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Cell growth in a chemostat is a well-documented research topic. How cells uptake the avail-

able substrate to gain weight and engage cell division is not generally taken into account in

the modelling bioreactors. In fact, the growth rate is related to a population doubling time

whereas the microorganisms’ growth in mass is due to the mass transfer of substrates from

the liquid phase to the biotic phase. Clearly, growth in mass precedes growth in number.

Similarly, the transport of substrates down to the cell scale precedes the mass transfer. This

article’s main feature is a two-dimensional population balance model that allows to uncou-

ple growth in mass and growth in number when the equilibrium between a cell population

and its environment is disrupted. The cell length and the rate of anabolism are chosen as

internal variables. It is proved that the hypothesis “growth in number = growth in mass” is

valid at steady-state or in exponential growth only. The glucose uptake is assumed driven

by two transport systems with a different affinity constant for the substrate. This combina-

tion of two regulated uptake systems operating in parallel explains a 3-fold increase in the

uptake following a glucose pulse, but can also predict substrate uptake rates higher than

the maximal batch value as observed in some experiments. These features are obtained

by considering carbon fluxes in the formulation of regulation principles for uptake dynam-

ics. The population balance’s implementation in a multi-compartment reactor is a natural
prospective work and allows extensions to industrial processes.
1. Introduction

From a chemical-engineering perspective, aerated bioreactors
have to be regarded as three-phase reactors, and the pre-
diction of mass transfer between phases is a central issue.
Given the abundance of literature pertaining to the gas–liquid
aspects of the problem, this topic will be put aside here. One

point specific to liquid–cell mass transfer is that there is no

∗ Corresponding author.
E-mail address: morchain@insa-toulouse.fr (J. Morchain).

https://doi.org/10.1016/j.cherd.2018.02.025
thermodynamic law to prescribe the relationship between
the concentrations at the cell interface. Thus, in living sys-
tems, the mass-transfer intensity through the cell membrane
is dynamically adjusted in order to fit the cell’s needs (Ferenci,
1996). The latter can correspond to a maximum growth rate
in a non-limiting environment, or be dictated by the envi-
ronmental conditions such as the imposed dilution rate in a
chemostat. As a consequence, in exponentially growing cul-
tures (balanced-growth phase) and in chemostat cultures, a
strict proportionality is observed between the mass-transfer

rate (or uptake rate in the field of biochemical engineering)
and the growth rate. Moreover the latter is correlated to the
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esidual concentrations of nutrients in the liquid phase. These
ell-known observations led to the formulation of specific

rowth (�) and uptake rates (qS) as algebraic functions of the
ubstrate concentration in the liquid phase:

= f (S), (1.1)

S = YSX(�) �, (1.2)

where YSX is the average mass of substrate required to yield
g of cells. Note that these models are relevant to fit experi-
ental data (they are in fact empirical correlations), and thus

re limited to the situation in which they are fitted. In partic-
lar, the steady-state or balanced-growth assumption implies
hat they are time-averaged laws.

In light of these remarks, we could preferably use a more
xplicit notation for the specific growth (�̄) and uptake (q̄S̄)
ates:

¯ = f (S) (1.3)

¯ S = 1
�

∫ t+�

t

qS(t) dt ≈ YSX(�̄) �̄, (1.4)

where the overbar indicates a time average. Clearly, the
alue of the time scale � must be large enough so that the
ean uptake rate becomes constant and proportional to the
ean specific growth rate. These time-averaged quantities are

elevant to describe the pseudo-steady-state dynamics, how-
ver they are not applicable to the transient response (over
ime scales shorter than �) because they assume an instanta-
eous adaptation of the living system (Silveston et al., 2008).

n view of improving the dynamical modelling of bioreac-
ors, it is important to be able to prescribe a substrate uptake

odel valid on the shortest time scale possible. As far as we
now, there are only a few studies dedicated to this point.
hassagnole and co-workers derived a dynamic model for

he glucose uptake through the PhosphoTransferase System
PTS) (Chassagnole et al., 2002) based on a detailed descrip-
ion of the glycolysis and pentose-phosphate pathways. Even
n its reduced form, this model involves five internal con-
entrations and requires a large number of parameters to be
tted. Moreover, Ferenci has identified the existence of multi-
le transport systems whose activity depends on the substrate
oncentration (Ferenci, 1996) and proposed that the uptake
ate is computed as the sum of the contribution of each system
Ferenci, 1999a).

The experimental measurement of the substrate uptake
ate has received much attention in the last decades.
eubauer’s 1990s experimental work (Neubauer et al., 1995)

evealed that the instantaneous uptake rate of Escherichia coli
ells, cultivated in a two-compartment (Continuous Stirred
eactor + Plug Flow Reactor) bioreactor operated in fed-batch
ode and subject to repeated exposures to high glucose con-

entrations, could largely exceed the maximum uptake rate
bserved in a batch reactor. The experimental device was such
hat the first 120 s after the exposure to a glucose pulse could
e observed with a temporal resolution of 30 s. More recently,
ara et al. (2009) using a bioscope measured the instanta-
eous uptake rate of E. coli cells sampled from a continuous
tirred bioreactor. Their results confirmed in both aerobic and
noxic conditions that the uptake rate in the few seconds fol-

owing the addition of glucose largely exceeds the maximum
ptake rate measured in batch culture (based on the defini-
tion of a substrate to biomass yield and a maximum specific
growth rate). The temporal resolution here is raised up to ≈3 s
and the duration of the observation limited to 90 s. These are
experimental evidence that the correlation between growth,
uptake and the substrate concentration established in non-
limiting or steady-state conditions is not valid on very short
time scales (� < 10 s) when the transient response of the uptake
system is involved. The results obtained by Sunya et al. (2012)
who examined the dynamic response of E. coli cells to glu-
cose pulses in chemostat cultures, with a temporal resolution
of ≈25 s over longer periods of time offer an opportunity to
establish a closure model in the situation where � ≈ 5–30 min.
Natarajan and Srienc (2000) examined the uptake of a glu-
cose analogue at the cell level using cytometry. Their results
revealed that the substrate uptake rate (after 5 min following
a pulse addition) is distributed in the population of cells.

The use of the population balance concept to deal with the
population dynamics has been identified as the most natu-
ral way to proceed, for some time (Fredrickson and Tsuchiya,
1963). PBMs were first introduced by Smoluchowski (1916) to
model the size of particles undergoing coalescence and rup-
ture.

In biology, PBMs are rife to describe the dynamics of a cell
property (age, size, mass, intracellular concentration of an
enzyme representative of the cell’s state) among a population
of individuals. Such modelling of biological systems was intro-
duced by Von Forster (1959) to take into account the influence
of mortality over the age of a population. The cell-cycle effect
was then emphasised by Bell and Anderson (1967) under the
assumption that one cell gives birth to two identical daugh-
ters. In the earliest works, 1-D PBM have been derived. Most
of proposed models (Eakman et al., 1966; Subramanian et al.,
1970; Shah et al., 1976), and the many papers these references
have inspired, relate a cell’s state to its mass or volume, which
requires a formulation of other properties (such as age, growth
and reaction rates, or substrate consumption for instance)
as functions of the mass, which has proved insufficient and
rather inconclusive (for all processes that are not related to
mass in the cell functioning). Many other variables may turn
out to be relevant depending on the biological behaviour of the
cells under consideration. One of them is maturity, highlighted
by Trucco (1965), and understood (Lebowitz and Rubinow,
1974) as the cytological age, ac ∈ [0, 1]. This formulation yields
a boundary condition that connects the number density at
ac = 0 and ac = 1: the production of new born cells (with ac = 0)
equals the flux of cells reaching ac = 1. A unique solution in
C0(R+, L1(˝)) (˝ once again standing for the internal variable’s
domain) is inferred from the initial condition.

In general, 1-D PBMs fail to provide a comprehensive
perspective across different time scales. Models aimed at
depicting the cell cycle (for which the internal variable may be
mass, length or volume) are ill-adapted for explaining the vari-
ations in a population’s total mass. On the other hand, when it
comes to maturity (consequently the doubling time), all age-
related information is filtered and only phenomena driven by
a characteristic time equating to cell growth are reachable.

An alternative is to develop a multi-dimensional PBM that
includes many cell properties like DNA concentration (Hatzis
et al., 1995; Stamatakis and Zygourakis, 2010) or enzymes
expression levels (Mantzaris, 2005), which has turned out to
be a significant step forward regarding mathematical mod-
elling in biology. However, the completeness of such a model

is always subject to doubt, and due to the large number of
internal variables they can quickly become computationally



(

(i

(

intractable. Rotenberg (1977, 1983) gave a complete 2-D model
for the cell cycle, which includes age and growth rate as inter-
nal variables. Mischler et al. (2004) extracted an eigenvector
that geometrically shapes the steady-state solution and an
eigenvalue (the so-called Malthus parameter) that drives the
exponential steady-state growth in time. The existence and
uniqueness of the solution in C0(R+, L1(˝)) is guaranteed pro-
vided the initial condition lies in L1(˝) and the fragmentation
function in L∞. In other words the existence of a division phe-
nomena at the cell level ensures that the number of cells
will eventually grow exponentially with time after a tran-
sition period. This result is independent from the growth
rate law rate prescribed at the cell level. Perthame’s seminal
work (Perthame, 2007) was enlightening regarding the L1 expo-
nential decay of the solution to a transport-fragmentation
equation such as the cell cycle dynamics, along with bounded
variation regularity, provided the breakage function lies in L∞

on its domain.
At the end of the day, in order to have a description of both

the cell-scale and population-scale behaviours, a PBM needs
a minimum of two degrees of freedom. These observations
argues for the development of a PBM describing the cell cycle
as the result of the following steps: (i) transport of nutrients
down to the cell membrane, (ii) substrate uptake, (iii) transfor-
mation into new cell constituents leading to cell elongation,
and (iv) cell division.

The principal objective of this work is therefore to intro-
duce a 2-D PBM for cell growth that allows to distinguish
between growth in mass and growth in number. The present
model can be regarded as an extension of a previously pub-
lished 1-D model whose characteristic time scale is the inverse
of the population maximum specific growth rate (Morchain
et al., 2017). Introducing a second dimension allows the uncou-
pling of the growth in mass (related to substrate uptake) and
the growth in number (related to cell division). In the first
part of this paper, the 2-D model is presented along with
the hypothesis and assumptions. Then some properties of
the model are examined. In particular, we discuss the situa-
tions leading to the equivalence between growth in mass and
growth in number. We also propose an integration of the 2-D
PBM leading to a population-averaged model and we enlighten
the consequences of such a simplification on the predictive
capacity of the integrated model. In the third part, the issue of
formulating an instantaneous uptake law is addressed. Finally,
the proposed model is subjected to validation through the sim-
ulation of a pulse experiment in a chemostat for which data
are available in the literature.

2. Modelling framework

2.1. Statement of assumptions regarding the biological
system

(i) We consider in this work the case of rod-shaped cells hav-
ing a constant diameter d and a varying length l. This
assumption corresponds to various, widespread microor-
ganisms such as E. coli (Subramanian et al., 1970) and
Schizosaccharomyces pombe (Nobs and Maerkl, 2014). Note
that the cell volume � d2

4 l and surface �d l are only func-
tions of l. In this particular case, the ratio of the cell surface

to the cell mass is constant Ae = 4

�cd
where � is the cell

mass density.
ii) Besides its length, each cell in the population is charac-
terized by its elongation rate v. This rate is related to the
physiological state of the microorganism and more specif-
ically to the rate of anabolism. For a given strain, Nobs and
Maerkl (2014) found that the elongation rate is cell-specific
and constant throughout the cell cycle.

ii) The cell division is driven by a size mechanism, thus the
probability that a cell divides is related to its length (Robert
et al., 2014). When a cell of length l divides, two daughters
of approximate size l/2 are formed. The sum of the daugh-
ters’ lengths equals that of the mother cell, which can
also be regarded as a conservation of the total cell mass
through cell division.

iv) The elongation rate is redistributed at cell division, which
means the two daughters may not be able to perform
anabolic reactions at the same rate as their mother. If
both newborn cells can thrive with an arbitrary rate of
anabolism, the latter is reportedly distributed around that
of the mother’s. This is consistent with the fact that the cell
content is not evenly distributed among the two daughters
(for instance Stamatakis and Zygourakis (2010) assumed
the redistribution follows a hypergeometric law).

(v) In order to grow, cells uptake a carbon source (typically
glucose) and oxygen. At steady state in a chemostat or in
the balanced-growth phase of a batch culture, the specific
growth rate of the entire population is correlated to the
concentration of the substrate in the culture medium. This
correlation takes the usual Monod form:

�� = �max
S

KS + S

O2

KO2 + O2
. (2.1)

where �max is the maximum specific growth rate, KS the affin-
ity constant for substrate and KO2 the affinity constant for
oxygen. Note that these constants are empirically determined
and correspond to population averaged values (Ferenci, 1999a).

(vi) At the cell scale, the uptake rates differ from one cell
to another as revealed by Natarajan and Srienc (2000).
However, as stated in the Introduction, the overall uptake
rate is algebraically linked to the population growth rate
at steady state.

(vii) During the transition period, the population specific
growth rate relaxes toward the equilibrium growth rate
defined by Eq. (2.1). The shape of this adaptation in a
biological-systems context is discussed in Morchain et al.
(2013) and Morchain (2017).

2.2. 2-D population balance model

Let � ∈ R2 be a set of internal properties that fully characterize
a cell’s state. For the sake of completeness, the cell growth
is explored in a continuous and perfectly mixed bioreactor,
characterized by its dilution rate D (1/h). The PBM for such a
population reads

∂

∂t
N(t, �) + ∇� · [�̇N(t, �)] + DN(t, �) + 	(�)N(t, �) = 2∫

	(�′)K(�, �′)N(t, �′) · d�′ (2.2)

where
� = (l, v)T is the vector of internal properties,
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N is a number density function, and N(t, l, v)dldv is the num-
ber of cells with a rate of anabolism v and length l at time
t > 0,
�̇ is the vector of velocities in the space of internal variables,
namely l̇ = ∂l/∂t and v̇ = ∂v/∂t,
	(�) is the rate of cell division, and
K(�, �′) is a redistribution kernel that defines the probability
that a cell in state �′ gives birth to a cell in state �.

The factor 2 on the right-hand side of the equation indi-
ates that one mother cell produces to two daughter cells.
he boundary condition assumes a regularity condition (i.e.

∂˝
�̇kN(t, �) = 0 ∀k ∈ {1, . . ., n}), and the initial condition

(0, l, v) belongs to L1(R+, [0, vmax]).
In order to get the full set of equations for the dynamic sim-

lation of a continuous bioreactor, the PBM is complemented
ith two mass balances for the carbon substrate, S, and the
issolved oxygen, O2:

dS

dt
= D(Sf − S) − �c�d2

4

∫ ∫
qSlN(t, l, v) · dldv (2.3)

dO2

dt
= KLa(O�

2 − O2) − DO2 − �c�d2

4

∫ ∫
qO2 lN(t, l, v) · dldv (2.4)

where �c is the density of cells (assumed constant and
qual to 1000 kg/m3), qS and qO2 are the substrate and oxygen
pecific uptake rates, respectively, Sf is the substrate concen-
ration in the feed (g/L), and O�

2 is assumed constant and given
y Henry’s law. The reader should note that all mass densities
re given in kg/m3, but are converted into g/L in the simula-
ions. These mass balances are coupled to the PBM through
he integral terms on the right-hand sides, which represent
he contribution of the entire population. We may recall here
hat �c�d2l/4 is a cell mass.

.3. Modelling the cell division

any breakage laws have been implemented in the literature
Hatzis et al., 1995; Fadda et al., 2012; Subramanian et al., 1970).
ere, following Mantzatis (2006), we take

(l) =
(

l

lc

)


(2.5)

where lc is a constant characteristic length and 
, a shape
arameter, is set to 5 as proposed by Mantzatis (2006). This
mooth function allows cells to grow up to a length compa-
able to lc, and cell division is almost guaranteed at l = 2lc.
owever, it does not theoretically preclude the possibility that
cell never stops growing. The value of the parameter lc is set

o 10−5 m according to Nobs and Maerkl (2014).

.4. Modelling velocities in the internal phase space

he length change is taken to be proportional to the rate of
nabolism:

= ∂l

∂t
= a min(v, ��). (2.6)

This formulation ensures that a cell elongates at a rate pro-
ortional to the rate of anabolism under the condition that the

edium is not depleted in carbon substrate and/or oxygen.

he time scale associated with this elongation is the interdivi-
sion time. Since the elongation rate v is a distributed property,
it results that the combination of (2.5) and (2.6) will produce
the experimentally observed interdivision time distribution
(Yasuda, 2011; Nobs and Maerkl, 2014).

The parameter a is a conversion constant that connects the
rate of anabolism to the rate of elongation. This value is clearly
strain dependent and, in the present work, it is adjusted to the
total cell mass measured in the experiments simulated (see
Table 1 for parameter values).

The relationships (1.3) and (1.4) reflect the well-established
fact that the uptake rate is proportional to the specific growth
rate at steady state. The latter is correlated to the residual
substrate concentration. However there is much experimental
evidence that the specific growth rate (and hence the elonga-
tion rate) is not correlated to the substrate concentration in
the transient regime (see Perret, 1960; Abulesz and Lyberatos,
1989; Patarinska et al., 2000; Kätterer et al., 1986; Guillou et al.,
2004 for the response to a step-up in the feed concentration or
the dilution rate, and Adamberg et al. (2009) for the response
to a gradual increase of the dilution rate). In fact, cells adapt
their rate of anabolism in response to changes in environmen-
tal concentrations. The dynamics of such an adaptation has
been investigated in previous works and the following expres-
sion was proposed and validated against experimental data
(Morchain and Fonade, 2009; Morchain et al., 2017):

v̇ = ∂v

∂t
=

⎧⎪⎨
⎪⎩
(

1
T

+ v

)
(�� − v) if v ≤ ��

1
T

(�� − v) if v ≥ ��

⎫⎪⎬
⎪⎭ (2.7)

where �� is given by Eq. (2.1). The value of the parameter T
was found to be around 1.25/�max.

2.5. Modelling the redistribution kernels

The redistribution kernel K(�, �′) accounts for the probability
that a mother cell with internal variables �′ gives birth to a
daughter with internal variables �. Without precise empirical
knowledge of the redistribution process of internal variables,
we assume that the cell length and the rate of anabolism
are independently redistributed at cell division. Thus, the
redistribution kernel is a tensor product of two independent
kernels, each one involving one internal variable. This leads
to K(�, �′) = P(l, l′)Q(v, v′) with P being the length redistribution
kernel, and Q the rate of anabolism redistribution kernel.

In general, P(l, l′) and Q(v, v′) satisfy the following proper-
ties:

P(l, l′) = P(l′ − l, l′),∫ l′

0

P(l, l′) · dl = 1,∫ vmax

0

Q(v, v′) · dv = 1.

(2.8)

The first states that a cell gives birth to two daughters cells,
and the two others are normalization constraints. In this work,
the redistribution kernel in length is

P(l, l′) =
(

l

l′

)m−1(
1 − l

l′

)m−1 (2m − 1)!

(m − 1)!2
(2.9)
with m = 10, so that P is a beta distribution centred around
l′/2. We recall here that the cell division occurs around the





Fig. 1 – Total uptake qS (solid) and respective contributions
of the PTS (dashed) and permeases (dotted) as a function of
residual substrate concentration S.
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Q(v, v′) are chosen beta and Gaussian, respectively. All codes
ng that the PTS system adjusts itself to allow for the optimal
rowth rate under the given environmental conditions.

In (2.11), the assumed permease density distribution is

(v, S) = ˛max exp
(

−˛max

u
v

)
(2.13)

where ˛max is a constant parameter that reflects the cell’s
embrane permeability, and u obeys the dynamical equation

du

dt
= −1

�
(q̃S − YSXṽ) (2.14)

with a constant characteristic time � that controls the time
cale of change in the membrane permeability. The driving
orce of this adaptation is the difference between the overall
ubstrate uptake rate and the overall population need. Here
he notation ·̃ stands for the average over the whole popula-
ion.

Fig. 1 shows the cells’ more efficient glucose uptake mech-
nism as a function of the residual substrate concentration.
his figure is found from a simulation of chemostat cultures
t various dilution rates leading to different residual substrate
oncentrations. At low S, the majority of the total capacity

S is the contribution of the permeases, whereas the latter
re inhibited by the PTS at high S, entailing a decrease in
he �perm during the �PTS uptick. The rationale behind the
bove assumptions is that at the single-cell level, the available
ubstrate that is likely to be absorbed is determined by phe-
omena operating at different scales: (a) meso/micromixing,

b) the effect of neighbouring cells, and (c) the cell’s growth
istory (the so-called memory effect). The biological meaning
f ˛ is to represent a multiscale quantity. Thus, it is a function
f the cells internal properties, but is heavily influenced by the
ydrodynamics that affect the available amount of substrate
t the cell membrane. It consequently blends mesoscopic and
icroscopic phenomena and operates upon a mechanical and

hysiological boundary. The permease density distribution is
mplemented such that at small D (entailing a small ṽ), the
ubstrate uptake is controlled by the permease (i.e. ˛(ṽ, S̃) is
ubstantial), whereas at high D, ˛(ṽ, S̃) will be negligible in

comparison to the PTS system that then yields the majority of
the overall assimilation. These features fit the observations by
reported by Ferenci (1996), Ferenci (1999b) and Kovàrovà-Kovar
nd Egli (1998).
Fig. 2 illustrates the contributions of PTS and permeases to
the total uptake as a function of the rate of anabolism. Here,
for demonstration purposes, it is assumed that the N(t, l, v)
distribution is Gaussian and this distribution is normalized by
its maximum value. The situation depicted is that of a pop-
ulation at steady state in a chemostat at D = 0.15 h−1. Thus
the distribution is centred around ṽ = 0.15 h−1. The normal-
ized function ˛(S, v)/˛max decreases and consequently limits
the role of permeases in the substrate uptake for those cells
with a high rate of anabolism. On the contrary, for those cells
with a lower rate of anabolism (v = 0.15 h−1), the permeases
contribute to two thirds of the total uptake capacity. This fea-
ture of the model allows an overshoot in the uptake rate when
starving cells are exposed to high substrate concentrations as
has been observed experimentally (Lara et al., 2009; Neubauer
et al., 1995).

2.7. Interphase mass-transfer limitations

A salient feature of the substrate uptake model proposed here
is that we distinguish between the uptake capacity of the cell,
�S, and the actual uptake, qS, which can be limited by the trans-
port of the substrate down to the cell scale. This limitation
is due to the meso/micromixing that can hamper the uptake
regardless the cells’ capability to consume the substrate. This
modelling approach, which has already been presented in pre-
vious work (Morchain et al., 2017), is based on the ratio of
uptake and micromixing times. It states that the uptake rate
is defined by

qS = �S

[
1 − exp

(
− S

Sc

)]
(2.15)

where the model for �S is ((2.11). The characteristic sub-
strate concentration Sc is defined by (Morchain et al., 2017)

Sc = tMYSXṽX (2.16)

with X the total biomass (calculated as an integral over
the entire cell population), tM the micromixing time (set to
50 ms in this study), and ṽ is the mean rate of anabolism of
the population.

Following the same logic the actual oxygen uptake rate def-
inition includes the possible limitation by the gas–liquid mass
transfer:

qO2 = �O2

[
1 − exp

(
− KLaO�

2

X �O2

)]
(2.17)

where KLa is a constant that takes into account the O2

transfer from the gas phase to the liquid phase. Since O2 is
uptaken when glucose is absorbed by a cell and is not stored
in the cytoplasm, �O2 is assumed equal to qS, the eventual glu-
cose uptake (a ratio of 1 g of oxygen per gram of glucose is
assumed).

3. Numerical methods

The population balance (2.2) is solved with both a first-order
finite-volume (FV) method and a Monte-Carlo (MC) algorithm.
Throughout this section, the redistribution kernels P(l, l′) and
are implemented in C++14.



con
Fig. 2 – The function ˛(S, v)/˛max (light grey dashed line)

3.1. The FV method

The domain on which the PBM is solved is assumed to be a
rectangle [lmin, lmax] × [0, vmax] and the PDF is computed on
(N + 1) × (M + 1) nodes. In the following, Nn

i,j stands for the dis-
crete approximation of N at time tn and nodes (li, vj) ∈ [0, N +
1] × [0, M + 1], and Sn the substrate concentration computed
at time tn. For the number density function, a classic local
Lax–Friedrichs scheme was implemented:

Nn+1
i,j

= Nn
i,j − t

l

⎛
⎝Fn

i+
1
2

, j
− Fn

i−
1
2

, j

⎞
⎠

− t

v

⎛
⎝Gn

i,j+
1
2

− Gn

i,j−
1
2

⎞
⎠− DNn

i,j − 	(li)Nn
i,j

+lv
∑
i′>i

∑
j′≥0

	(li′ )P(li, li′ )Q(vj, vj′ )Nn
i′,j′

where Fn
· , · and Gn

· , · are the discrete fluxes associated to
the respective advection contributions F(l̇,N) = l̇N(t, l, v) and
G(v̇,N) = v̇N(t, l, v).

According to the Rusanov scheme, the fluxes explicitly read

Fn

i±
1
2

, j
= 1

2

(
F(l̇ni±1,Nn

i±1,j) + F(l̇n
i
,Nn

i,j)
)

+ 1
2

max(l̇ni±1, l̇ni )
(
Nn

i+1,j − Nn
i,j

)
Gn

i,j±
1
2

= 1
2

(
G(v̇n

j±1,Nn
i,j±1) + G(v̇n

j
,Nn

i,j)
)

+ 1
2

max(v̇n
j±1, v̇n

j )
(
Nn

i,j+1 − Nn
i,j

)

The substrate concentration S(t) is computed using a
Riemann sum, with first-order integration at the domain
boundary and second-order inside:

Sn+1 = Sn + t
(

D(Sf − Sn)

−��
d2

4
��(li + li+11i<N)

(
vj + min(vj, ��)

2

)

(
vj+1 + min(vj+1, ��)

2
1j<M)

1
(1 + 1i<N)(1 + 1j<M)[

(Nn
i,j + Nn

i+1,j)1i<N + Nn
i,j+11j<M + Nn

i+1,j+11i < N

])

j<M
trols the induction of permeases for slow growing cells.

When O2(t) reached small values, On+1
2 was computed with

the help of a semi-implicit scheme that removed the positivity
challenge due to the term KLa(O�

2 − O2):

On+1
2 =

On
2 + tKLaO�

2 − t��
i
�
j
� d2

4 lqO2Nn
i,j · dldv

1 + t(KLa + D)

3.2. The MC method

This Lagrangian tool was used in a test case for comparison
with the results given by the FV code. Given an initial number
of cells N0 at t = t0 whose values were Gaussian distributed, the
procedure is the following:

(1) Set t → t + t. An integer A is set equal to 0. A cell’s res-
idence time �i is given by the value of D and a random
number vi: �i = − log(vi)

D .
(2) Random numbers ui, i ∈ {0, . . ., N0 − 1} are drawn

from a uniform distribution. A is then set equal to

�
0≤i≤N0−1

1ui<1−exp(−t	i). If this sum is equal to 0, go back

to 1).
(3) If A > 0, all magnitudes are computed using the explicit

Euler method on the interval [t0, t]. All ages ai are also
updated. Considering the set B = {i|ui < 1 − exp(−t	 i)}, all
cells with subscript in B will give birth to a daughter cell
whose length, rate of anabolism and residence time are
computed using respectively P(l, l′), Q(v, v′) and D. N0 is
also updated: N0 → N0 + |B|.

(4) Considering the set C = {i|ai > �i}, all cells whose subscript
lies in C are withdrawn from the reactor and N0 → N0 − |C|.

(5) The last step is the update t0 → t and the conservative
resize with respect to the system’s cardinal.

Fig. 3 illustrates the convergence of the two methods
toward the same solution. The number of cells in the MC

approach was limited to 20,000 which may explain the minor
discrepancies.



Fig. 3 – Comparison of the length distribution in an
unlimited environment using different numerical
s
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. Moments of the population balance

n this section, the moments of the population balance are
ntroduced and used to demonstrate some properties of the
BM.

.1. Equivalence between growth in number and
rowth in mass

olving Eq. (2.2) is equivalent to solving the infinite set of
quations on its moments. The moments of the N(t, l, v) dis-
ribution are defined as follows:

p,q(t) =
∫ ∫

lpvqN(t, l, v) · dldv. (4.1)

Thus, the moment m0,0 refers to the total number of cells,
nd the moment m1,0 corresponds to the total mass, since the
ell mass is proportional to the cell length. Let us establish the
quation for these two moments. Starting from the general
BM (2.2), we obtain after some mathematical manipulation
escribed in detail in Appendix A the following relationships:

d

dt

∫ ∫
N(t, l, v) · dldv = −D

∫ ∫
N(t, l, v) · dldv

+
∫ ∫

	(l)N(t, l, v) · dldv, (4.2)

d

dt

∫ ∫
l N(t, l, v) · dldv = −D

∫ ∫
l N(t, l, v) · dldv

+
∫ ∫

l̇ N(t, l, v) · dldv. (4.3)

In other words, the notation 〈 · 〉 standing for the double
ntegral over the entire population, (4.2) and (4.3) read

dm0,0

dt
= −Dm00 + 〈	N〉 = −Dm00 + 〈	N〉

m0,0
m0,0 (4.4)
dm1,0

dt
= −Dm1,0 + 〈l̇N〉 = −Dm1,0 + 〈l̇N〉

m1,0
m1,0 (4.5)
These two equations degenerate into a single one on con-
dition that

〈	N〉
m0,0

= 〈l̇N〉
m1,0

(4.6)

If the above condition holds, reasoning in terms of total cell
mass or total cell number is equivalent.

At steady state (N(t, l, v) = N̄), multiplying Eqs. (4.4) and (4.5)
by the steady-state moments m̄1,0 and m̄0,0, respectively, and
equating the two right-hand sides leads to

m̄1,0
(
−Dm̄0,0 + 〈	N̄〉

)
= m̄0,0

(
−Dm̄1,0 + 〈l̇N̄〉

)
(4.7)

This equation can be rewritten in the same form as Eq. (4.6),
so one condition for the growth in mass and in number to be
equivalent is that the continuous culture is at steady state.

In a batch culture (D = 0), Eqs. (4.4) and (4.5) reduce to

1
m00

dm00

dt
= 〈	N〉

m0,0
, (4.8)

1
m10

dm1,0

dt
= 〈l̇N〉

m1,0
. (4.9)

It was well documented in Perthame (2007) and refer-
ences therein that the number density function converges to
a distribution whose geometry is shaped by the eigenvector
associated to the population balance equation’s largest eigen-
value (the so-called Malthus parameter). Then, for unlimited
growth, the distribution becomes self-similar (Subramanian
et al., 1970), meaning that

1
m00

dm00

dt
= 0.

The length distribution also remains self-similar, what
yields

1
m10

dm10

dt
= 0.

Combining (4.8) and (4.9) then leads to the relationship

1
m00

dm00

dt
= 1

m10

dm10

dt
⇒ 〈	N〉

m0,0
= 〈l̇N〉

m1,0
. (4.10)

Therefore, we have demonstrated that the population spe-
cific growth rate in number equals the population specific
growth rate in mass if the culture is at steady state or if the
population is growing exponentially.

4.2. On the relationship between the 2-D and
population-averaged model

The usual unstructured model (or population-averaged model)
takes the following form:

dX

dt
= (� − D) X,

dS

dt
= D(Sf − S) − YSX�X,

� = �max
S

kPTS + S
.

(4.11)

Dividing Eq. (4.3) by the volume of liquid produces an equa-

tion for the cell concentration X (in gX/L) very similar to the
corresponding equation of the standard unstructured model



Fig. 4 – Evolution of the total mass and total number of cell
during the continuous culture.
(4.11). However, these two equations are not equivalent and
the unstructured model equation results from an approxima-
tion used to simplify the last term of Eq. (4.3):

∫ ∫
l̇N(t, l, v) · dldv =

∫ ∫ (
l̇

l

)
lN(t, l, v) · dldv

≈
(

l̇

l

)∫∫
lN(t, l, v) · dldv = �X. (4.12)

In other words, the integral of the cell growth rate in mass
over the population is roughly expressed as the product of the
total mass multiplied by an average specific growth rate. This
is only a rough approximation which, however, is justified if
l̇/l is constant, meaning that the growth is exponential.

This observation clarifies the definition of � as it appears in
the standard unstructured model. For that model to be exact,
� should always be equal to 〈l̇N〉/m1,0 (see Eq. (4.5)), whilst
there is no information on the distribution in the unstruc-
tured modelling approach. It is therefore of no surprise that
the unstructured model is not suitable to predict the tran-
sient behaviour of cell populations. One can further observe
that cell division modifies the distribution N, but leaves the
total mass unchanged. Because � in Eq. (4.11) is defined on a
mass basis, it is not possible to investigate the consequences
of any process that would impact the cell number and the cell
mass on separate time scales. Clearly, the mass transfer from
the liquid to the cell (uptake) is one such phenomena since
uptake obviously precedes cell division. As a matter of fact, it
is a paramount interest to recall that the relationship between
growth and uptake rates is made on a mass basis, whereas the
exact definition of specific growth rate is made on a number
basis, i.e.,�̄ = ln 2/td

The discussion above shows that (4.11) comes down to
approximating an integral over the population by the prod-
uct of the averaged quantities, the latter being only first-order
accurate. This approximation is good for t → ∞, but it can be
highly inaccurate if the system is disturbed from the outside,
for instance if a pulse of substrate is injected into the reac-
tor. The first-order approximation in this case is misleading
for it states that the specific growth rate immediately ratchets
up from an equilibrium value to an algebraic �(S(t)). Because
no distinction is made between cell mass and cell number,
any gain in mass (uptake) is translated immediately into a
higher specific growth rate which turns into a higher cell con-
centration which is simply inaccurate based on experimental
observations.

5. Results and discussion

In this part, we first perform a series of experiments to test our
model behaviour in response to a pulse under fully aerobic
conditions. Then we assess our model against experimental
data obtained by Sunya et al. (2012). A population of E. coli
cells is set to equilibrium in a chemostat. Pulsed addition
of substrate with various intensities (0.08, 0.4 and 1 g/L) are
imposed on the cell population. The macroscopic properties of
cell growth were given by the authors (�max = 0.46 h−1, appar-
ent substrate affinity KS = 0.01 g/L, substrate to biomass yield
at steady state YXS = 0.42 gX/gS). The oxygen concentration in
the liquid phase was measured with a fast responding probe,

the oxygen and CO2 concentrations in the outlet gas flow were
obtained from a gas analyser. Glucose, acetate and formate
were also analyzed at high temporal resolution using a mass
spectrometer.

The parameter values used in simulations are reported in
Table 1.

5.1. Pulse addition without oxygen limitation

In this part, oxygen is set constant, equal to its saturation
value so that it has no impact on the results. A continuous
culture at D = 0.15 h−1 is simulated and a pulse of substrate of
1 g/L is imposed at t = 30 h. We present the evolution of the inte-
gral properties of the cell population (mass, number) as well
as the distributions in length and rate of anabolism before the
establishment of a steady-state.

Interestingly, one can observe in Fig. 4 that the total mass
and total number evolve separately and eventually tend to
become proportional when the culture approaches steady
state. From that point onward, examining the population
growth on a number or on a mass basis becomes equivalent
since the average cell mass is now time independent. Fig. 5
shows that the distributions in length and rate of anabolism
become self-similar at the end of the preliminary phase that
precedes the pulse addition.

The pulse addition of substrate results in a instantaneous
increase in the cell mass because all cells can now elongate at
their potential rate v instead of being limited by the environ-
ment (see Eq. (2.6)). However the evolution in terms of total cell
number is not so sudden since cells have to elongate before
they can divide into two daughter cells. Fig. 6 presents a closer
view of this decoupling between growth in mass and growth
in number.

These numerical results were theoretically predicted in
Section 4. Note also that the slight differences in terms of num-
ber and mass between Figs. 4 and 6 are due to a change in the
parameter lc which indirectly controls the average cell size and
hence the total cell mass at steady-state.

5.2. Pulse addition with oxygen limitation:
comparison to experimental data

In this part, glucose, oxygen, cell mass and cell number are
calculated. A constant KLa = 300 h−1 was deduced from the
experimental data at steady state prior to the glucose pulse.

Integrating over the entire population leads to the total uptake
rates for glucose and oxygen as well as the specific growth



Fig. 5 – Distribution in length (left) and anabolism rate (right) toward steady-state. A population is cultivated in a chemostat
(D = 0.15). For the sake of simplicity, the distribution were inferred before the simulation so that the code was only run for
three times the residence time 1/D ≈ 6.6 h. Red: initial pdf; green: at t = 2 h; blue: at t = 10 h; purple: at t = 18 h. (For
interpretation of the references to colour in this figure legend, th

Fig. 6 – Evolution of the total mass and total number in
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the r . It appears that, the Monod kinetics states that the
esponse to a glucose pulse in a continuous culture.

ate in number and the rate of mass change due to cell growth
elongation).

Fig. 7 presents the evolution of the key variables of the
ynamic response to a glucose pulse for the 0.4 g/L experi-
ent. Just before the pulse, the PTS system contributes to

pproximately one third of the total glucose uptake (0.16 out of
.37). Immediately after the pulse (t < 0.1 min), the total uptake
ate jumps because of the PTS contribution. At that moment,
xygen is still present and this allows rPTS to step-up and
o overtake the contribution of permeases to the total trans-
ort. Because the glucose uptake rate has increased but the
ell had hardly no time to change its rate of anabolism, the
otal glucose uptake rate now exceeds the glucose consump-
ion due to anabolism. The permeases start shutting down,
ecause of that excess carbon flux, according to Eq. (2.14).
xygen depletion takes place at t = 0.1 min. As explained in

he model presentation, the lack of oxygen slows down the
atabolic activity and rPTS falls down. Nevertheless, the still
ctive permease system compensate the diminution of rPTS

o that eventually the total uptake rate remains stable. The
lateau following the initial overshoot is clearly visible in the
xperimental data but remained unexplained until now.

From 1 to 10 min, the glucose concentration linearly
ecreases which progressively reduces the demand for

xygen. Thus the dissolved oxygen concentration slightly
ncreases, resulting in an increased catabolic activity. Hence
e reader is referred to the web version of the article.)

rPTS goes up and permeases keep closing for the same rea-
son as before (uptake exceeds the cell needs for anabolism).
At substrate exhaustion, the rapid decrease of the sugar con-
centration creates a situation where qS becomes smaller than
YSX.v, so the cell receive a signal that the substrate flux into
the cell becomes insufficient with respect to the cell needs
(note that the concentration does not have to be extremely
low for that message to be recorded by the cell (see Ferenci,
1996). This insufficient carbon flux signal triggers the increase
in the permease activity. It is very interesting to observe that
the dynamic model predicts that, as the sugar gets exhausted,
the permease activity increases which explains how cells can
anticipate the glucose exhaustion and manifest an apparent
“anticipation capacity”. This important characteristic of our
model is clearly a benefit from a flux formulation in Eq. (2.14).

Fig. 8 shows the prediction of our numerical model com-
pared to the experimental data for the three pulse intensities.
In the simulation, the glucose uptake rate is slightly under-
estimated. The agreement is rather satisfying and we were
particularly interested in understanding the origin of such
similar uptake rates, irrespective of the pulse intensity. We
came to the conclusion that the glucose uptake rate was in fact
limited by the oxygen mass transfer during the experiments.
Indeed, the maximum oxygen transfer rate is given by KLaO�

2.
Considering the KLa value identified from the steady state
concentrations, we conclude that the oxygen uptake rate is
limited to 2.4 gO2 L−1 h−1 which closely matches the observed
glucose consumption rate in all experiments (0.4 g in 10 min
or 1 g in 25 min). This observation supports the assumption
made in the model that 1 g of oxygen is consumed per gram
of substrate uptaken.

In the simulations, the glucose uptake is limited by the low
concentration of oxygen (see the role of O2 in rPTS). Therefore
the whole dynamics is controlled by this residual concen-
tration of oxygen whose value is highly dependent on the
constant KO2. Fig. 9 shows the evolution of the dissolved oxy-
gen concentration as predicted by the model. It is put to the
reader’s attention that O2 approaching zero hampers the glu-
cose uptake. This underestimation of the glucose uptake rate
is therefore related to the low oxygen residual concentra-
tion. A lower KO2 would cause the oxygen concentration to
be much closer to zero and this would also adversely reduce
PTS

reaction stops if oxygen is zero whereas in fact the reaction



Fig. 7 – Dynamics of substrate uptake during the response to a pulse addition of 0.4 g/L of glucose in a chemostat at
D = 0.16h−1. A log scale is used for the abscissae to emphasize the first instants after the pulse. S and O2 are represented in
blue and green respectively, uptake rates are in light grey (PTS), dark grey (Permeases) and black (total).

Fig. 8 – Response to a pulse of substrate of various intensities in a chemostat. Comparison of the model prediction to the
experimental data of Sunya et al. (2012).

Fig. 9 – Simulated oxygen concentrations in the liquid
phase as a function of time, shortly before and after the
pulses.
rate would become limited by the gas-liquid mass transfer
rate. This entails a caution related to the use of Monod laws
to describe local phenomena in biology in general. The use
of concentration in the kinetic law makes them unadapted to
the situation where interphase mass transfer is the limiting
phenomena. Actually, it would be preferable to avoid com-
pletely the use of Monod kinetics and to include a limitation
of rPTS by the maximum oxygen transfer rate without any ref-
erence to the residual concentration of oxygen. Furthermore,
the use of concentration based kinetic rates creates some
numerical noise that could not completely avoided despite the
semi-implicit strategy for the resolution. The behaviour after
glucose exhaustion is not representative of the experiments
because the oxygen uptake associated to the reconsumption
of acetate is not included in our model.

Fig. 10 gives an insight at which transport phenomenon
drives the glucose uptake in function of the substrate flux

entering the cells. At steady-state, S ≈ 5 ×10−3 g/L, i.e. 5 times
the permease affinity constant kperm but only one half of kPTS.



Fig. 10 – Total substrate uptake rate, PTS and Permeases contributions, shortly before and after the pulse. Top right: 1 g/L,
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op left: 0.4 g/L, bottom left: 0.08 g/L.

n this case, the permease contribution to the total qS is 2–3
imes over its PTS counterpart. The permease system in that
ase is already almost saturated. At the beginning of the pulse,
he PTS are immediately requested and their full-on function-
ng ratchets up the qS while the permeases’ contribution does
ncrease a little. In all cases, the instantaneous total uptake
ate is multiplied by a factor 3 as reported in the experiments.
hortly after, the permeases’ shutting leads to a plateau situ-
tion characterized by a PTS-only work. When S → 0, the PTS
ecomes less and less effective and the permeases relay the
TS until steady-state is reached once again.

Up to now, it was shown that the glucose uptake was
orrectly predicted, it was explained why it was slightly under-

estimated and it was also shown that the gain in the total
cell mass following a pulse addition of a subsequent amount
of carbon is in contrast very limited (see Fig. 6). So there is
an apparent contradiction between the quantitative uptake of
substrate and the small increase in the total cell mass. This is

ot surprising in our model since there is no carbon balance
ver the cell. Such a balance could be implemented through
minimal metabolic modelling and although it is possible

see Pigou and Morchain, 2015), it was not the central objec-
ive in this paper. Nevertheless, the question of the fate of the
ptaken carbon remains and we will see now how the exper-

mental data provide a way to confirm our model prediction.
or this purpose, a carbon mass balance was established from
he experimental measurements of the carbon dioxide in the
as outflow and the concentrations of by-products excreted
uring the pulse. Fig. 11 presents the difference between the
oncentration in the gas phase during the pulse and the con-

entration measured at steady state. Since the duration of the
lucose exhaustion is relatively small compared to the resi-
dence time, it can be assumed that the totality of the carbon
transformed into CO2 finally exits the reactor in the gas phase.
We performed the integration of these curves and multiplied
by the gas flow rate to quantify the amount of CO2 produced
during the pulse. Acetate and formate are also produced dur-
ing the glucose excess period. However acetate is reconsumed
and therefore also contribute to CO2 production. This was
taken into account in the mass balance. The results presented
in Fig. 12 show that 65% of the total carbon uptaken is trans-
formed into CO2, acetate and formate during the 1 g/L pulse
experiment. This fraction goes up to 93% for the 0.08 g/L pulse.
The simultaneous consumption of oxygen during the period
of high glucose uptake confirms the fact that the first response
of the biological system is to transform the glucose uptaken in
excess into CO2. We can conclude that there is actually a sig-
nificant uptake of carbon but a simultaneous release of CO2

in the liquid phase. The carbon uptaken is not mainly metab-
olized to form new cells. Note that our model quantifies this
excess through the difference qS − YSXṽ.

In the 1 g/L pulse experiment, it can be calculated from the
growth yield on glucose that the amount of carbon available
for growth would correspond to a maximum of 0.11 g of new
cells (assuming that YSX remains constant during the pulse).
This value is obtained from the carbon mass balance excluding
any storage, so it constitutes an upper limit. In our simulation,
the boost in the uptake rate of substrate is not directly inter-
preted in terms of increase growth rate but we proposed that
the dynamics of the population would be dictated by its rate of
anabolism prior to the pulse. This hypothesis actually leads to
a net production of biomass equal to 0.07 g after 25 min (glu-

cose exhaustion). This results is therefore consistent with the
carbon mass balance and confirms the fact that the substrate



Fig. 11 – Relative change in the concentration of CO2 in the gas phase during the pulse experiments.
Data from Sunya et al. (2012).

Fig. 12 – Carbon mass balance.

Data from Sunya et al. (2012).

uptake rate was significant whilst the population gain in mass
was in practice undetectable.

5.3. The instantaneous uptake rate can exceed its
maximum value observed in batch

In order to model the permease contribution to the total qS,
a value for kcat is inferred and entails an equilibrium value
for ˛. Indeed, ˛kcat is a constant factor that emerges from the
steady-state equation:(

D
S̄

S̄ + kPTS

+ ˛kcat
4
�d

S̄

S̄ + kPerm

)(
1 − exp

(
− S̄

Sc

))
= D

where S̄ stands for the residual substrate concentration at
steady-state. Therefore (D being given and assumed constant),
the surge in qperm in the wake of a glucose pulse is totally deter-

mined by kcat: the higher it is, the lower ˛ is at steady-state,
the less is the permease overactivity following the disruption.
It is highlighted in Joseph (2005) that “genetic interventions
usually lead to very large changes in enzyme activity”. In other
terms, the cells’ membrane permeability can be altered in
order that the total qS overtakes the maximum value encoun-
tered in batch culture (here, vmax/YSX ≈ 1.095).

The model’s equivalent would be a decrease in kcat that
would lead to a higher value for ˛ before the disruption. Con-
sequently, in the seconds following a glucose pulse, the qperm

contribution to qS would be high enough to allow qS exceeding
the maximum value in batch conditions.

This is indeed predicted by the model. Fig. 13 is testa-
ment to the response of a population cultivated at low (0.05) D
(meaning that the permease transport accounts for the major-
ity of the total uptake) to a step in S. kcat was divided by 2 so
that the permease are significantly open before the glucose
step. The glucose uptake rate qS ratchets up in the wake of the
injection and momentarily surpasses vmax/YSX.



Fig. 13 – Instantaneous total substrate uptake rate
f −1
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. Conclusion

his article highlights the relevance of a 2-D PBM formulated
n terms of length (equivalent to mass for the rod-shaped cells)
nd rate of anabolism to investigate the population dynamics
nder transient conditions. The moments of the PBM were
sed to demonstrate that growth in mass and growth in
umber are only equivalent at steady-state in a continuous
ioreactor and during the unlimited growth phase in a batch
ulture. In general, growth in mass is a matter of cell elon-
ation (controlled by the rate of anabolic reactions) whereas
rowth in number is a matter of cell division (controlled by
he cell division kernel). The proposed model allows for the
escription of transient behaviours of a cell population when
rowth in mass and growth in number are no longer equiva-
ent. As an illustration, it is shown that the pulse addition of
he carbon source in a substrate limited culture first causes
n increase in the cell mass followed by an increase in the
ell number. The second originality of this work is the for-
ulation of an uptake law as the sum of two contributions

tanding for as many transport systems (PTS and permeases).
aking into account multiple transport systems is certainly
ecessary when modelling bacteria populations. In the pro-
osed model, the contribution of each system to the total
ptake evolves because of the difference between the actual
ubstrate uptake and the cell needs for growth (deduced from
he rate of anabolism). The dynamics of each system obey
ifferent time scales. This model compares favourably with
xperimental results. It is also consistent with experimental
bservation such as the apparent capacity of cells to antici-
ate the substrate exhaustion (Ferenci, 1996) or the fact that
he instantaneous substrate uptake rate may exceed the max-
mum uptake rate observed in batch culture (Lara et al., 2009).
s it is, the proposed model already appears as a valuable tool

o understand and analyze one experimental data set exist-
ng in the literature. It could be observed that the dilution rate
nd pulse intensity are not sufficient to fully characterize the
xperiments. However, it is clear to the authors that some
arts of the model need further improvements. A detailed
ensitivity analysis has still to be conducted. It is also reason-
ble to include minimal energy and mass balances at the cell
evel. The ongoing works now concern the assessment of this

odel against various experimental data regarding substrate
imited continuous culture at different dilution rate, different

/X ratio, inlet feed concentration and global mass transfer
oefficients.
This model is now set to be implemented in a compu-
tational fluid dynamics (CFD) code to couple the biological
behaviour to both micro and macro mixing. It will then be
used as a tool to numerical simulations on a ∼105 L-reactor
routinely put in place in many industrial processes.
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Appendix A. Integral expression of the 2-D PBE

We provide below some details about the mathematical cal-
culation of the integral expression obtained from the PBE (2.2).
The passage from Eq. (2.2) to Eq. (4.3) is detailed first.

Regarding the cell number, an integration of (2.2) yields:

d

dt

∫ ∫
N(t, l, v) · · dldv + D

∫ ∫
N(t, l, v) · · dldv

+
∫∫

	(l)N(t, l, v) · · dldv = 2

∫ ∫ ∫ ∫
l′>l

	(l′)P(l, l′)Q(v, v′)N(t, l′, v′) · dl′dv′ · dldv

(A.1)

Indeed, the regularity boundary condition imposed on v

leads to∫ ∫
∂

∂v
[v̇N(t, l, v)] · dldv =

∫
[v̇N(t, l, v)]10dl = 0

and its counterpart∫ ∫
∂

∂l
[l̇N(t, l, v)] · dldv

vanishes the same way.
Using the Fubini theorem to transform the right-hand side

of (A.1) yields:

2

∫ ∫ ∫ ∫ ∞

l

	(l′)P(l, l′)Q(v, v′)N(t, l′, v′)dl′dv′ · dldv

= 2

∫ ∫
	(l′)N(t, l′, v′){

∫ l′

0

P(l, l′)dl

∫
Q(v, v′)dv}dl′dv′

Recalling the properties (2.8), the right-hand side takes the
shape of:

2

∫ ∫ ∫ ∫ ∞

l

	(l′)P(l, l′)Q(v, v′)N(t, l′, v′)dl′dv′ · dldv

= 2

∫ ∫
	(l′)N(t, l′, v′)dl′dv′

One can then rewrite (A.1):

d

dt

∫ ∫
N(t, l, v) · dldv = −D

∫ ∫
N(t, l, v) · dldv

+
∫ ∫

	(l)N(t, l, v) · dldv (A.2)



+
∫

v′)dl
Since it was assumed that a cell’s mass is proportional to
their length, an integration of the first moment on l of (2.2)
gives the balance on the biomass. It reads:

d

dt

∫ ∫
lN(t, l, v) · dldv−

∫∫
l̇N(t, l, v) · dldv + D

∫∫
ln(t, l, v) · dldv

2

∫ ∫ ∫ ∫
l′>l

	(l′)lP(l, l′)Q(v, v′)N(t, l′,

Indeed, an integration of the advection terms gives:

∫ ∫
l
∂

∂l
[l̇N(t, l, v)] · dldv = −

∫ ∫
l̇N(t, l, v) · dldv

+
∫

[ll̇N(t, l, v)]
∞
0 dv = −

∫ ∫
l̇N(t, l, v) · dldv

having integrated by parts and used the regular boundary
conditions, and∫ ∫

l
∂

∂v
[v̇N(t, l, v)] · dldv =

∫
l[v̇N(t, l, v)]v=1

v=0dl = 0

Regarding the right-hand side of (A.3), another use of the
Fubini theorem gives:

2

∫ ∫ ∫ ∫
l′>l

	(l′)lP(l, l′)Q(v, v′)N(t, l′, v′)dl′dv′ · dldv =

2
∫∫

	(l′)N(t, l′, v′)

{∫ l′

0

lP(l, l′)dl

∫
Q(v, v′)dv

}
dl′dv′

To compute the integral over l, one uses the change of vari-
ables l → l′ − l:

∫ l′

0

lP(l, l′)dl =
∫ l′

0

(l′ − l)P(l′ − l, l′)dl

= l′
∫ l′

0

P(l, l′)dl − l

∫ l′

0

P(l, l′)dl

using the hypothesis P(l, l′) = P(l′ − l, l′).
At the end of the day,∫ l′

0

lP(l, l′) = 1
2

l′

and:

2

∫ ∫ ∫ ∫
l′>l

	(l′)lP(l, l′)Q(v, v′)N(t, l′, v′)dl′dv′ · dldv

=
∫ ∫

	(l′)N(t, l′, v′)dl′dv′
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