
HAL Id: hal-01879595
https://hal.science/hal-01879595

Submitted on 24 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithm-level Approximation for Fast (or not)
Embedded Stereovision Algorithm
Justine Bonnot, Karol Desnos, Daniel Ménard

To cite this version:
Justine Bonnot, Karol Desnos, Daniel Ménard. Algorithm-level Approximation for Fast (or not) Em-
bedded Stereovision Algorithm. SAMOS: International Conference on Embedded Computer Systems:
Architectures, MOdeling and Simulation, Jul 2018, Samos Island, Greece. �10.1145/3229631.3229638�.
�hal-01879595�

https://hal.science/hal-01879595
https://hal.archives-ouvertes.fr


Algorithm-level Approximation for Fast (or not)
Embedded Stereovision Algorithm

Justine Bonnot, Karol Desnos, Daniel Menard
Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164

Rennes, France
Email: firstname.lastname@insa-rennes.fr

Abstract—Because of the growing concern towards the energy
consumption of embedded devices, the quality of an application
is now considered as a new tunable parameter during the
implementation phase. Approximations are then deliberately in-
troduced to gain performance. Nevertheless, when implementing
an approximate computing technique, quality deteriorations may
appear. In order to check that the application Quality of Service
is still met despite the induced approximations, several metrics
can be used. The proposed method introduces an algorithm-
level approximate computing method in a stereovision algorithm.
The proposed algorithm-level approximation aims at reducing the
computational load in a stereo matching algorithm that outputs
a depth map from two rectified images. Based on a smart loop
perforation technique, this method offers an interesting qual-
ity/complexity trade-off. However, when comparing the obtained
results to a more basic approximation technique, the results show
that the quality/computation time trade-off is strongly dependent
on the metric used. Our paper presents the impact of the choice
of the quality metric on the results of the proposed approximate
computing technique.

I. INTRODUCTION

The technological progress in microelectronics as well as
the Internet of Things era require that embedded applications
integrate more and more sophisticated processing. Especially,
most embedded applications incorporate data-oriented pro-
cessing with mathematical computations. The complexity of
embedded applications is increasing even though the energy
constraints they must fulfill are more and more drastic. The
design challenge is to provide a real-time implementation
of these applications without sacrificing energy consumption.
To reduce energy consumption in an application, numerous
approximate computing techniques have been developed. Ap-
proximate computing takes advantage of the fact that strict
accuracy is generally not needed in image and signal process-
ing applications. The accurate implementation of applications
is slightly modified to tolerate a mastered and acceptable error
in order to save energy and/or computation time.

In this paper, the approximation of a computer vision al-
gorithm, the stereo matching algorithm is under consideration.
The targeted stereo matching algorithm is built with basic
blocks massively used in computer vision algorithms as in [1].
The stereo matching algorithm is used to extract a 3D infor-
mation from two 2D images taken by two rectified cameras
spaced by a small distance. This 3D information is represented
in a depth map, also called disparity map. The disparity
map, whose size is identical to the size of the input images,
represents the horizontal distance between the position of a
pixel in the first image, and its position in the second image.

The challenge, when introducing approximate computing in
the stereo matching algorithm, is to lighten the computational
load of the algorithm to be able to embed it in widespread
platforms, as for instance digital signal processors. Several
techniques have been proposed to reduce the complexity of the
stereo matching algorithm: 1) The accuracy can be controlled
with the data format used to implement the algorithm [8].
2) The input images can be downsampled, thus reducing the
volume of computations but also drastically the output quality.
To evaluate the quality of the stereo matching algorithms,
two metrics can be used: 1) The Middlebury metric [10] is
considered as the reference metric to evaluate the quality of the
obtained depth maps. 2) The structural similarity metric [12]
is proposed to render the human visual perception of the
degradation better.

In this paper, we propose a method to reduce the com-
putational load of the stereo matching algorithm using an
algorithm-level approximation technique. Approximate com-
puting is indeed interesting for the stereo matching algorithm
since the end-user of the algorithm can be a human or a
neural network. These end-users are both error-resilient since
the perception of a human user limitates the required accuracy,
and a neural network learns from the approximate output and
compensates the induced errors. The quality of the proposed
approximation technique has been evaluated with the refer-
ence Middlebury metric and the structural similarity metric.
Nevertheless, despite an interesting quality/complexity trade-
off, the results obtained on the quality/computation time trade-
off are strongly dependent on the metric used. The proposed
article presents the algorithm-level approximation technique
as well as the obtained results on the complexity and on the
computation time.

The paper is organized as follows. First, the related work
is detailed in Section II. The proposed approximation method
for computing the depth map is detailed in Section III. Finally,
the experiment results in comparison with the reference stereo
matching algorithm are given in Section IV.

II. RELATED WORKS

A. Approximate computing techniques

Three action levels exist when implementing an approx-
imate computing technique: the hardware, the data and the
computation level, as illustrated in Figure 1. Among the three
action levels illustrated in Figure 1, several approximation
techniques have been applied on the proposed stereovision
algorithm in the literature.
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Fig. 1: Different action levels of approximate computing

To begin with, the format of the data transiting in the stereo
matching algorithm can be modified with fixed-point coding,
reducing the dynamic range as well as the output precision but
offering a faster implementation than with floating-point data.
In [8], the stereo matching algorithm has been converted to
fixed-point to speed-up the computations. Then, the amount of
data to process can also be reduced, downsampling the input
images. The complexity of the algorithm is then reduced, as
its computation time.

Approximations in the stereo matching algorithm can also
be done implementing approximate operators, as presented
in [2]. Approximate operators are implemented slightly mod-
ifying the accurate structure of the original operator to save
energy.

In [8], an intricate mathematical function has also been
replaced by piecewise linear functions. Different techniques
of approximations on the computations can be used: for a
hardware implementation, bi or multipartite tables [4] can
be used, and for software function evaluation, a polynomial
approximation can be implemented [3]. To reduce the com-
putational volume at the algorithm level, loop perforation can
be used. Only a subset of the iterations of a loop is executed,
as proposed in [11]. In [9], an algorithm-level technique is
applied to trade off the performance of the stereo matching
application and its output quality of service. In the spirit of
loop perforation, the proposed method is an approximation at
the algorithm-level. A subset of the iterations of the loop is not
executed to introduce a mastered error adjusted with the choice
of this subset. The introduced error is then used to trade-off
the complexity of the algorithm and the quality of the output
depth map.

B. The reference stereo matching algorithm

The stereo matching algorithm has been mostly designed
and studied on Desktop Graphics Processing Units (GPUs) and
has consequently not been optimized for embedded systems.
The high complexity of the stereo matching algorithm limits
its embeddability. Indeed, if no special care is taken during
the prototyping phase of an algorithm, the high precision of
the produced results is often obtained at the expense of high
latency, memory storage or energy consumption. However,
embedded systems are interesting targets for computer vision
applications. Real-time and power consumption constraints
driving the design of embedded systems increase the need
to adapt the stereo matching algorithm before embedding

it. Besides, depth information becomes necessary on such
platforms with the development of general public consoles
using 3D information, as for instance the Kinect peripheral [6].
The proposed stereo matching algorithm aims at answering the
problems of the Kinect peripheral. The Kinect peripheral uses
an infra-red grid to derive the depth map, and is consequently
limited to indoor usage as well as sensitive to infra-red
interferences.

The stereo matching algorithm mimics the human visual
system. It outputs a depth map from two rectified input images.
The two rectified images correspond to the images seen from
the left and right eye respectively, in the human visual system.
In the stereo matching algorithm, a pixel in the first image
is selected, and its matching pixel in the second image is
searched. The pixel searched corresponds to the same physical
point as the pixel in the first image in the captured scene. Then,
the horizontal distance between those two pixels is computed:
this is the disparity of this pixel. The disparity of a pixel
corresponds to its depth in the input images, and is found
minimizing a cost function. The cost function to minimize
computes the cost of matching a pixel in the first image to a
pixel in the second image. The principle of the stereo matching
algorithm is illustrated in Figure 2 extracted from [5].

Fig. 2: Principle of the stereo matching algorithm

Two categories of algorithms have been proposed in the
literature, depending on the technique used to minimize the
cost function. The minimization technique can be global or
local. Local methods optimize the computed cost of matching
a pixel in the first image with a pixel in the second image
using the neighboring pixels of the pixel under consideration.
Global methods optimize the computed cost over the whole
image. Intuitively, the matching cost will be lower for pixels
with similar colors and layout of neighboring pixels (similar
gradient, colors, edges). Local methods provide a lower quality
compared to global methods but are more efficient in terms
of computation time. The chosen reference stereo matching
algorithm uses a local minimization method to better suit the
targeted platform.

The main steps of the stereo matching algorithm are
detailed below and represented in Figure 3:

• Cost Construction: computation of the cost of match-



ing a pixel in the left image with a pixel in the right
image for a given disparity (distance between those
pixels).

• Cost Aggregation: refinement of the cost maps ob-
tained from the cost computation step.

• Cost Minimization: selection of the disparity leading
to the minimum cost. This step computes the argmin
of the cost function over the different possible dispar-
ity levels.

Let Np and Nd be the total number of pixels in the
image and the number of tested disparity levels respectively.
This computationally intensive algorithm studies, for a pair
of pixels, all the disparity possibilities in order to create the
disparity map. In other words, the cost construction, aggrega-
tion and minimization functions are applied Np ∗ Nd times.
An exhaustive search of the minimum of the cost function
is processed. This costly exhaustive search appears to be a
challenge when it comes to embedding the stereo matching
algorithm.

III. PROPOSED METHOD

A. The approximate stereo matching algorithm

The proposed method skips computations of the cost
function on several disparity levels, as it has been proposed
in [7] with image perforation. In this contribution, a technique
similar to loop perforation is applied to image pipelines. The
authors proposed to skip the computations of costly images
to the benefit of a speed-up in the algorithm computation
time. In the case of the stereo matching algorithm, to avoid
the exhaustive search of the disparity level minimizing the
cost function, a study of the cost function is proposed. The
cost function computes the cost for each disparity level d,
of matching a pixel of coordinates (x, y) in the first image
to a pixel of coordinates (x + d, y) in the second image.
The cost function computes the similarity between those two
pixels, in terms of intensity and local texture. In terms of
complexity, the computation of the matching cost for a given
pixel and a given disparity needs the computation of 2+28∗N
multiplications, where N is the number of iterations to refine
the cost computation.

A study of the minimized cost function allows selecting a
subset of the disparity levels, avoiding to test them all.

For each pixel, the function Cost = f(d) where d is the
disparity level, is studied and an example of this function
is represented in Figure 4. The cost function possesses the
quasi-unimodality property, i.e. the following property is quasi
ensured:

Definition III-A.1. A function f , defined on the interval I , is
unimodal on I if it has a unique minimum x0 on I , it is strictly
decreasing on ]−∞;x0] and strictly increasing on [x0;∞[.

The cost functions have been characterized of being quasi-
unimodals since they possess a global minimum but also small
jumps. The strict monotonicity is then not guaranteed. For each
pixel, the cost function is quasi strictly monotonic on each
side of its minimum. Consequently, a search space decimation
technique can be implemented to find the minimum of the

function without testing all the disparity levels. Iteratively re-
fining the search space around local minima converges towards
the global minimum in case of a unimodal function, if the
number of iterations is big enough. If the search space is well
derived, the output quality is acceptable. The challenge of the
search space decimation technique is to encompass the global
minimum in the decimated space. To ensure this property, the
proposed solution aims at exploring the more disparity levels
in the first iteration, so as to ensure the convergence towards
the global minimum and not a local one.

The proposed search space decimation technique is mod-
eled by a tree structure T representing at each level of the
tree the number of tested disparity levels. This tree structure
represents the number of iterations to converge towards the
solution (depth of the tree Nl), as well as the number of tested
disparity levels in each iteration of the approximate algorithm
(number of children at each level of the tree T [i]). In Figure 4,
the exhaustive search of the disparity of the considered pixel
leads to test 60 disparity levels. The disparity level leading
to minimum cost is d = 33. With the proposed approximate
algorithm, an example of the tree structure used on this cost
function is represented in Figure 5. This cost function is
extracted from the image Teddy [10].

The depth Nl of the proposed tree structure is 3. To ensure
that this tree structure encompasses the disparity level leading
to the minimum cost, the more disparity levels are tested in the
first level. The cost computation and cost minimization steps
are applied on subsets of the disparity levels to test. Once
the disparity leading to the minimum cost has been found for
each pixel, the neighboring disparity levels are tested in the
following levels of the tree.

In level 0, the first iteration aims at testing a maximum of
disparity levels to be close enough to the global minimum of
the cost function. In the proposed example, T [0] = 15, thus,
the cost is computed on 15 disparity levels, for the considered
pixel. The disparity leading to the minimum cost is equal to
34. The minimum will be searched in the following levels
next to the disparity level 34. In level 1, the obtained result is
refined. In the proposed example, T [1] = 2, thus, the cost is
computed on the 2 disparity levels surrounding the disparity
level selected in the previous level (disparity levels 32 and 36)
and the disparity level leading to the minimum cost is selected,
d = 32. The minimum will be searched in the following levels
next to d = 32. In level 2, T [2] = 2. The cost is computed on
the 2 disparity levels surrounding the disparity level selected in
the previous level (disparity levels 31 and 33) and the disparity
level leading to the minimum cost is selected as being the
disparity of the considered pixel, d = 33.

If the search space has been decimated encompassing the
minimum of the cost function, the disparity obtained at the end
of the approximate algorithm is the disparity level minimizing
the cost function.

The tree T storing the decimated search space, models a
trade-off between the computation time of the approximate
stereo matching algorithm and the quality of the output depth
map. Indeed, the complexity of the algorithm, which impacts
the computation time, is reduced with the total number of
tested disparity levels, since the cost computation and cost
minimization functions composing the stereo matching algo-
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rithm are called a smaller number of times. On the exhaustive
search, for the image Teddy, the three functions are called
Nd × Np times. With the proposed method, the number of
tested disparity levels for each pixel is equal to the sum of
numbers of disparity levels tested at each level of the tree T .
With the tree structure proposed in 5, the number of tested
disparity levels for each pixel is reduced to

∑3
i=1 T [i] = 19.

The global complexity of the algorithm is reduced along
with the output quality.

B. Selection of the tree structure

The proposed method is based on the selection of the
tree structure T modeling the search space. To select T , a
minimization problem under constraints is solved. The tree of
depth 1 has the highest computational complexity since every
disparity level is tested. The tree of depth 1 gives the quality
reference, outputting a depth map equivalent to the depth map
given by the reference algorithm. The tree of maximum depth,
which is the number of factors in the prime factorization of
the number of disparity levels to test, tests the least disparity
levels. If ε is the maximum acceptable degradation compared
with the reference output, the problem to solve is the following:

Let T be the tradeoff tree, T [i] be the number of disparity
levels tested at level i, Nl be the number of levels in T , Nd

be the maximum number of disparity levels and Q the output
quality compared to the output reference:

minimize
i

∑
i

T [i]

subject to Q ≤ ε
Nl∏
i=1

T [i] = Nd

The second constraint of the optimization problem ex-
presses the fact that no overlapping is tolerated when testing
the disparity levels. The deeper the tree, the lower the output
quality. Indeed, if the global minimum of the cost function
has to be reached in a fixed number of iterations, Nl, the
more disparity levels are tested in the first iteration, the more
chances to reach the global minimum there are. The tree that
tests the most disparity levels in the first iteration is the least
deep. On the proposed example, the maximum depth of the
tree T is 4.

The second constraint,
∏Nl

i=1 T [i] = Nd, can be relaxed so
as to increase the output quality while testing a lower number
of disparity levels. Two other parameters can be adjusted to
derive the different disparity levels to test: the spacing between
each tested disparity level at each level of the tree, represented
in column S of Table I, as well as the values used to compute
the first disparity level at each level of the tree, from the
first disparity of the previous level of the tree, represented
in column F of Table I. The different tested tree structures
are represented in Table I. For the tree structure illustrated



T S F Complexity
Depth 1 {60} {1} {0} 60
Depth 2 {30, 2} {2, 1} {1,−1} 32

{20, 3} {3, 1} {1,−1} 23
Depth 3 {15, 2, 2} {3, 2, 1} {3,−2,−1} 19

{16, 2, 2} {3, 2, 1} {3,−2,−1} 20
{17, 2, 2} {3, 2, 1} {3,−2,−1} 21
{18, 2, 2} {3, 2, 1} {3,−2,−1} 22

Depth 4 {5, 3, 2, 2} {12, 4, 2, 1} {9,−6,−2,−1} 12

TABLE I: Different tested tree structures

in Figure 5, the tested configuration of T is T = {15, 2, 2},
S = {3, 2, 1} and F = {3,−2,−1}.

In Table I, the complexity is the number of tested disparity
levels on each pixel. The reference stereo matching algorithm
computes the cost construction, aggregation and minimization
on Nd = 60 disparity levels. Reducing the number of compu-
tations of these three functions should reduce the computation
time of the stereo matching algorithm along with the output
disparity map quality.

IV. EXPERIMENTAL RESULTS

The proposed method provides a trade-off between
the quality of the output depth map and the complex-
ity/computation time of the stereo matching algorithm. The
proposed approximate algorithm is compared to the reference
stereo matching algorithm as well as to a downsampling
method with two quality metrics. The first quality metric is
the reference metric on the stereo matching algorithm, the
Middlebury metric, and the second one is more representative
of the real perceived quality, the structural similarity metric.

The downsampling method consists of applying the ref-
erence stereo matching algorithm to a pair of images of
resolution divided by 4. The proposed method has been tested
on the 2003 dataset of the Middlebury database [10] (two
images in full resolution, Teddy and Cones) and the outputs
of the different methods are compared to the Ground Truth
given by the Middlebury database and obtained thanks to laser
measurements of the depth of the pixels.

The results have been obtained on an Odroid XU3 board 1

possessing a Cortex A15 processor working at 1.8 GHz. The
Odroid XU3 board is heavily used in the embedded systems
domain, since it is highly energy-efficient while offering an
important computational capacity. This target allows being
in the real conditions of embedding the stereo matching
algorithm.

A. Results with the Middlebury metric

The first quality metric is proposed along with the Middle-
bury database. This quality metric compares the output of the
chosen stereo matching algorithm to the Ground Truth obtained
with laser measurements. This metric outputs a percentage of
good pixels, corresponding to the percentage of pixels sharing
the same disparity level in both images.

Figures 6a and 6b show the trade-off between the quality
of the output depth map measured with the Middlebury metric,
and the complexity/computation time of the algorithm, for
the images Teddy and Cones respectively. The theoretical

1http://www.hardkernel.com
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Fig. 6: Quality/complexity, computation time trade-off for the
Middlebury metric.
results on the complexity reduction are compared with the
obtained results on the computation time. Both curves are
following the same trend, but the normalized computation time
is shifted compared to the normalized complexity. Indeed, the
reduction of the number of disparity levels to test requires the
computation of the cost functions on a non-regular pattern,
which generates an overhead in terms of computation time.
This implementation overhead is not taken into account with
the representation of the complexity. Besides, computing the
cost function on the whole disparity map allows mutualizing
the computations, thus saving computation time.

The reference algorithm, with no approximation is repre-
sented by the rightmost point (Nl = 1). The three functions
are computing on 60 disparity levels for each pixel. Then,
the points are evolving with the different tree configurations
presented in Table I, showing an interesting group of points
with a large complexity reduction while losing 15% of good
pixels for Teddy, and 17% for Cones.

The downsampling technique is also represented. This
method seems to give better results than the proposed approx-
imate algorithm. For both images, to get a comparable quality
of the output depth map, the downsampling technique takes
half less time than the proposed approximation technique. Ac-
cording to the Middlebury metric, the proposed approximation
technique possesses a non-negligible overhead to gain over a
more simple technique as downsampling the input images.

B. Results with SSIM metric

The degradation generated by the downsampling technique
was negligible using the Middlebury metric. When visually
comparing the output depth maps obtained with the down-
sampling technique, the quality seems to be strongly degraded



though. Along with approximation techniques allowing to
benefit from the imperfection of the end-sensors of some algo-
rithms, new error metrics have been developed to better take
into account the real perceived quality. The structural similarity
is a metric defined in [12] notably to better take into account
the human perception when evaluating the degradation of an
image signal. This metric is based on the assessment that the
human eye mostly detects the image structural modifications.
The computation of the Structural SIMilarity (SSIM) Index
is applied when the reference image is known. This image is
then considered as being of perfect quality. Then, the SSIM
Index computation takes into account different parameters to
compare them on the two images. To compare the reference
image and the approximated one, the SSIM metric segments
the images into blocks and compares statistical information
between the corresponding blocks in both images. The results
obtained with the SSIM metric are presented in Figures 7a
and 7b for the images Teddy and Cones respectively.
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Fig. 7: Quality/complexity, computation time trade-off for the
SSIM metric.

For the proposed method, the Ground Truth given by the
Middlebury database is taken as being the reference image.
The closer to 1 the SSIM Index is, the better the result.
Consequently, compared to a downsampling technique, which
offers a quicker result but a strong quality degradation (SSIM
Index equal to 0.15 for Teddy and 0.16 for Cones), the
proposed method keeps the SSIM Index close to the reference
quality and is, in the case of the tree of depth 4, faster
than the downsampling technique. The results of the proposed
approximation form a plateau that gives the possibility to
reduce the computation time by 50% while keeping almost
the same output quality. With the SSIM quality metric, the
quality loss on the output image is negligible for a relatively
important computation time saving.

C. Analysis of the results

When implementing this approximation technique, it has
been noted that the obtained results compared to a more basic
downsampling method are strongly dependent on the chosen
quality metric. Indeed, the downsampling technique does not
save the contours and blurs the output disparity map. The
reason why the Middlebury quality metric is more in favor
of the downsampling technique is that if the selected disparity
levels in the compared disparity maps differs from less than 3
levels for a given pixel, this pixel does not count as a wrong
pixel. One may question the validity of such a metric that does
not render the perceived quality.

V. CONCLUSION

The proposed algorithm-level approximate computing tech-
nique applied to the stereo matching application exploits
the error-resilience property of this algorithm. This property
allows testing fewer disparity levels per pixel using the quasi-
unimodality property of the computed cost function to lighten
the volume of computations. This cost is computed to select
the disparity level leading to the minimum cost for each pixel.
Avoiding to exhaustively test all the disparity levels for each
pixel, the approximate algorithm has a reduced complexity and
the computation time is reduced compared to the reference
stereo matching algorithm. Nevertheless, compared to a basic
approximation technique as downsampling the input images,
the proposed contribution does not seem to be interesting
using the reference metric. A metric more representative of
the perceived quality is then strongly needed. The SSIM metric
has then been chosen and has demonstrated the use of such
an approximation technique, allowing to half the computation
time of the stereo matching algorithm while having a negligible
impact on the quality.
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