationarity cannot arise after the introduction of intermediate complexes.

These remarks also go in the same direction to what has been observed for
oscillations in the MAPK cascade again, where the absence of complexation
removes the negative feedbacks going upwards in the cascade and there-
fore the negative feedback loops and the corresponding possibility of oscilla-
tions [33]. If the intermediary complexes are explicitly represented, then os-
cillations can be found [25], without any external negative feedback reaction
such as receptor desensitization [20]. In many other networks in BioMod-
els, Alg. 2 actually shows as side-effect the existence of numerous negative
feedback loops.

6. Conclusion

This experiment is, to our knowledge, the first systematic evaluation
of graphical requirements for multistationarity in the reaction networks of
model repositories in large scale. We have shown that Thomas’s necessary
condition for multistationarity, and its refinement for reaction models given
in [29], can be implemented with a graph rewriting algorithm that brings use-
ful information for many models in BioModels, by proving the non-existence
of multiple steady states independently of the parameter values and of the
precise form of the rate functions. Though the original Thomas’s conditions
show the absence of multistationarity in some small models, the refined con-
ditions are conclusive in many more cases: 180 vs 48, including much bigger
models: up to 54 vertices vs 18. Furthermore this is achieved at a remark-
ably low computational cost, below 0.05 second per network for the main
conditions, even on models with several hundreds of molecular species and
thousands of influence arcs, currently out of reach of symbolic computation
methods.

It is worth noting that our graph-theoretic algorithm is not limited to
reaction systems with mass action law kinetics, but relies on a simple sym-
bolic derivation algorithm for computing an over-approximation of the signs
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of the partial derivatives in the Jacobian matrix. In case of indeterminacy of
the sign, both signs are assumed which may lead to the existence of circuits
that would have been ruled out by a more accurate determination of the
sign. Our graphical algorithm could also be improved by a more efficient and
complete use of the condition dealing with target species permutations, for
instance by recourse to constraint propagation algorithms [7] instead of the
current generate-and-test procedure for single swappings. This might further
increase the number of conclusive cases. Another way would be to use the
condition noted (*) in [1] to rule out the positive circuits that do not intersect
another positive circuit on a species-to-reaction path, which is necessary for
multistationarity.

Since our procedure, and more precisely Alg. 1, goes through an import
of the ODE system and infers a reaction network, it can be readily used
on dynamical systems that do not stem from reaction networks but may
exhibit similar symmetries. Such use of the refined conditions in general ODE
systems would probably benefit much less from the structural conditions
added on top of Thomas’s rules, but by identifying similar terms in the
ODEs, our algorithm should be able to automatically prove the absence of
multistationarity in interesting cases, as also suggested in [1].

A comparison to Feinberg’s CRNT-based approaches would also be in-
teresting, by considering the different approaches summarized for instance
in Table 3 of [13]. In particular, our circuit conditions on the influence
multigraph depend on the signs of the entries of the Jacobian matrix but
are independent of not only the values of the kinetic parameters, but also
of the form of the reaction rate functions which can be any partially differ-
entiable function, i.e. without any monotonicity, non-autocatalytic, or such
restriction.

Finally, this study focussed on multistationarity, but we saw that most
models of the benchmark also have negative circuits. A systematic study
of the oscillation conditions in reaction model repositories, possibly using a
similar theoretical refinement of Thomas-Snoussi’s necessary conditions for
sustained oscillations [27], would be worth investigating as natural systems
indeed provide many oscillators and even models not conceived to oscillate
have been shown capable of exhibiting unexpected sustained oscillations in
non-standard conditions [25].
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Afterword in memoriam of René Thomas

It was under the sun of the University of Marseille, at the CIRM in
2008, that the second author met René Thomas and his wife, in the friendly
atmosphere of a summer school where René participated to all talks giving
advices with extreme modesty and continuing providing deep insights during
the traditional walk to the Callanques. In his talk, he mentioned that the
gene interactions he had always been considering were in fact influences, and
that such regulatory networks should be called influence networks. At that
time, we were more interested in biochemical reaction networks for which
Thomas’s conditions generally provide no information. That was the starting
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point of an adventure that led the third author to refine Thomas’s conditions
for reaction networks, and the first author to implement and successfully
apply them in large scale, showing the richness of René Thomas’s intuitions
across so many decades of active research in mathematical biology.
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