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Abstract—To design faster and more energy-efficient systems,
numerous inexact arithmetic operators have been proposed, gen-
erally obtained by modifying the logic structure of conventional
circuits. However, as the quality of service of an application has to
be ensured, these operators need to be precisely characterized to
be usable in commercial or real-life applications. The characteri-
zation of inexact operators is commonly achieved with exhaustive
or random bit-accurate gate-level simulations. However, for high
word lengths, the time and memory required for such simulations
become prohibitive. Besides, when simulating a random sample,
no confidence information is given on the precision of the
characterization. To overcome these limitations, CASSIS, a new
characterization method for inexact operators is proposed. By
exploiting statistical properties of the approximation error, the
number of simulations needed for precise characterization is
drastically reduced. From user-defined confidence requirements,
the proposed method computes the minimal number of simu-
lations to obtain the desired accuracy on the characterization.
For 32-bit adders, the CASSIS method reduces the number of
simulations needed up to a few tens of thousands points.

I. INTRODUCTION

Real-time and energy constraints for the current design of
embedded systems increase the need for new techniques to
save resources during the implementation phase. Approximate
Computing is rising as one of the main approaches for post-
Moore’s Law computing. It exploits the deliberate introduction
or tolerance of errors in order to save energy or accelerate
computation speed. The precision of an application is now
taken as a new tunable parameter to design more efficient
systems.

Approximations in circuits have been introduced in different
manners such as overclocking [1] at circuit level or computa-
tion skipping [2] at algorithmic level. The logic structure of
original exact operators can also be modified into an inexact
version [3]–[7]. Inexact operators generate errors with varied
amplitude and error rate. The error amplitude depends on the
location of the erroneous bits of the operator output. To use
an inexact operator in an application, the errors generated by
the induced approximations have to be characterized in terms
of error rate and amplitude. The impact of the approximation
on the application quality metric has to be quantified. The
application quality metric, whose measurement depends on the
application, quantifies the output quality of the application. For
instance, for a signal processing application, the application
quality metric can be the SNR. The application designer
then computes statistical properties on the error generated

by inexact operators to ensure their behavior in the targeted
application and select the most suitable to his constraints.

The error induced by inexact operators can be evaluated
with two types of approaches: 1) Analytical methods [8]–[10]
mathematically expressing error statistics but the link between
these statistics and the impact of the operator on the ap-
plication quality metric is not straightforward. 2) Functional
simulation techniques [11]–[13] simulate the inexact operator
on a representative set of data and computes statistics on
the approximation error. This later method is more and more
employed due to the increasing amount of data generated in the
Cloud or processed by data mining. Nevertheless, to mimic the
inexact operator behavior, bit-accurate simulations at the logic-
level (BALL simulations) are required to catch the internal
structure modifications of the operator. The inexact operator
may be simulated exhaustively, i.e. for all the possible inputs,
to compute the required statistics, which is not feasible for
high word-lengths because of the required simulation time.
Commonly, the error statistics are computed by simulating a
given number of random inputs. Indeed, BALL simulations are
two or three orders of magnitude more complex than classical
simulations with native data types. A BALL simulation of a
16-bit inexact adder takes around 300 times more time than
a native processor instruction, and even 4000 times longer in
the case of an inexact multiplier.

Nevertheless, the quality of the statistical characterization
obtained from a random sampling is highly dependent on the
number of samples taken and on the chosen input distribution.
Besides, the quality of the estimated statistics is not evaluated,
and the random sampling based on a fixed number of samples
can be ineffective in terms of simulation time. To be used in a
real application, a method to characterize inexact operators
with a user-defined confidence interval is strongly needed,
particularly for high word-length inexact operators.

In this paper, we propose an efficient methodology to
characterize inexact operators. The proposed method derives
the minimal number of samples to simulate, to characterize
an inexact operator given an user-defined confidence infor-
mation. Our approach exploits the statistical properties of the
approximation error. The number of simulations needed and
the characterization time are drastically reduced. Reducing the
characterization time allows to characterize high word-lengths
operators. This method is demonstrated on several inexact
adders of different bitwidths, from 8 to 32 bits, considering
both the Mean Error Distance (µe) and Error Rate (f ).



The paper is organized as follows: in Section II, the metrics
used for the characterization of inexact operators and the
proposed characterization method are presented. Section III
presents the simulation time savings offered by the proposed
method and the quality of the obtained estimation. Section IV
concludes the paper.

II. CHARACTERIZATION WITH ADAPTIVE SAMPLE-SIZE
INFERENTIAL STATISTICS (CASSIS)

The objectives of the CASSIS method are: 1) to estimate the
circuit error characteristics more efficiently, using a reduced
but sufficient number of samples, 2) to provide the estimated
error characteristics with a given confidence information,
which is normally not the case with a fixed amount of samples.

A. Metrics for error characterization of inexact adders

Inexact arithmetic circuits are traditionally characterized
based on the absolute Error Distance (e) of the calculation
output, expressed as:

e = |ẑ − z| (1)

where ẑ and z are the erroneous and exact operator outputs,
respectively. Then, the Mean Error Distance µe and the error
rate f are derived from e, defined as:

µe =
1

N

∑
i∈I

ei (2)

f =
∑
i∈I

fei
N ,with fei =

{
1 if ei = 0

0 else
(3)

where ei is the Error Distance of the ith stimuli on a sample I
of size N .

B. Proposed statistical characterization method

Inferential statistics [14] aim at reproducing the behavior of
a large population using a subset of this population. Instead
of simulating exhaustively all the possible input operands
combinations in I, the input operands set is sampled to give
an estimation with an accuracy h and a probability p that the
estimation is contained within the confidence interval. The
CASSIS method computes the minimal number of samples
to simulate, to estimate the error characteristics according to
(h, p). Nµe

and Nf represent the minimal number of samples
to estimate µe and f , respectively.
1) Computation of Nµe

The empirical mean µe, a punctual estimator of µe, i.e. an
estimation of µe computed over a given number of samples,
is used to estimate µe. µe is used to compute the theoretical
number of samples Nµe to simulate to get an estimation ac-
cording to the confidence parameters (h, p). To estimate Nµe ,
the standard deviation of the simulated samples is needed. The
empirical mean µe and the empirical standard deviation S̃2,
a biased estimator of the standard deviation σe, are computed
over T samples as:

µe =
1

T

T∑
i=1

ei (4)

S̃2 =
1

T

T∑
i=1

(ei − µe)2 (5)

The estimators µe and S̃2 are associated to confidence
intervals ICµe

and ICσe
respectively, defined such that they

include µe and σe with a probability p. Then, according to
the Central Limit Theorem, since (e1, e2, ..., eT ) are belong-
ing to the same probability set, independent and identically
distributed, Equation 6 is verified if the number of samples
Nµe

is higher than 30. Consequently, no assumption has to
be made on the distribution of the population. In Equation 6,
N (0, σ) represents a Gaussian distribution whose mean is 0
and standard deviation is σ.√

Nµe
(µe − µe)

law−−→ N (0, σ) (6)

The confidence interval ICpµe
is developed in Equation 7 and

contains µe with a probability p. The term aαµe
embodies the

accuracy on the estimation and is computed as in Equation 8.
zα is given by the table of the standard normal distribution
given p. Nµe is the minimal number of samples to simulate to
get an estimation respecting the user-defined parameters (h, p).

ICpµe
= [µe − aαµe

;µe + aαµe
] (7)

aαµe
= zα ·

S̃√
Nµe
− 1

(8)

The desired accuracy h on the estimation of the average
error distance impacts the number of samples to simulate as
expressed in Equation 9. To get a desired accuracy of h, aαµe

must be lower or equal to h.

Nµe
>
z2α · S̃2

h2
(9)

According to Equation 9, if the standard deviation of the
error generated by the inexact adder is very large, Nµe

can be
very high. Inexact operators with a large standard deviation
renders circuits with poor interest. In the proposed method, a
maximal number of simulated points has been fixed to Nmax =
25 ·106. If the required number of points is higher than Nmax,
the estimated µe and f are given according to p but with a
precision h depending on Nmax.
2) Computation of Nf

The proportion of input operands in I that generates an error
is embodied by the error rate f . f follows a hypergeometric
law. The estimator used for the error rate is fe, the proportion
of samples generating an error in the random sampling. Such
an estimator can also be associated to a confidence interval ICpf
that is defined such that the real error rate f of the population
E is contained in this confidence interval with a probability p.
The computation of ICpf is developed in Equation 10.

ICkf = [fe − aαf ; fe + aαf ] (10)

In Equation 10, aαf represents the accuracy on the estimation
of the frequency, zα is given by the table of the standard



normal distribution and Nf represents the minimal number of
samples to simulate, to get an estimation with the user-defined
parameters (h, p).

aαf = zα ·

√
fe(1− fe)

Nf
(11)

To get a desired accuracy of h, aαf must be lower or equal
to h, which impacts Nf as in Equation 12.

Nf >
z2α · fe(1− fe)

h2
(12)

C. Proposed Algorithm

Algorithm 1 presents the estimation of µe and f . The
population on which inferential statistics are applied is the set
E = {ei/i ∈ I}. The statistical variables µe and f describe
the population E and are characterized by probability laws. To
sample the population E , a random sampling method without
replacement is used. So that the exhaustive sampling behaves
like a non exhaustive sampling, T , the number of samples
simulated, is taken higher than 30.

To characterize an inexact operator, the user provides the
following information: the desired accuracy on the estimation
h, the probability p that the estimated interval contains the

Algorithm 1 Statistical Characterization of µe and f of
population E

procedure CHARACTERIZEµE ,f (E , h, p, T,Nmax)
α = 1− p
E = (e1, .., eT ) = sampling(E , T )
µe = computeMean(E, T ) . Equation 4
S̃2 = computeSD(E, T, µe) . Equation 5
fe = computeFreq(E, T ) . Equation 2
Nµe

= computeNMean(S̃2, h) . Equation 9
Nf = computeNFreq(fe, h) . Equation 12
N = max(Nµe , Nf )
if N ≥ Nmax then

N = Nmax
end if
n = T
E = E\E
while n < N do

(en, .., en+T ) = sampling(E , T )
µe = computeMean(E,n+ T )
S̃2 = computeSD(E,n+ T, µe)
fe = computeFreq(E,n+ T )
n+ = T
Nµe = computeN(S̃2, h)
Nf = computeNFreq(fe, h)
N = max(Nµe

, Nf )
if N ≥ Nmax then

N = Nmax
end if

end while
end procedure

real value, the refreshment period T . T is used to refine
the number of samples required. A first sampling extracts T
samples from the population E , on which are computed the
empirical mean µe and standard deviation S̃2. From these
estimations, the theoretical minimal numbers of samples to
compute to estimate µe and f according to the user’s precision
constraints is obtained.

To estimate µe and f , the empirical standard deviation,
empirical mean and error rate of the samples are used. Those
three estimators are computed to derive the theoretical num-
bers of samples to simulate to estimate µe and f , Nµe

, Nf
respectively. The maximum of these two values, N , is taken
as the reference number of samples to simulate. The same
process is refined every T samples to converge towards the
minimal value of N . Consequently, the higher T , the more
the computations of Nµe and Nf are accurate. If N is higher
than Nmax, Nmax points are simulated but the estimated results
do not fulfill the accuracy requirement h.

III. EXPERIMENTAL STUDY

A. Inexact adders under consideration

For this experimental study, inexact adders have been se-
lected among three major kinds of topology explored in the
literature: timing-starved adders [4], speculative adders [5], [6]
and carry cut-back adders [7].

The Almost Correct Adder (ACA) [4] is the most known
timing-starved adder. It is composed of an array of overlapping
and translated sub-adders, so that each sum bit is constructed
using exactly the same amount of preceding carry stages,
except the first ones. The critical-path delay is limited, but the
circuit cost is fairly high. The ACA is an interesting case study
due to its very low error rate. Errors occur when carry chains
are longer than the ACA sub-adder size (main ACA design
parameter). Thus, ACA designs have a very low frequency of
errors, but of high arithmetic distance.

The Inexact Speculative Adder (ISA) [5] is the leading
architecture of speculative adders. Evolution of the Error-
Tolerant Adder type II (ETAII) [6], it segments the addition
into several sub-adders with carry speculated from preceding
sub-blocks. The ISA features a shorter speculative overhead
that improves speed and energy efficiency, and introduces a
dual-direction error correction-reduction scheme that lowers
mean and worst-case errors. ISA designs typically display
higher error rates than ACA but with lower error values, de-
pending of the number of sub-blocks and error compensation
level (main ISA design parameters).

The Carry Cut-Back Adder (CCBA) [7] exploits a novel
idea of artificially-built false paths (i.e. paths that cannot
be logically activated), co-optimizing arithmetic precision to-
gether with physical netlist delay. To guarantee floating-point-
like precision, high-significance carry stages are monitored to
cut the carry chain at lower-significance positions. These cuts
prevent the critical-path activation, relaxing timing constraints
and enabling energy efficiency levels out of reach from con-
ventionally designed circuits. The error rate ranges similarly
as for the ISA, but error values are lower than those generated



TABLE I
ESTIMATION RESULTS AND COMPARISON WITH EXHAUSTIVE CHARACTERIZATION FOR OPERATORS OF SMALL WORD-LENGTHS.

Bitwidth Op. type Op. name ICµe µe ICf f max( Nµe ,Nf )

8-bit
ISA ISA 2 2 0.8633 0.9550 0.8750 0.1079 0.1194 0.1094 11,765

ISA 2 4 0.0416 0.1384 0.0938 0.0104 0.0346 0.0234 578
ACA ACA 6 1.6718 1.9856 1.7500 0.0151 0.0177 0.0156 35,873

16-bit

CCBA CCBA 1 6 0.7299 0.8175 0.75 0.1825 0.2043 0.1875 5041

ISA ISA 2 4 1.9535 2.0568 1.9688 0.0305 0.0321 0.0308 178,930
ISA 2 6 0.1725 0.2688 0.2422 0.0054 0.0084 0.0076 11,602

ACA ACA 12 9.4957 9.9386 9.6875 0.0005 0.0005 0.0005 25,000,000
ACA 8 170.5876 172.4411 169.6680 0.0157 0.0158 0.0156 25,000,000

TABLE II
ESTIMATION RESULTS AND COMPARISON WITH 5-MILLION BALL SIMULATIONS FOR 32-BIT OPERATORS.

Bitwidth Op. type Op. name ICµe µe 5M ICf f 5M max( Nµe ,Nf )

32-bit

CCBA

CCBA 1 5 15.6445 15.7430 15.7593 0.1222 0.1230 0.1231 2,792,512
CCBA 1 6 18.7698 18.8922 18.9718 0.0287 0.0288 0.0287 17,008,400
CCBA 1 7 0.2132 0.2613 0.2420 0.0067 0.0082 0.0076 50,176
CCBA 1 9 0.4421 0.5482 0.5017 0.0017 0.0021 0.0020 172,676

ISA
ISA 2 2 8,166.3384 8,183.3155 8,189.5880 0.1246 0.1249 0.1250 25,000,000
ISA 2 8 3.8263 3.9330 3.7626 0.0079 0.0081 0.0079 3,130,201
ISA 2 10 0.9125 1.0115 1.0027 0.00045 0.00049 0.00049 3,084,740

ACA ACA 17 14,333.5418 18,116.4251 13,905.1700 0.00005 0.00006 0.00005 25,000,000

by the ACA and the ISA, depending of the number of cuts
and cutting distance (main CCBA design parameters).

B. Results

The proposed experimental study aims at showing that 1)
the CASSIS method correctly estimates error characteristics
of circuits for various bitwidths, 2) this estimation keeps
consistent for higher bitwidths where exhaustive simulation
is not possible, and finally that 3) for the majority of inexact
adders, CASSIS overcomes naive random BALL simulation.
Two cases are shown: CASSIS requires less samples and
thus converges faster towards an accurate error estimation, or
CASSIS requires more samples than the traditional random
BALL simulation which is, in this case, not accurate enough.

Implementations of each above-mentioned adder architec-
ture have been synthesized, varying their bitwidths, from
8 to 32 bits, as well as their main design parameters, in
order to cover a large spectrum of error behaviors. CASSIS
characterizations have been completed with h = 5% and
p = 95% on an Intel Core i7-6700 processor.
1) Quality of the estimation for small word-lengths

To first check the quality of the CASSIS method, small
word-length inexact adders have been characterized with CAS-
SIS, as well as with an exhaustive characterization using
BALL simulations to obtain their real error characteristics.
Table I reports the obtained confidence intervals on µe and f ,
compared to their real values, and the numbers of samples N
used by CASSIS. For both 8 and 16-bit adders, the CASSIS
confidence intervals almost always contain the real values,
demonstrating its accuracy. The ACA 8 is the only design

for which the CASSIS confidence intervals do not contain the
real values (c.f. bold numbers), but the relative error between
confidence interval bound and real value is extremely small.

For most operators, only a few tens of thousands of simu-
lated samples were required to get precise error characteristics.
For 16-bit ACA, the number of simulated samples has been
saturated at 25 millions (c.f. bold sample number). Indeed,
ACA adders have a large standard deviation in error values.
Though, the CASSIS method outputs very accurate estimated
values of f and µe. The largest relative error on the estimated
values compared to the exhaustive characterization is on the
estimation of f of the operator ACA 12, and is equal to 2.5%.
2) Consistency of the estimation for 32-bit operators

Table II reports the results for 32-bit inexact adder charac-
terization. To check the consistency of the CASSIS method for
this larger word-length, the CASSIS characterization has been
compared to random BALL simulation with 5 million samples
from [13], which is the typical inexact circuit characterization
method.The chosen CCBA and ACA adders are Pareto-optimal
designs for area/delay shown in the comparative study of [13].
Those adders are realistic designs to be implemented, and thus
represent ideal subjects for CASSIS characterization.

In the case of 32-bit operators, it is to be noted that both
characterizations (CASSIS and random BALL) are statistical
estimates. In case the two methods do not converge towards
the same estimation, bold numbers represent values obtained
with higher amount of samples, assumed more accurate. For 2
out of 8 designs (CCBA 1 5 and ISA 2 8), the CASSIS
confidence intervals obtained with less simulation samples
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Fig. 1. Convergence of CASSIS estimation for µe and f with the number of
simulated samples N and with p = 95% and h = 0.5% for different 32-bit
adders.

than the BALL method do not contain the error values from
this latter. Nevertheless, the obtained estimated values of
f and µe are very close from the random characterization.
Inversely, for 3 of them (CCBA 1 6, ISA 2 2 and ACA 17),
the CASSIS method has converged into different confidence
intervals than the BALL simulation, as it has determined
that more samples were required for safe estimation. This
is coherent, as by user decision, the confidence interval has
only 95 % chance to contain the real value. The most critical
case concerns ACA 17. For this characterization, naive BALL
simulation has dangerously underestimated µe compared to
CASSIS. This is due to the very low error rate of the 32-bit
ACA, for which 5 million samples is insufficient to make good
statistics on errors.
3) Number of simulations required for accurate estimation

Algorithm 1 implemented by CASSIS refines the estimation
of µe and f given a refreshment period T . Fig. 1 illustrates
the convergence of the estimation on µe and f . The different
curves, corresponding to the different operators, have different
starting points depending on the chosen T .

The final estimated values are all very accurate since the
relative error of estimation is always lower than 0.1 %. Small
bumps can be noted in the convergence of the estimated values
due to the random sampling processed in each iteration of the
algorithm. Besides, the speed of convergence strongly varies
depending of the chosen operator. This is why an adaptive
sample-size method like CASSIS better fits any operator rather
than naive random BALL simulations.

IV. CONCLUSION

In this article, we proposed CASSIS, Characterization with
Adaptive Sample-Size Inferential Statistics, a new method for
the error characterization of inexact operators. From user-

defined confidence requirements, the CASSIS method auto-
matically adjusts the number of simulations required by using
statistical properties of the approximation error. This method is
presented and demonstrated for the estimation of the error rate
and mean error distance of various inexact adders. The CAS-
SIS method has been applied to ACA, ISA and CCBA circuits,
three major types of inexact adders. Validated by its accurate
estimation of error characteristics on 8 to 16-bit circuits,
CASSIS has been proven coherence and consistency on larger
word-lengths, with 32-bit circuits, where exhaustive simulation
is not feasible. This experimental study has demonstrated that
CASSIS overcomes naive random BALL simulations with
a fixed number of samples, either by converging towards
a more accurate characterization, or by drastically reducing
the amount of samples required for an accurate estimation,
saving time and resources. As a future work, the proposed
method will be validated on various approximate computing
techniques.

This project has received funding from the French Agence
Nationale de la Recherche under grant ANR-15-CE25-0015
(ARTEFaCT project).
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