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Abstract

Recent advances in odour sensors have led to the development of new
applications; among them, electronic noses have gained major interest and
found successful applications in many fields. An electronic nose is a device
composed of an array of odour sensors with sensitivity to a wide range of
chemical compounds. Reliable electronic nose systems rely on advanced
data processing techniques. Among them, machine learning has become
a core technique for electronic nose design. In this document, we describe
several machine learning algorithms and compare their performances on
different features used in state of the art electronic nose systems.
Keywords: odour recognition, electronic nose, SAW sensors, data process-
ing, machine learning.

1 Introduction

For many years, volatile compounds detection was achieved via classical olfac-
tometry: the identification was based on a sensory panel composed of selected
peoples or based on animal olfaction. However, physiological differences and dif-
ferent smelling capabilities can lead to inaccurate and non-reproducible results.
To overcome these issues, alternative methods were developed: gas chromatog-
raphy, mass spectrometry, optical spectroscopy and chemical sensors [49]. In
this article, we focus on chemical sensors only. Basically, these sensors have
the same functioning principle. It is based on the physico-chemical interaction
between a volatile compound and a sensitive coating material covering a trans-
ducer. The molecules interact with the sensitive surface resulting in a change of
its physical properties. These changes are converted to a measurable signal by
the transducer. Many volatile compounds sensors technologies have been devel-
oped: metal oxide semiconductor sensors, metal oxide semiconductor field-effect
transistor sensors, conducting polymer sensors, biosensors and acoustic sensors
[28].
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In this document, we focus on a category of acoustic sensors called Surface
Acoustic Waves (SAW) sensors. These sensors are based on the propagation
of mechanical waves (100 MHz − 1000 MHz) produced by piezoelectric mate-
rials along a layer composed of a substrate covered by chemically interactive
materials. Volatile compounds are absorbed onto the surface of the sensitive
material, changing its properties and yielding to a measurable frequency shift of
the mechanical waves [23]. SAW sensors have many advantages over the previ-
ously mentioned technologies: they have a high sensitivity, short response time
and low power consumption. However, SAW sensors are very sensitive to the
temperature and humidity and have a poor reproducibility in the deposition of
the chemically interactive materials [28].
Odour sensors based systems have obtained successful applications in many
fields, for instance, for quality control applications in the food [52, 5], for de-
tection of disease specific odours [72], for the detection of pollutants and toxic
gases [75]. In many applications, gas sensor arrays composed of several sensors
belonging to different technology families or with different chemically interac-
tive materials are used instead of a single gas sensor to increase the selectivity
of the entire system and its ability to identify volatile compounds. Such arrays
are used in conjunction with a multivariate data processing system capable of
recognizing odours to form what Gardner defines as an electronic nose [29].
Nowadays, reliable electronic nose systems rely on advanced data processing
techniques. Machine learning has become a core technique for electronic nose
design [77].
Some authors have already reviewed the main pattern analysis algorithms for
machine olfaction [36, 64]. In this document, we extend their works and we fo-
cus on the application of machine learning for processing the data generated by
an electronic nose composed of SAW sensors. First, we give an overview of the
existing signal pretreatments and feature extraction methods for SAW sensors
based electronic nose. Then we describe the most commonly used dimension-
ality reduction and pattern recognition algorithms. Finally, we compare the
performances of these algorithms on a data set composed of seven gases and on
a real world problem consisting in identifying counterfeit coffee capsules.

2 Features extraction and normalization

As mentioned in the introduction, the response of a SAW sensor to a volatile
compound is a frequency shift. This shift can be measured yielding to a one
dimensional time series ∆f(t) = f(t)−f0 where f(t) is the oscillation frequency
and f0 is the nominal oscillation frequency of the sensor in absence of volatile
compounds. Subtracting the value of the baseline ∆f2(t) = ∆f(t) − ∆f(ti)
prior to sample delivery is a common data pre-processing technique for drift
compensation.
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2.1 Data extraction

Each sensor produces a time series in response to a chemical compound. The
response generated by an electronic nose composed of c sensors is a set of c
time series. It can be regarded as a real c-by-n matrix, where n is the number
of samples in the time series. Typically, the response of a SAW sensor can be
divided into two parts: first the quantity ∆f is varying (transient regime) and
then the signal becomes almost constant (steady state regime). It is common
to use the steady state values ∆f as the input data of the pattern recognition
system. The authors of [51] suggest that the transient response may contain
relevant information. They propose to extract from each signal two features: the
amplitude during the steady state and the rise time. The rise time is measured
from 20% to 60% of the steady state value. The authors of [17] introduced the
analysis of the sensor’s phase space and proposed to use the area of the response

A =

∫
f(t)dt and the area of the phase space A =

∫
df

dt
df

as descriptors. Figure 1 shows a typical response of an electronic nose composed
of 4 sensors with the rise times Ti and the steady state values Ai.

Figure 1: Typical response of an electronic nose based on 4 sensors

The authors of [54] propose three different parametric models R of sensor’s
response:

1. the exponential model : R(t) = βτ(1− e− t
τ );

2. the Lorentzian model : R(t) = βτtan−1
(
t
τ

)
; and

3. the double sigmoid model :

R(t) =
α

π

(
1− e−

(
t−β
γ +ε

)δ)η(π
2
− tan−1

( t− µ
ν

))λ
.
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They estimate their parameters using the Levenberg Marquardt algorithm and
use them as the input data of the pattern recognition system. Some authors
suggest to use the set of c time series or the c-by-n matrix as the input data
of the pattern recognition process. These features are interesting because on
the one hand, they carry information about the transient response [55] and
on the other hand, because robust features can be extracted through digital
signal processing methods. Naidoo et al. [56] propose to use the coefficient of
a discrete cosine transform (DCT) with maximum variance of the signal as the
input data of the pattern recognition system. The DCT is a method which allows
to express a signal as a sum cosine functions oscillating at different frequencies.
It is a slightly modified version of the Fourier transform using only real numbers.
More formally, the DCT of a finite length series x is given by

Xk =

N∑
n=0

xncos

(
π

N

(
n+

1

2

)
k

)
.

Singh et al. [67] suggest to use the approximation coefficient of the discrete
wavelet transform (DWT). The DWT use a scalable modulated window called
a wavelet to solve the signal cutting problem of the short time FFT. The wavelet
is shifted along the signal and the spectrum is computed. Then, this process
is repeated several times with a shorter window. At the end of the process we
obtain a set of time-frequency representation of the signal. More formally, the
DWT is expressed by the following formula :

F (a, b) =

∫ +∞

−∞
f(x)Ψ(a, b)∗dx.

The child wavelets Ψ(a, b) are generated from a raw wavelet Ψ through dilatation
(coefficient a) and translation (coefficient b)

Ψa,b =
1√
a

Ψ

(
x− b
a

)
.

Classical examples for Ψ are: the Haar wavelets and the Daubechies wavelets.
The interested readers can refer to the paper of Grasp [35] for more information
about wavelets.

2.2 Data normalization

Data normalization is the final step for data pre-processing. The primary idea
that motivates data normalization is to increase the performances of the learn-
ing process and so the performances of the entire machine learning system by
making the variables comparable [6]. Two steps are required to achieve data
normalization: moving the entire data set so that it is centred around the origin
and rescaling each feature so that each one of them has a variance equal to 1 or
each feature has maximum absolute value equal to 1. The aim of centring is to
verify that any features are arbitrarily large and the aim of scaling is to make

4



sure that all features have approximately the same scale. There exist different
methods to perform data normalization:

• centring Xn,d ← Xn,d − µ(X ,d);

• variance scaling Xn,d ← Xn,d
σ(X ,d)

;

• z-score Xn,d ← Xn,d−µ(X ,d)
σ(X ,d)

;

• absolute scaling Xn,d ← Xn,d
max(|X ,d|) ; and

• 0-1 scaling Xn,d ← Xn,d−min(X ,d)
max(X ,d)−min(X ,d)

where Xn,d refers to the dth feature of the nth sample, µ(X ,d) the mean of the
dth feature and σ(X ,d) the variance of the dth feature.

3 Change of representation and dimension re-
duction

Many machine learning algorithms, in particular the non-parametric and the
kernel-based algorithms, tend to be dependent on their data representation. In
this section, we describe two methods allowing to extract uncorrelated (PCA)
or independent (ICA) factors.

3.1 Principal Component Analysis

The Principal Component Analysis (PCA) technique [46], also known as the
Karhunen-Loêve transform, is able to remove co-linearity in variables. PCA is
a linear transformation that maps the original data to a new coordinate system
where the greatest variance of the variables lies on the first coordinate, the
second on the second coordinate and so on. PCA is one of the most used
techniques for feature extraction and dimension reduction [70, 45, 7, 19, 65].

3.2 Independent Component Analysis

Independent Component Analysis (ICA) is a statistical method used to iden-
tify hidden factors of random variables. It is a linear generative model which
assumes the observed variables are a linear mixture of unknown non Gaussian
and mutually independent variables. The aim of ICA is to find those variables
without making any assumptions about the mixing system. More formally, if
the data are represented by the vector x = (x1, . . . , xn) and the independent
component by the vector s = (s1, . . . , sn), the aim of ICA is to find a linear
transformation W verifying s = Wx and minimizing a function F measuring
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the statistical independence. More formally, it consists in solving the optimiza-
tion problem

minimize
s

F (s)

subject to s = Wx.

A common example for F is the mutual information [42]. ICA is a very active
field of research with many applications in different fields. Hyvarinen et al. [43]
cover the entire topic, in particular, they deal with the formal definition of ICA
and propose a survey of the algorithms used to determine the matrix W. ICA
has proved its utility for electronic nose systems design [76, 1, 4, 57].

3.3 Application to dimension reduction

PCA is one of the main dimensionality reduction technique. Such task is tra-
ditionally performed by keeping the first n components explaining k% of the
variance. ICA was not designed to perform dimension reduction. In order to
find n independent components, one should first reduce the dimension to n com-
ponents using PCA and then apply ICA on the result of PCA as explained in
[26].

4 Pattern recognition algorithms

Machine learning is a sub-field of computer science whose goal consists in au-
tomatically building a model of data without being explicitly programmed for.
Among the problems addressed by machine learning, supervised learning is of
major interest for the e-nose community. The objective is to find a function f
reproducing a variable Y having observed a variable X:

Y = f(X) + ε

where ε represents noise or measurement error [10, 2]. In this document, we
will focus on supervised learning for which we have a training set consisting of
n labelled observations also called labelled samples or labelled examples

{(x1, y1)...(xi, yi)...(xn, yn)}

with xi ∈ X and yi ∈ Y . The objective is to build, from these learning samples,
a model which allows to predict the output y associated with a new sample x.
Most of the time, the model is built by choosing a parametrized function and by
determining the parameters minimizing an error criterion on the training set.
When Y = {−1, 1}, the supervised learning problem is commonly called binary
discrimination. In the following sections, we describe several models that lead
to different form of the function f .
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4.1 Linear classifiers

4.1.1 Linear Discrimination Analysis

Linear Discrimination Analysis (LDA) is a binary linear classifier whose goal
consists in finding the best separating hyperplane between two groups of sam-
ples. It can be expressed as: f(x) = wTx + w0. One approach to find the
parameters was proposed by Fisher [25] who showed that they can be deter-
mined by solving the optimization problem:

w = argmin
wtCbw

wtCww
,

where Cb is the covariance matrix between the two sample groups whereas Cw
is the covariance matrix within the two sample groups. Although LDA was
designed to tackle binary discrimination problem, the method was extended to
multi-class problems in [62]. LDA was successfully applied to identify Italian
wines [15].

4.1.2 Partial Least Squares Discriminant Analysis

As LDA, Partial Least Squares Discriminant Analysis (PLS-DA) is a linear
binary classifier which aims to find a separating hyperplane. It is a variant of
the PLS regression which builds a model between the descriptors X and the
labels Y . The PLS-DA equations are{

X = Tp+ e
Y = Tq + f

,

where T , p and q are parameters, e and f can be considered as residuals. The
parameters are estimated using the widely used PLS1 algorithm [13] which has
also been adapted to multi-class problems [41].

4.2 Neural networks

4.2.1 Feedforward neural networks

Since their introduction in the mid 60’s, a huge amount of research has been
conducted, yielding to several models. Basically, neural networks are made up
of many artificial neurons. An artificial neuron is a mathematical function that
models the behaviour of a biological neuron [9].
For a given neuron with n inputs xi, the output of the neuron is given by

oi = φ
( n∑
i=1

wixi + b
)

where wi are the weights of the inputs, b is a bias and φ is the transfer function.
Classical examples for φ are :
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• a linear function : L(x) = x;

• a sigmoid function : S(x) = 1
1+e−x ; and

• a Gaussian radial function : G(x) = e−
||c−x||2

2σ2 .

Artificial neurons are organized into bigger structures to perform pattern recog-
nition. The most common way of linking the artificial neurons is by organizing
them into a structure called a feedforward network : each neuron in each layer
feeds its output forward to the input of the next layer. Many models of feedfor-
ward neural network have been developed [9]; among them, Multi-Layers Per-
ceptron (MLP), Radial Basis Function network (RBF) and Probabilistic Neural
Network (PNN) to name a few. Neural networks have found many applications
in many different fields. In particular they have been successfully applied in
food industry [68, 44, 58, 71, 31, 50] and in chemistry [16, 22].

4.2.2 Learning Vector Quantization

Learning Vector Quantization (LVQ) [48] is a supervised learning algorithm
based on a Kohonen self-organizing map (SOM) [47]. SOM is a neural network
formed by arranging a set of neurons in a two-dimensional grid, discretizing the
representation of the input space of the training samples. A weight vector of
the same dimension as the input data vectors is associated with each neuron.
The learning process is based on a competitive algorithm: locating the neuron
whose weight vector is the closest to the output and then updating the weight
of this neuron and of its neighbourhood. LVQ is a slightly modified version of
SOM. All the variants of LVQ algorithm share the same scheme. It consists of
a competitive layer containing a number of competitive neurons. Each neuron
is associated with a class and with a weight vector representing the centroid
of the class. The learning process is slightly modified: the weight vector of
the winning neuron is updated only if it is labelled with the same label as
the training example. A new example is assigned to the class of its closest
neuron. The number of neurons is determined experimentally starting with a
small structure and then adding extra neurons iteratively or starting with a huge
structure and then removing neurons. The learning process is stopped when one
of the criteria described in the previous section is verified. LVQ has found many
applications, especially in the food and agricultural industry to detect diseases
in tomato crops [31] and for qualitative classification of fruit juices [60].

4.2.3 Spiking Neural Networks

Spiking Neural Networks (SNN) is a recently proposed, biologically inspired,
novel model of neurones incorporating the notion of time and increasing the
level of realism. Such networks have become a prolific field of research and
many models have been developed. In particular, Dielh et al. [24] propose a
classification algorithm using this new model of neurons whereas [73] provides
an overview of the current trends concerning SNN.
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4.3 Neighbourhood approaches

4.3.1 K Nearest Neighbours and Large Margin Nearest Neighbours

The k-Nearest Neighbours (KNN) is a non-parametric method for classification.
In order to classify a new sample, the k nearest neighbours of the new sample
are found, then the new sample is assigned to the most common class among its
k nearest neighbours. More formally, for a given metric d( , ) and for a sample
x the distances d(x,Xi) are computed. Then, if the order statistics are denoted
by

0 ≤ d(1)(x) ≤ d(2)(x) ≤ ... ≤ d(k)(x) ≤ ... ≤ d(n)(x)

the k nearest neighbours set is

Ak(x) = {Xi : d(x,Xi) < d(k)(x)}

and the sample x is assigned to the majority class among the k nearest neigh-
bours set. Fig. 2 shows the k nearest neighbours set for two different values of
k.

Figure 2: K nearest neighbours

The metric used to find the nearest neighbours is a critical parameter. To over-
come this issue, the authors of [74] propose to compute the Euclidean distances
after performing a linear transformation:

D(x, y) = ||L(x− y)||2.

As shown in Fig. 3, the isovalue lines of the proposed metric are ellipses. They
propose to determine L by solving the following convex optimisation problem
using specially designed gradient descent algorithm.

L = argmin (1− µ)
∑
i→j
||L(xi − xj)||22

+µ
∑
i,j→i

∑
l

(1− yi,l)(1 + ||L(xi − xj)||22 + ||L(xi − xl)||22)+

where, yi,l = 1 iff yi = yj , and yi,l = 0 otherwise, (x)+ = max(0, x). The
notation i→ j indicates that xi is a target neighbour of xj . The target neigh-
bours of xi are those that we desire to be closer to xi. This objective function
is composed of two terms:
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Figure 3: Large margin nearest neighbours

• the first term penalizes large distances between each sample of the same
label; and

• the second term penalizes small distances between differently labelled sam-
ples.

The coefficient µ ∈ [0; 1] is a parameter that balances the two terms of the
objective function; when µ = 0, only the large distances between two samples
of the same label whereas are penalized, when µ = 1 only the small distances
between differently labelled samples are penalized. The choice of k depends on
the data. A larger value of k may reduce the effect of noise and outliers, while
a small one may yield to more complex decision boundaries. The determination
of k can be done using a grid search method or various heuristics. Another
variant of k-nearest neighbours is weighted k nearest neighbours [39]. The main
idea behind this variant is to take into account the distance from the query
sample and its nearest neighbours. The class label of the query is predicted by
summing the value of a decreasing function applied to the distance for each class,
then the query sample is assigned to the class for which the sum is maximum.
Since KNN requires to access the entire database, its computational cost may
be important. When the dimension of the samples is small (≤ 15) it can be
computationally effective to use the Bentley’s k-d tree structure [8] to quickly
retrieve the k nearest neighbours. If the class distribution is skewed, samples
from the most frequent class tend to dominate the prediction of a new sample
since they are more common in the nearest neighbour set. It is possible to
overcome this issue by using the weighted variant of KNN. In spite of this defect,
the capability of KNN to learn very complex decision boundaries makes it a very
powerful tool. KNN has obtained successful results in a lot of fields: in the food
and agricultural industry to identify fruits [70], in the medical field to monitor
the bacterial growth [66], and in chemistry to determine the concentration of
compounds [34].
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4.3.2 Similarity measure

Instead of using distance function to identify the neighbourhood of a given
sample, one can use a similarity measure. In this variant, the neighbourhood is
the set of the k most similar samples. A simple example of similarity measure
is the dot product. Indeed, the dot product of two unit length vectors x and y
is given by xT .y = 1− ε, 0 ≤ ε ≤ 1. When these vectors are increasingly similar
ε tends to 0. Thus the dot product matching algorithm consists in assigning a
new example to the class of the training sample maximizing their dot product.

4.3.3 RMSE neighbourhood

Another variant, of the neighbourhood based algorithm consists in building a
model for each elements in the database and associating an unknown sample to
the model yielding to the lowest mean squared error. Many recursive models
have been proposed in the literature [18]:

• The auto-regressive (AR) model : a p-order AR model can be expressed

as Xt = φ0+
p∑
i=1

φiXt−i+εt where φ0, ..., φp are parameters and εt is white

noise.

• The moving-average (MA) model : a q-order MA model can be expressed

as Xt = µ+ εt +
q∑
i=1

θiεt−i where θ0, ..., θq are parameters, µ is the expec-

tation of Xt and εt is with noise error terms.

• The auto-regressive-moving-average (ARMA) model is a combination of

the AR and MA models : Xt = φ0 +
p∑
i=1

φiXt−i + εt +
q∑
i=1

θiεt−i.

The parameters of those models are typically tuned using a least square ap-
proach or by likelihood maximization [11, 37]. The selection of the hyper-
parameters p and q is a major issue. Many approaches have been investigated:

• Statistical test: this approach consists in starting with over-estimated
values of p and q and performing an hypothesis test on the final lag pa-
rameters [53]. For instance, one might start by estimating AR(N) and
test whether the coefficient φN is significant or not and then reduce the
value of N . F-statistic and t-statistic are often used to assess the level of
significance of a coefficient.

• Information criteria based approach: another way is to select the pa-
rameters minimizing an information criterion [69]. Typical information
criterion are:

– the Bayes information criterion (BIC):

BICp,q = −2log(L) + klog(n);
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– and the Akaike information criterion (AIC) :

AICp,q = −2log(L) + 2k

where L is the likelihood of the model, n is the number of observations
and k is the total number of parameters. It can be noticed that since
log(n) > 2 for large n, the BIC tends to select more parsimonious models
than AIC.

• Grid search may also be considered as suggested in [18].

Another way to model a signal consists in using a priori knowledge to model
the signal in the temporal domain. For instance, Mayoue et al. [55] propose to
model the sensors response with a first order system plus a linear drift

f(t) = K(1− e
−t
τ ) + αt+ β.

Then the parameters are fitted using a recursive least squares algorithm and a
new signal is assigned to the class which minimizes the gap between the model
and the real data. This method was successfully used by Mayoue et al. [55]
to detect and recognize explosive compounds (TNT and EGDN) in presence of
interferents.

4.4 Support Vector Machine

In a binary classification task, the aim of the SVM [38] is to find a hyperplane
separating the labelled data. The support vectors are the point, among the
entire data set, which are the closest to the separating hyperplane. In many
situations, when the data are linearly separable, there exist an infinity of sepa-
rating hyperplanes. The principle of SVM consists in choosing the hyperplane
maximizing the distance between the support vectors and the hyperplane, this
distance is commonly called the margin (see Figure 4). Let us assume that the
data are linearly separable. In this situation, there exists a hyperplane H of
equation ωx+ω0 = 0 separating binary labelled data xi with label yi ∈ {−1, 1}
and verifying {

ωxi + ω0 ≥ 1 if yi = 1
ωxi + ω0 ≤ −1 if yi = −1

or, by combining these two equations, verifying yi(ωxi + ω0) ≥ 1. The distance
between this hyperplane and the hyperplane H1 of equation

H1 : ωx+ ω0 = 1 is
|1− ω0|
||ω||

and the distance with the hyperplane H2 of equation

H2 : ωx+ ω0 = −1 is
|1 + ω0|
||ω||
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The margin is the distance between the hyperplanes H1 and H2, and is equal
to 2
||ω|| . Maximizing this quantity subject to the constraint yi(ωxi + ω0) ≥ 1 is

equivalent to solve the following optimization problem

minimize
ω

1

2
||ω||

subject to yi(ωxi + ω0) ≥ 1.

Typically, this is done by using the method of Lagrange’s multipliers.

Figure 4: Support vector machine

However, most of the time, the data are not linearly separable. In this case
the separating hyperplane does not exist. In this situation, new variables are
artificially introduced in the optimization problem :

minimize
ω

1

2
||ω||+ C

∑
εi

subject to yi(ωxi + ω0) ≥ 1− εi

where C 6= 0 is a positive constant. Moreover, the data are projected in a higher
dimension space thanks to a transformation φ. The main idea that motivates
this transformation is that in a higher dimension the data will be more linearly
separable and thus the error ε will be smaller. The objective is to determine
the optimal separating hyperplane in the higher dimension space, in which the
separating hyperplane can be expressed with the terms φ(xi)

Tφ(xj). Those
ones can be replaced by a function K(xi, xj) called a kernel. Classical kernel
functions are:

• the linear kernel K(x, y) = x · y;

• the polynomial kernel K(x, y) = (x · y)d or K(x, y) = (x · y + 1)d; and

• the Gaussian kernel K(x, y) = e−γ||x−y||
2

, γ > 0.
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The choice of the kernel function is a critical parameter that impacts the perfor-
mance of a SVM classifier. The most common way to find the most appropriate
kernel function consists in using a validation set to evaluate the performance of
each choice.
Originally, SVM were designed to tackle binary classification tasks but they can
be extended to multi-classes problems. There are two classical approaches [40]

• One versus all : it is the most intuitive methods to deal with multi-class
problems. It consists in building a SVM per class, with the samples of
that class labelled as positive samples and the samples of the other classes
labelled as negative samples. This strategy requires the SVM to produce
confidence score for its decision. A new sample is assigned to the class of
the SVM outputting the highest confidence score.

• One vs one: this method consists in training N(N−1)
2 binary SVM where N

is the number of classes; each receiving the samples of a pair of classes. A
new sample is assigned to the most represented class among the ones out-
putted by the SVM. The main drawback of this method is its complexity
since they need a quadratic growing number of classifiers.

SVM have successfully been applied in many fields, they were applied in the
food industry to classify coffee blends and milk [59, 14] and in chemistry to
discriminate different gases [30].

4.5 Decision trees and bagged trees

Decision Tree (DT) is a non-parametric supervised learning method used for
classification. The aim is to create a model that predicts the value of a target
variable by learning simple decision rules inferred from the data. DT have two
kinds of nodes. A decision node is a point where a choice must be made. The
branches extending from a decision node are decision branches, each branch
representing one of the possible exclusive alternatives at that point. A terminal
node represents the final result of a combination of decisions.

Figure 5: Decision tree and its decision boundaries
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The problem of learning an optimal decision tree with a minimum of decision
node is known to be NP-complete. Consequently, decision-tree learning algo-
rithms are based on heuristic algorithms that have no guarantee to return the
optimal decision tree. A common algorithm for building DT is ID3 [61] which
employs a top-down greedy search strategy through all the possible branches.
It divides the data set into smaller subsets while the tree is incrementally de-
veloped. The heuristic used to divide the data set proposed by the author is
to choose the feature maximizing the information gain. First, entropy of every
attribute is computed

H = −
∑

pi log(pi) , pi =
number of elements in set Ci

number of elements

then the data set is split into subsets using the attribute for which entropy
is minimum. DT is a very popular machine learning algorithm because it is
invariant under many transformations of the feature values and in particular it
is invariant under scaling of the features. Moreover, it is robust to irrelevant
features and, unlike the previously described algorithms, the output of a decision
tree classifier can be interpreted since it consists of a set of rules. However, since
decision trees divide the feature space into axis-parallel rectangles and label
each rectangle with one of the classes (see Figure 5), they often are weaker than
other algorithms. In addition, deep decision trees tend to learn highly irregular
decision surface yielding to overfitting. To overcome this issue, Breiman et al.
proposed the bagged tree algorithm (BT) [12]. The training set is divided into
k subsets of n samples by selecting random training examples with replacement,
then a classical decision tree is trained on each of the k subsets. After training,
new samples are associated to the result of a majority vote of each DT. k and
n are hyper-parameters which are commonly tuned using a 2-dimension grid
search. Decision trees were successfully applied by Cho et al. [21] to categorize
mushrooms and by Fujioka et al. [27] to identify chemical compounds.

5 Experimental results

In this section, we compare the performances of the machine learning algorithms
described previously on two different datasets.

5.1 Outline of the electronic nose

The electronic nose system used is based on an array of six functionalized nano-
diamond coated SAW sensors each with a fundamental frequency of 433.9 MHz
[33, 32, 20]. The performances of the different feature sets and of the the super-
vised learning algorithms were assessed on two data sets. The first data set is
composed of seven different gases: ammonia (NH3), sulphur dioxide (SO2), hy-
drogen sulphide (H2S), methanol (CH3OH), toluene (C7H8), hydrogen cyanide
(HCN) and dimethyl methylphosphonate (C3H9O3P ) at a concentration of 10
ppm, 8 ppm, 6 ppm, 4 ppm and 2 ppm (only 2 ppm for HCN). The gases
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were generated from dilution from a calibrated gas or using a permeation tube
(C3H9O3P ). Nitrogen was used as the reference and carrier gas to transport
the volatile chemical compounds through the gas cell containing the sensors.
The second data set concerns a real world application consisting of identifying
counterfeit coffee capsules. The sensors were exposed to 21 types of genuine
commercially available coffee capsules and 7 types of counterfeit capsules. The
content of the capsules were emptied into a sealed beaker, the volatiles of a
sample were transported through the gas cell containing the sensors using a
pump. In both cases, the temperature of the sensors (22o C) and the flow rate
(200 ml/min) above them were kept constant. Data acquisition was carried out
at 10 Hz using the SAGAS instrument [63]. The sensors were exposed to the
vapours for 15 seconds then the gas cell containing the sensors was purged for
30 seconds.

5.2 Experimental results

The previously described algorithms were implemented using Matlab with both
the Statistics and Machine Learning and the Neural Network toolboxes. LMNN
was implemented using the code available on the authors of [74] website and
SNN was implemented by adapting the code available on the authors of [24]
website. The results described in this section were obtained by selecting the
most appropriate hyper parameters of each machine learning algorithm. The
feedforward neural networks were trained using the Matlab’s automated reg-
ularization implementation of backpropagation algorithm. The topologies of
the feedforward neural networks as well as the topology of the learning vector
quantization network were obtained through an iterative process starting from
a small structure and iteratively adding neurons. A training set and a valida-
tion set are used for the learning process; learning is stopped when the error
on the validation step is increasing. The value of k for the k-NN, the kernel of
the SVM and the parameters p and q of the ARMA model were obtained after
performing a grid search process and selecting the ones yielding to the best
performances. Samples were normalized using 0-1 scaling and dimension was
reduced by keeping only the first k components explaining 90% of the variance.
The results given in the following tables (Tab. 1 and Tab. 2) are the mean of the
relative classification performances (ratio of the number of correctly classified
samples over the number of samples) obtained during a 5-fold cross-validation
process [3]. The ARMA models RMSE neighbourhood approach yields to a
classification rate of respectively 0.863 and 0.485 on the gases data set and on
the counterfeit coffee capsules data set. In k-fold cross-validation, the original
database is split into k equal sized subsets. From the k subsets, a single subset
is retained as the validation data for testing the model, and the remaining k−1
subsets are used as training data. The cross-validation process is then repeated
k times, with each of the k subsets used exactly once as the validation set. The
primary idea that motivates this process is to try to estimate the accuracy of a
classifier when applied to a new data set. Repeating the process allows to get
more robust results since a classifier may have good performances on a data set

16



while having bad ones on another data set.
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5.3 Discussion

Firstly, we remark that, conversely to the linear classifiers which yield to the
poorest results, neural networks, large margin nearest neighbours and support
vector machine yield to the best classification rates. These results can be ex-
plained by their capabilities to learn complex decision boundaries. The incapac-
ity of decision trees to deal with non axis-parallel decision boundaries explain
why this algorithm yielded to the most inaccurate results. Those drawbacks are
overcome by the bagged tree algorithm which do not suffer from these issues
and hence yields to better performances. Other algorithms produced very dis-
parate results and their lack of interpretability makes any further investigation
strenuous. Secondly, it seems that preprocessing the data and reducing their
dimension with the principal component analysis (PCA) increases the classifica-
tion performances. ICA globally has less impact than PCA on the performances
of each algorithm. One might explain this phenomenon by the fact that ICA
aims at removing the linearity which are non-existent in this case since the used
electronic nose is composed of six different sensors. Finally, this work confirms
that the transient response contains relevant information when all the gases
are transported through the gas cell containing the sensors in the same way.
However, one has to be very careful when using the transient response since
the performances obtained using transient response’s information often yield to
poor results in the data set composed of the coffee capsules. This can be ex-
plained by the fact that the experimental set up and the use of a pump generate
very disparate transient response profiles. This has also to be considered when
dealing with the DCT and the DWT because these features intrinsically have
information about the transient response.

6 Conclusion

This paper has reviewed the reported literature on machine learning algorithms
for e-nose based volatile compounds recognition. A benchmark of the perfor-
mances obtained for different features, for different preprocessing techniques and
for different machine learning algorithms was performed yielding to a quantita-
tive comparison of those methods. The different machine learning algorithms
and the data pretreatment methods produce very disparate results. However,
we can remark a few general trends. The neural network and the large margin
nearest neighbours (LMNN) always produce the best results followed by bagged
trees and the support vector machine (SVM). Moreover, this benchmark con-
firms that reducing the data dimension with (PCA) increases the classification
performance. It also confirms that the transient response contains relevant in-
formation but should be used carefully.
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