
HAL Id: hal-01879533
https://hal.science/hal-01879533

Submitted on 24 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Executing bigraphical reactive systems
Amal Gassara, Ismael Bouassida Rodriguez, Mohamed Jmaiel, Khalil Drira

To cite this version:
Amal Gassara, Ismael Bouassida Rodriguez, Mohamed Jmaiel, Khalil Drira. Executing bigraphical
reactive systems. Discrete Applied Mathematics, 2019, 253, pp.73-92. �10.1016/j.dam.2018.07.006�.
�hal-01879533�

https://hal.science/hal-01879533
https://hal.archives-ouvertes.fr

Executing Bigraphical Reactive
Systems

Amal Gassara

ReDCAD laboratory, University of Sfax, National School of Engineers of Sfax, B.P. 1173, 3038 Sfax, Tunisia
amal.gassara@redcad.org

Ismael Bouassida Rodriguez

ReDCAD laboratory, University of Sfax, National School of Engineers of Sfax, B.P. 1173, 3038 Sfax, Tunisia

Mohamed Jmaiel

Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia

Khalil Drira

CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
Univ de Toulouse, LAAS, F-31400 Toulouse, France

September 23, 2018

Abstract

In order to enable experimentations and simulations of bigraphs, we need an implementation of their dy-
namic. In this paper, we tackle the matching issue of this task. We present a solution based on an investi-
gation on graph matching. We propose to simulate a bigraphical reactive system (i.e., bigraphs with a set of
reaction rules that allow their rewriting) with a graph transformation system. First, we translate a bigraph
to a ranked graph. This translation is ensured by defining a faithful functor that allows to move from the
bigraph category to the ranked graph category. Then, we show that reaction rules can be simulated with
graph rules. Hence, we provide a formal basis allowing to execute bigraph transformations by simulating
their translation aiming to use well-established and efficient graph transformation tools.

I. Introduction

The theory of Bigraphical Reactive Sys-
tems (BRSs) has been developed by Mil-
ner [1] as a formalism for describing and

analyzing mobile computation and pervasive
systems. BRS is a graphical model in which
bigraphs can be reconfigured using reaction
rules. The bigraph consists of a place graph
that models the hierarchical structure of a sys-
tem entities and the link graph that describes
their connection structure.

BRSs have been successfully applied in en-
compassing existing theories for concurrency

and mobility (e.g. CCS, Petri Nets and Pi-
calculus, etc), as well as in capturing software
architectures and modeling applications for
context-aware systems and ubiquitous com-
puting environments.

Therefore, it is very important to have an
implementation of the dynamic of bigraphs to
enable experimentations. The main challenge
of implementing the dynamic of bigraphs is
the matching problem. In fact, the latter is a
computational task that determines for a given
bigraph B and a reaction rule R whether and
how the reaction rule can be applied to rewrite

1

Executing BRS • SEP 2018

the bigraph B (i.e., determining whether R oc-
curs in B). However, it is not immediately
clear how to implement a framework that exe-
cutes such reaction rules.

In the literature, the first research activ-
ity addressing bigraph matching is presented
in [2, 3]. This work proposes a matching
system over bigraph terms for inferring le-
gal matches of BRSs. This system is based
on inference rules that are defined formally
by an inductive characterisation of occurrence.
Based on this matching system, a tool called
BPL Tool [3, 4] has been implemented. How-
ever, they implemented normalisation, renam-
ing, and regularisation steps before matching.
These steps could increase the computation
time.

Furthermore, the theory of BRS is closely
related to Graph Transformation Systems
(GTSs) [5, 6]. Considering the exhaustiveness
of studies on graph transformations, it is nat-
ural to ask whether we could apply graph
matching algorithms on bigraphs. As an alter-
native to implementing matching for bigraphs,
we could try to formalize BRSs as GTSs. By
this way, we can benefit from existing tools
and techniques developed for graph transfor-
mations. This is very interesting especially
that these tools are well mastered on the one
hand and very efficient and powerful on the
other. Consequentially, we initiate an investi-
gation of how to simulate a BRS with a GTS.
This would require us to establish a method
for ensuring the validity of such simulation.

This paper presents our solution for execut-
ing BRSs that is based on an investigation of
GTSs. We propose a formal basis allowing to
translate bigraph transformations into graph
transformations. First, we encode a bigraph
into a ranked graph. This encoding is ensured
by defining a faithful functor that allows to
move from the bigraph category to the ranked
graph category. Then, we show that reaction
rules can be simulated by graph rules. Hence,
we provide a formal basis allowing to execute
bigraph transformations by simulating their
encoding in order to use well-established and
efficient graph transformation tools.

The rest of this paper is organized as fol-
lows. Section II introduces some research ac-
tivities dealing with bigraph matching. In Sec-
tion III, we present an overview of BRSs and
GTSs. In Section IV, we explain our proposed
approach for executing BRSs and we describe
its steps. Then, Section V presents BiGMTE,
our implementation of our proposed solution
for executing BRSs. Finally, Section VI con-
cludes this paper and gives some directions
for future work.

II. Related work

We discuss in this section some research ac-
tivities dealing with bigraph matching that
consists in finding the occurrences of a Re-
dex (guest) inside an agent (host). Comput-
ing bigraph matchings has been proved to be
NP-complete, like the subgraph isomorphism
problem [7]. In the literature, some algorithms
were proposed. Sevegnani et al [8] presented
a sound and complete algorithm for finding
matchings in place graphs for bigraphs with
sharing. It was shown how the matching prob-
lem can be mapped into a SAT (Satisfiabil-
ity) instance since a SAT based solution could
provide an efficient solution for such prob-
lems. However, this work deals with a spe-
cial case of bigraphs (bigraph with sharing).
Also, they presented only a procedure for the
matching of place graphs. They do not yet pro-
pose an approach for link graphs. Miculan et
al. [9] considered the embedding problem as
a constraint satisfaction problem (CSP). This
algorithm, that they proved to be sound and
complete, was implemented in LibBig [10], a
library for manipulating bigraphical reactive
systems. Compared to our proposed tool, Lib-
Big is slower than BiGMTE in the case of com-
plex Redex. In fact, by increasing the complex-
ity of the Redex, the number of constraints in-
creases, too, and that slows down the resolu-
tion of the constraint satisfaction problem.

Differently from these two algorithms, Man-
sutti et al. [11] introduced an algorithm for
computing bigraphical embeddings in dis-
tributed settings where bigraphs are spread

2

Executing BRS • SEP 2018

across several cooperating processes. This de-
centralized algorithm does not require a com-
plete view of the host bigraph, but retains
the fundamental property of computing every
possible embedding for the given host. This
hinders the scalability of BRS execution tools,
especially on devices with low resources like
embedded ones.

An implementation of bigraph matching [2,
3] was given in the BPL Tool [3, 4] that is based
on a term-based representation of agents and
rules, in the spirit of term rewriting systems.
This work proposed a matching system over
bigraph terms for inferring legal matches of
BRSs. This system is based on inference
rules that are defined formally by an induc-
tive characterisation of occurrence. However,
the implementation of matching is not very
fast [4], due to the fact that it is derived di-
rectly from the inductive characterization of
matching that is based on the binding discrete
normal form. Authors implemented normal-
isation, renaming, regularisation and match-
ing. These steps could increase the computa-
tion time.

Although the standard way to define a
BRS matching is by algebraic manipulation of
terms (using equational reasoning) and this is
proven complete, it is obviously very costly.
It was therefore thought that considering bi-
graphs as a special class of graphs would
help solving the efficiency problem by con-
sidering BRS mathching as a special kind of
graph embedding. Actually, BRSs are related
to GTSs (See [6] for a comprehensive overview
of GTSs). In fact, a GTS is based upon the dou-
ble pushout (DPO) construction originated by
Ehrig [5]. This approach relies upon the treat-
ment of graphs as objects in a category whose
arrows are embedding. This contrasts with bi-
graphical approach, where bigraphs are the
arrows in a category whose objects are inter-
faces.

But, there are connections between these
two approaches. Ehrig has investigated these
links [12], after discussions with Milner. One
of these connections is previously explored by
Gadducci et al [13]. In fact, graphs as ar-

rows are obtained via cospans I → G ← J
of graphs as objects, where the interfaces I
and J are discrete graphs. In our work, we
rely on this connection in order to investigate
translating a BRS into a GTS. A second con-
nection goes on the other way. Graphs as ob-
jects are obtained in a coslice category of a
category where graphs are arrows. This con-
nection was proposed by Milner in [14], in the
context of link graphs that are a constituent of
bigraphs. It was shown that, for link graphs,
the coslice category is isomorphic to the nat-
ural category of embeddings (as arrows) be-
tween link graphs.

In the direction of relating graphs to bi-
graphs, some promising steps were taken.
Bruni et al [15] compared bigraphs with
gs-graphs, i.e., provided as arrows of gs-
monoidal theories. These theories are symmet-
ric monoidal categories equipped with two
transformations, satisfying a few properties.
In this research activity, authors showed that
gs-graphs can be proved essentially equivalent
to bigraphs, with minor differences at the in-
terface level. This work looks close to our pro-
posal. However, it did not define a reference
theory of rewriting bigraphs and gs-graphs.

Moreover, Damgaard [16] initiated an inves-
tigation of how to compile a BRS to a GTS
and he is working on such an investigation.
More specifically, he is investigating how one
may faithfully encode a BRS into a typed, at-
tributed GTS (translating a BRS simply by
translating each of its constituents: an agent,
a set of reaction rules and a signature). To the
best of our knowledge, no further work on this
investigation has been conducted. Along that
line of research, our work investigates how
BRS can be encoded as a particular type of
graph transformation.

III. Preliminaries

To understand how bigraphs relate to graphs,
we need, first, to understand these two graph-
ical models. For this, we give, in this sec-
tion, an overview of bigraphs, reaction rules,
ranked graphs and graph rules. Readers fa-

3

Executing BRS • SEP 2018

miliar with these models can skip this section.

i. Bigraphs

The theory of bigraphs [1] was proposed by
Milner and it is used to model the structure
of a system. We use Figure 1(a) to introduce
bigraphs informally. A bigraph consists of hy-
peredges and nodes that can be nested and
that have ports. Each hyperedge can connect
many ports on different nodes (for example,
v0 , v1 and v2 are joined by e1). A bigraph com-
bines two graphical structures -a place graph
and a link graph- based on the same node set,
hence the term bigraph. Figure 1(b) depicts
the corresponding place and link graphs of the
bigraph G.

Place graph: The place graph is a hierarchi-
cal tree that describes the locality of the nodes.
In this graph, branches establish the parent
(nesting) relationship of nodes in the bigraph.
Trees are rooted by regions (or roots) repre-
sented by dashed rectangle in G. Within the
place graph, in addition to nodes and regions,
there can also be sites, represented as grey rect-
angles in G. A site is a hole that can host new
nodes.

Link graph: The link graph is a hyper-
graph that describes the connectivity of nodes.
Within this graph, there can be outer names
like y0 , y1 and y2 in G (cf. Figure 1(a)) and in-
ner names like x0 and x1 in G (cf. Figure 1(a))
represented as open links. These names give
bigraphs the possibility to be composed by
joining the inner names of one bigraph with
the corresponding outer names of another bi-
graph.

Control and signature: Each node in the bi-
graph is assigned a control. Controls (K and
M in the case of G) indicate the node type and
its ports’ number through the arity. The set of
controls forms the signature.

Interfaces: Bigraphs can be built through
their interfaces. We distinguish two types of
interface: inner interface and outer interface.
The inner interface is defined by I = ⟨m, X⟩,
where m is the number of sites in the bigraph
and X the set of its inner names. The outer

interface is defined by J = ⟨n, Y⟩, where n is
the number of roots and Y is the set of outer
names. In the example of Figure 1(a), the in-
ner interface I = ⟨2, {x0, x1}⟩ and the outer
interface J = ⟨2, {y0, y1, y2}⟩.

Bigraph composition: The composition of
two bigraphs is defined by matching the in-
ner interface of the first graph with the outer
interface of the second (i.e., filling the sites
(holes) of the first with regions of the second
and merging the inner names of the first with
the outer names of the second).

Definition III.1 (Bigraph). Formally a bigraph
is defined as a 5-tuple of the form:

(V, E, ctrl, prnt, link) : ⟨m, X⟩ → ⟨n, Y⟩ where

• V ∈ V is a set of nodes (V node-
identifiers)
• E ∈ E is a set of hyperedges (E

hyperedge-identifiers)
• ctrl : V → K is a control map that assigns

controls to nodes (K is the signature)
• prnt : m ⊎ V → V ⊎ n is the parent map

and defines the nested place structure (m
is the number of sites and n is the number
of the roots). The parent map is acyclic
(i.e., prntk(v) ̸= v f or all k > 0 and v ∈ V)
• link : X ⊎ P → E ⊎ Y is the link map and

defines the link structure. X is the set of
inner names, Y is the set of outer names
and P defines the set of ports of the bi-
graph and is formalized as P = {(v, i)
| i ∈ {0, 1, .., arity(ctrl(v))}}.

ii. Reaction rule

Bigraphs are associated with reaction rules to
form bigraphical reactive systems (BRSs) that
can be applied to rewrite bigraphs. Each reac-
tion rule consists of two bigraphs: a Redex R
(the pattern to be changed) and a Reactum R’
(the changed pattern). The application of the
rule consists of identifying the image of R in a
bigraph and replacing it by the corresponding
R’.

4

Executing BRS • SEP 2018

0 1

0 1

e1

e0

x0 x1

y0 y1 y2

v0
v1 v2

K

K

M

(a) A Bigraph G

0

0 1

e1

e0

x0 x1

y0 y1 y2

v0

v1

v2

1

v0

v1

v2

(b) Place and link graphs

Figure 1: A Bigraph and its graphs [1]

iii. Ranked Graphs

In this paper, we deal with ranked graphs.
They are graphs having interfaces through
which they can be connected.

Definition III.2 (A ranked graph). A ranked
graph [13] is a triple of the form:

g = ⟨r, d, v⟩ : i→ j where

• d = ⟨N, E, s, t⟩ is a concrete graph where
N is a set of nodes, E is a set of edges,
s, t : E → N are the source and the target
functions. In this concrete graph d, nodes
and edges have identifiers.

• i, j are natural numbers which represent
the interfaces of g.

• r : j → N is a function called the root
mapping.

• v : i → N is a function called the variable
mapping.

We have enhanced ranked graphs with label
functions lv : N → LN where LN is fixed label
alphabets for nodes. For a graph G, the com-
ponents i and j represent discrete interfaces,
through which graphs can be equipped with a
compositional structure.

Ranked graphs composition: The composi-
tion of two ranked graphs is obtained by glu-
ing the variables of the first one with the roots
of the second one (i.e., matching them and
then eliminating them). It is defined only if
their number is equal.

iv. Graph rule

A graph rule (or production) p is essentially a
pair of graphs, a left-hand side L and a right-
hand side R. Rules are given with a common
interface I (i.e., the intersection of L and R).
Applying a rule on a graph G consists in find-
ing L in G, removing L \ I from G, and then
adding R \ I, resulting in a graph H.

IV. Our proposed approach for

executing BRSs

We propose a solution for executing BRSs
based on an investigation of how to simulate
a BRS with a GTS [17]. In other words, we
simulate the application of a reaction rule on
a bigraph with the application of a graph rule
on a graph. Our solution follows three steps:

• Step 1: Encoding a bigraph into a graph.
• Step 2: Encoding a reaction rule into a

graph rule.
• Step 3: Simulating the application of a

reaction rule on a bigraph by applying
the encoded graph rule on the encoded
graph.
• Step 4: Encoding the resulted graph in the

previous step into a bigraph.

This solution requires us to establish a for-
mal basis for ensuring the validity of such en-
coding.

5

Executing BRS • SEP 2018

i. Step 1: Encoding Bigraphs to
Ranked graphs

The main difference between bigraphs and
ranked graphs lies in the nesting and the link-
ing structure of bigraphs.

We define the nesting structure of bigraphs
through the node identifiers of graphs. In fact,
the hierarchy of places (roots and nodes) is
built in the graph by exploiting graph node
identifiers. For instance, in Figure 2, the par-
ent of the node v0 is the root 0 (v0 is nested in
0). Its image in the graph G is the node having
the identifier v0:0.

Furthermore, the linking structure of bi-
graphs is represented in the graph by defining
two types of nodes: place nodes that represent
bigraph places, and link nodes that represent
bigraph hyperedges.

Therefore, we can depict the relation be-
tween bigraphs and graphs by looking at Fig-
ure 2:

• Bigraph places and their hierarchy are
represented in the graph by place nodes
and their identifiers (black nodes).

• Bigraph hyperedges are represented in
the graph by link nodes (the green nodes).
For example, the hyperedge e1 in the bi-
graph, connecting v2 and v3 nodes, is rep-
resented in the graph with the green node
e1 to which are connected v2:0 and v3:1
nodes.

• The inner and the outer interfaces of the
bigraph correspond to numbers on the
left and on the right, respectively, in the
graph. The dashed lines represent which
nodes are exported to the interfaces.

Categorically, bigraphs and their mor-
phisms form an s-category (see Definition in
Appendix A) denoted BG that has as objects
inner and outer interfaces, and as arrows bi-
graphs (Definition in III.1). Similar to bi-
graphs, ranked graphs are presented as ar-
rows between two interfaces i and j, forming
a category denoted DG (Definition iii).

In order to ensure formally encoding bi-
graphs into ranked graphs, we shall construct

a functor (Definition IV.1) that allows to move
from one category to another, preserving its
structure.

Definition IV.1 (functor [1]). A functor F :
C → D between two categories C and D is a
function taking objects to objects and arrows
to arrows; it takes the arrow f : A → B in C,
to the arrow F(f) : F(A) → F(B) in D, such
that:

• F preserves identity: F(IdA) = IdF(A) for
every object A from C,
• F preserves composition: F(g ◦ f) =

F(g) ◦ F(f) for all arrows f : A → B and
g : B→ C

Since bigraphs represent the s-category BG,
we demonstrate that the DG category can be
casted as an s-category (see the proof in ??)
in order to be able to construct an categori-
cal functor that allows to move from the s-
category BG of bigraphs to the s-category DG
of ranked graphs.

We construct a functor named Fsim : BG →
DG that allows to move from the s-category
BG of bigraphs to the s-category DG of ranked
graphs. This functor associates to each inner
interface I from BG, an interface i from DG, it
associates to each outer interface J from BG,
an interface j from DG and it associates to
each morphism B (i.e., a bigraph) from BG, a
morphism G (i.e., a ranked graph) from DG.
Hence, for each Bigraph B : I → J, Fsim asso-
ciates a Graph G : i→ j such that:

Fsim(I) = i
Fsim(J) = j
Fsim(B) = G

We define the simulating functor Fsim on the
objects and on the morphisms of the two cate-
gories BG and DG.

i.1 Defining Fsim on objects

We define Fsim as an injective function between
the objects (i.e., interfaces) of the two models.
Actually, the main difference between them
lies in the way of representing these interfaces.

6

Executing BRS • SEP 2018

0
1

0 1

e1

e0

x0

v0

v1

K

K

M v2

L

v3

Bigraph B

0

1

2

v1:v0:0

v0:0

v2:0

v3:1

0

1

e1

e0
K

K

M

L

Ranked graph G

Figure 2: Encoding a bigraph into a ranked graph

For a bigraph, an interface is a pair composed
of an ordinal, representing roots and sites, and
by a set of names, representing inner and
outer names, whereas, a graph interface is a
list of ordered numbers.

Hence, given a bigraphical interface ⟨m, X⟩,
Fsim associates a graph interface represented
as a list of ordered numbers, starting from
0, with exactly m + |X| elements. This list is
regarded as a discrete graph. Every x ∈ m
(a root or a site) is encoded in the graph by
a place node and every name in X (an inner
name or an outer name) is encoded in the
graph by a link node.

So, for each object I = ⟨m, X⟩ from BG
(i.e., an inner interface or an outer interface),
Fsim(I) = m + |X| = i where i is the set
{0, .., m − 1; m, .., i − 1}. This set has m ele-
ments in {0,, m − 1} that are place nodes
and |X| elements in {m,, i − 1} that are
link nodes.

For example in Figure 2, the inner interface
of B is I = ⟨2, {x0}⟩. Its corresponding image
by Fsim(I) is the interface i = {0, 1, 2} of G
where the nodes 0 and 1 are place nodes and
the node 2 is a link node. The interface i is
represented by the list of numbers on the left
of the graph.

This definition of Fsim on objects proves that
it is an injective function.

i.2 Defining Fsim on morphisms

We define Fsim as a pair of functions (fv, fe)
that preserves bigraphs structure as high-
lighted in the following.

Definition IV.2 (Fsim on morphisms). Let B =
(VB, EB, ctrlB, prntB, linkB) be a bigraph. We

define Fsim(B) = G where G = ⟨VG, EG, s, t⟩
is defined through a pair of functions (fv, fe)
such that:

• fv(VB) ⊂ VG. fv associates for each node
of the bigraph, a place node in the graph
G. fv : VB → VG is defined as follows:
∀ v ∈ VB, ∃! place node x ∈
VG such that fv(v) = x where

id(x) =
{

id(v) if v is a root
id(v).id(fv(prntB(v))) otherwise

Hence, the identifier of a node image is
determined by concatenating the identi-
fier of this node with the identifier of
its parents. For example, in Figure 2,
fv(v1) = v1 : v0 : 0

• fe(EB) ⊂ VG. fe associates for each hy-
peredge of the bigraph, a link node in the
graph G. fe : EB → VG is defined as fol-
lows:

∀ e ∈ EB, ∃! link node v ∈ VG such that fe(e) = v

For example, in Figure 2, fe(e0) = e0 (the
image of the hyperedge e0 in the bigraph
B is the node e0 in the graph G).

• (fv, fe) respects the structure of bigraphs
in the following sense:

1. It preserves the controls

2. It preserves the structural mapping
prnt

3. It preserves the structural mapping
link

In the following, we show that these three
points hold.

7

Executing BRS • SEP 2018

1. Fsim preserves the controls since the con-
trol function ctrlB is defined in the graph
by the labelling function lv as follows:

∀v ∈ VB, lv(fv(v))
de f
= ctrlB(v)

2. The parent mapping prntB is defined
in the graph through a function called
getParent that exploits the node identi-
fiers. Since the id of a node in the graph
is the concatenation of its parents ids, this
function getParent : LV → LV allows to
return the parent id.

∀ id = {id1 : id2 : ... : idn},
getParent(id) = id2 : ... : idn. By this def-
inition, we can ensure that Fsim preserves
the structural mapping prnt.

3. The link mapping linkB is defined in the
graph by the function target t as follows:

Let v be a node in a bigraph that is con-
nected via a port (v, i) to a hyperedge h.
In the graph image, there is a link node
nh that represents the image of the hyper-
edge h and an edge e that represents the
image of the port (v, i) having as source
the node v and as target the node nh. In-
deed, it follows that Fsim induces a func-
tion fp : PB → EG on ports of the bigraph
nodes defined by:

∀ port (v, i) ∈ PB, ∃! edge e ∈ EG

such that fp((v, i)) = e and s(e) = v

So, formally, linkB is defined in the graph
as follows:
Let (v, i) ∈ PB be a port and h ∈ EB be a
hyperedge such that linkB(v, i) = h then:

∃! link node nh ∈ VG such that
fe(h) = nh
∃! edge e ∈ EG such that
fp((v, i)) = e and s(e) = v
t(e) = nh

By this definition, Fsim preserves the struc-
tural mapping linkB.

Proposition IV.1. Fsim is a faithful functor be-
tween BG (the s-category of bigraphs) and DG (the
s-category of ranked graphs).

Proof. Let demonstrate, first, that Fsim is a well
defined functor by demonstrating that it pre-
serves functor properties (i.e., preserves iden-
tity and composition).

1. Fsim preserves identity: Fsim(IdA) =
IdFsim(A) for every object A from BG.
Let I = ⟨m, X⟩ be an object in BG (i.e., an
outer interface or an inner interface).
The identity bigraph at I is IdI =
(∅,∅,∅, Idm, IdX) : ⟨m, X⟩ → ⟨m, X⟩
By the definition of Fsim, Fsim(IdI) is a
ranked graph having no nodes and, hav-
ing as interfaces Fsim(I) = m + |X|. This
graph represents the identity on (i = m +
|X|) where i is an object in DG (i.e., an in-
terface).
Hence, Fsim(IdI) = Idi = IdFsim(I)

2. Fsim preserves composition: Fsim(H ◦ B) =
Fsim(H) ◦ Fsim(B) for all morphisms B and
H from BG (See the ?? for the proof).

Moreover, Fsim is a faithful functor (injective
on arrows) since the morphisms fv and fe are
injective functions.

Proposition IV.1 ensures the validity of mov-
ing from the s-category BG to the s-category
DG by the functor Fsim, ensuring in this way
the validity of encoding a bigraph into a
ranked graph.

ii. Step 2: Encoding a reaction rule
into a graph rule

Bigraphs are associated with reaction rules
to form BRSs. These rules can be applied
to rewrite bigraphs. On the other hand, the
double pushout approach, DPO approach, for
graph transformations has been proposed by
Ehrig et al. [5]. According to this approach,
graphs are associated with rewrite rules.

In this section, we present how to encode
a reaction rule into a DPO rule preserving di-
rect bigraph transformations. Each direct bi-
graph transformation B → B′ via a reaction

8

Executing BRS • SEP 2018

rule is simulated by a direct graph transfor-
mation G ⇒ G′ via the encoded DPO rule.

Our aim is to encode a reaction rule into
a DPO rule through Fsim preserving direct bi-
graph transformations. Our proof performs
two steps:

• Step 1: Preserving direct transformations.
This step consists in verifying that our
simulating functor Fsim preserves direct
bigraph transformations as follows: if ap-
plying the reaction rule R on the bigraph
B gives the bigraph B′, then applying
Fsim(R) on Fsim(B) will give Fsim(B′).

• Step 2: Encoding Fsim(R) into a DPO rule.
This step consists in proving that a reac-
tion rule Fsim(R) can be encoded into a
DPO rule.

ii.1 Categorical framework of BRSs

A Bigraphical reactive system is an instance of
a Reactive System (Definition IV.3).

Definition IV.3 (Reactive System [1]). A reac-
tive system, written A(R), consists of a cat-
egory A equipped with a set R of reaction
rules. Each reaction rule consists of a pair
(R : ϵ → I, R′ : ϵ → I) of ground arrows, a
Redex and a Reactum. A ground arrow is an
arrow with domain ϵ.

The reaction relation → over agents (a, a′ :
ϵ→ J) is defined (written a→ a′) if there exist
a reaction rule (r, r′) and a context D : I → J
such that in a = D ◦R and a′ = D ◦R′ in A are
defined as shown in the commutative diagram
(cf. left part of Figure 3).

On the other hand, an adhesive grammar
⟨DG, P⟩ where DG is a category and P is a
set of rewrite rules, can be seen as a reactive
system on the category Cospan(DG). Sassone
et al. [18] presented a Lemma that shows that
the DPO rewrite relation is exactly the reactive
system reaction relation.

So, both BRSs and GTSs are reactive sys-
tems.

ii.2 Step 1: Preserving direct transforma-
tions

Categorically, we want to move from a given
BRS = BG(R1) with an s-category BG and
reactions R1 to a GTS = DG(R2) with an s-
category DG and suitable reactions R2. This
can be achieved by using the functor Fsim :
BG(R1) → DG(R2) where Fsim : BG → DG
and Fsim(R1) = R2.

Proposition IV.2. Fsim preserves direct transfor-
mations, i.e., translates the applicability of reac-
tions.

Proof. Let a → a′ be a reaction relation via
(R, R′) and D given by (1) and (2) as defined in
Figure 3. Let Fsim associates an image to each
morphism and object of the commutative dia-
gram depicted in Figure 3.

In order to ensure that the reaction re-
lation a → a′ leads to a reaction rela-
tion Fsim(a) → Fsim(a′) via (Fsim(R), Fsim(R′))
and Fsim(D)), we need to demonstrate that
Fsim(a) = Fsim(D) ◦ Fsim(R) and Fsim(a′) =
Fsim(D) ◦ Fsim(R′).

First, we have Fsim(a) = Fsim(D ◦ R).
Since Fsim preserves composition, we obtain
Fsim(a′) = Fsim(D) ◦ Fsim(R′). Then, we the
same manner, we have Fsim(a′) = Fsim(D ◦ R′).
Since Fsim preserves composition, we obtain
Fsim(a′) = Fsim(D) ◦ Fsim(R′)

ii.3 Step 2: Encoding Fsim(R) into a DPO
rule

The second step of our solution relies on the
idea of Ehrig [12]. He showed that it is possi-
ble to use the cospan idea to construct from a
reaction relation a corresponding DPO trans-
formation a ⇒ a′ via (p, D) where p is con-
structed from the reaction rule (R, R′), de-
picted categorically in the left diagram of Fig-
ure 3.

DPO rule Categorically, a rewrite rule in the

DPO approach is a rule p = (L l←− I r−→ R) con-
sists of two injective graph morphisms (l, r).
It can be applied to a graph G, resulting in

9

Executing BRS • SEP 2018

Figure 3: Applying Fsim to a reaction relation

Figure 4: Commutative diagram for a DPO transforma-
tion G ⇒ H via (p, C)

a graph H, if there is an injective match mor-
phism m : L→ G and if we can find a graph C
and morphisms such that the two squares in
the diagram of Figure 4 are both pushouts.

Now, let (Fsim(R), Fsim(R′) : ϵ → Fsim(I))
be a reaction rule in DG and let’s consider
a reaction relation Fsim(a) → Fsim(a′) via
(Fsim(R), Fsim(R′) and Fsim(D) : Fsim(I) →
Fsim(J) given by (3) and (4) in Figure 3, where
Fsim(a) = Fsim(D) ◦ Fsim(R) and Fsim(a′) =
Fsim(D) ◦ Fsim(R′).

For a reaction rule, morphisms of the square
(3) and the triangle (4) are given as cospans
in cospan (Graph), i.e., we have cospans ϵ ←
Fsim(R) → Fsim(I), ϵ ← Fsim(R′) → Fsim(I)
and Fsim(I) ← Fsim(D) → Fsim(J) leading to
cospans ϵ← Fsim(a)→ Fsim(J) and
ϵ← Fsim(a′)→ Fsim(J) by composition in DG.

Since composition in DG is defined via
pushouts, we obtain the diagram in Figure 5,
where (5) and (6) is a double pushout leading
to the DPO transformation Fsim(a) ⇒ Fsim(a′)
via (p, Fsim(D)) where
p = (Fsim(R)← Fsim(I)→ Fsim(R′)).

iii. Step 4: Encoding a ranked graph
into a bigraph

Ranked graphs with some additional informa-
tion may be encoded into bigraphs. These
information define the nesting and the link-
ing structure of bigraphs. This encoding is
the reverse process of encoding bigraphs into
graphs presented in Section i. It is imple-
mented as follows (cf. Figure 2):

• The graph nodes having the type place
nodes are represented in the bigraph by
nodes.
• The identifiers of a place node is exploited

to represent the hierarchy of nodes in the
bigraph. For example, the identifier of the
node v1:v0:0 in the graph means that, in
the bigraph, the node v1 is nested in the
node v0 that is nested in turn in the root
0.
• The graph nodes having the type link

nodes are represented in the bigraph by
hyperedges. The source of edges con-
nected to a link node are linked by the cor-
responding hyperedge. For example, the
green link node e1 in the graph to which
are connected v2:0 and v3:1 nodes, is rep-
resented in the bigraph with the hyper-
edge e1 connecting v2 and v3 nodes.
• The inner and the outer interfaces of the

graph are represented by the inner and
the outer interfaces of the bigraph.

Our main objective is to encode ranked
graphs into bigraphs, preserving their struc-
ture. We shall achieve this by constructing a
categorical functor that allows to move from
the ranked graph s-category DG to the bi-
graph s-category BG. We construct a functor

10

Executing BRS • SEP 2018

Figure 5: A reaction relation as a DPO transformation

named Frev : DG → BG that associates to a
graph G : i → j, from DG a bigraph B : I → J
from BG such that:


Frev(i) = I
Frev(j) = J
Frev(G) = B

We define the reversing functor Frev on the
objects and on the morphisms of the two cate-
gories DG and BG.

iii.1 Defining Frev on objects

We define Frev as an injective function between
the objects (i.e., interfaces) of the two models.
Given a graph interface represented as a list of
ordered numbers i, Frev associates a bigraphi-
cal interface ⟨m, X⟩ where m = |place node|
and |X| = |link node|. Every place node ∈ i is
encoded in the bigraph by a root or a site and
every link node ∈ i is encoded in the bigraph
by a name in X (an inner name or an outer
name).

Hence, for each object i = {0,, i− 1} from
DG, Frev(i) = ⟨m, X⟩ where m = |place node|
and X = {x0,, xi} such that i = |link node|.

For example in Figure 2, the inner interface
of G is i = {0, 1, 2} where the nodes 0 and 1
are place nodes and the node 2 is a link node.
Its corresponding image by Frev(i) is the inter-
face I of B where I = ⟨2, {x0}⟩.

This definition of Frev on objects proves that
it is an injective function.

iii.2 Defining Frev on morphisms

We define Frev as a pair of functions (fv, fe)
that preserves graph structure as highlighted
in the following.

Definition IV.4 (Frev on morphisms). Let
G = (r, ⟨V, E, s, t⟩, v) be a graph. We define
Frev(G) = B. B = (VB, EB, ctrlB, prntB, linkB)
is defined through a pair of functions (fv, fe)
where:

• fv(V) = VB ∪ EB. fv associates for each
link node of the graph an hyperedge in
the bigraph and it associates for each
place node of the graph, a node in the bi-
graph B. fv : VG → VB ∪ EB is defined as
follows:
∀ place node v ∈ VG, ∃! node x ∈
VB such that fv(v) = x where

id(x) =
{

id(v) if v is a root
split(id(v), :, 1) otherwise

and

prntB(x) = split(id(v), :, 2)

Hence, the image of a node is determined
by splitting the first item of its identifier
and its parent is determined by splitting
the second item. For example, in Figure 2,
fv(v1 : v0 : 0) = v1 and prntB(v1) = v0.

• fe(EG) = PB. fe associates for each edge
of the graph, a port for its source node in
the graph G. fe : EG → PB is defined as
follows:

∀e ∈ EG such that s(e) = v and t(e) = h,
∃! port p of v such that linkB(p) = fv(h)

11

Executing BRS • SEP 2018

• By definition, (fv, fe) respects the struc-
ture of bigraphs in the following sense:

1. It preserves the source function s

2. It preserves the target function t

3. It preserves the label function Lv, i.e.,

Lv
de f
= ctrlB ◦ fv

Proposition IV.3. Frev is a faithful functor be-
tween DG (the s-category of ranked graphs) and
BG (the s-category of bigraphs).

Proof. Let demonstrate, first, that Frev is a well
defined functor by demonstrating that it pre-
serves functor properties (i.e., preserves iden-
tity and composition).

1. Frev preserves identity: Frev(IdA) =
IdFrev(A) for every object A from DG.
Let i be an object in DG (i.e., an
outer interface or an inner interface).
i = {0, ..m− 1, m, ...i− 1} having m places
and i − m names. Idi is a ranked graph
having i − 1 nodes where the k − th root
is the k− th variable, for all k ∈ i.
Frev(Idi) is the bigraph
(∅,∅,∅, Idm, IdX) : ⟨m, X⟩ → ⟨m, X⟩
where |X| = i − m. This bigraph repre-
sents the identity bigraph at the object
I = ⟨m, X⟩ = Frev(m + |X|) = Frev(i) in
BG.
Hence, Frev(Idi) = IdI = IdFrev(i)

2. Frev preserves composition: Frev(H ◦ B) =
Frev(H) ◦ Frev(B) for all morphisms B and
H from DG (See the ?? for the proof).

Moreover, Frev is a faithful functor (injective
on arrows) since the morphisms fv and fe are
injective functions.

Proposition IV.3 ensures the validity of mov-
ing from the category DG to the category BG
by the functor Frev, ensuring in this way the
validity of encoding a ranked graph into a bi-
graph.

V. BiGMTE: Bigraph Matching

and Transformation Engine

We propose our BiGMTE tool [19, 20], an im-
plementation of our proposed solution for ex-
ecuting BRSs based on graph rewriting.

i. BiGMTE architecture

BiGMTE is an integration of existing tools. It
uses Big Red [21], a graphical editor allowing
to create and edit bigraphs and reaction rules.
Besides, it is based on GMTE [22], a tool for
graph matching and transformation. Thero-
fore, the matching and the transformation pro-
cedure performs five steps as highlighted in
Figure 6:

• BRS creating Using Big Red the user cre-
ates a BRS (Bigraphs and reaction rules).
The edited BRS is exported into an XML
file.
• BRS encoding This XML file is parsed

to be the input of our implemented algo-
rithms. The first algorithm encodes the
edited bigraph to a graph and the second
one encodes the edited reaction rule to a
DPO rule.
• Graph matching The obtained DPO rule

is executed and applied on the obtained
graph using GMTE.
• Graph encoding After the rule applica-

tion, the resulting graphs generated by
GMTE are encoded in turn to bigraphs.
• Displaying The obtained bigraphs are

displayed by Big Red.

ii. The graphical interface of
BiGMTE

In order to create a BRS with Big Red, the user
should start by defining the signature, i.e., the
set of the controls. Then, using the created
signature, he creates the bigraphs and the re-
action rules.

We illustrate the creation of a BRS using
an example of the bigraphical reactive system
“Built environment" given in [1]. A built en-
vironment, depicted in Figure 7, consists of

12

Executing BRS • SEP 2018

Figure 6: BiGMTE architecture

Figure 7: Big Red’s bigraph editor

agents, buildings, rooms and computers. The
state of the building may change because of
the movement of agents, and perhaps other
movements. Think of the agents as conduct-
ing a conference call (the long link). An agent
in a room may also be logged in a computer in
the room (the short links), and the computers
in a building are linked to form a local area
network.

ii.1 Creating the signature

The signature editor, shown in Figure 8, man-
ages both the bigraphical and visual proper-
ties of controls. The list view on the left
shows the controls of the signature, and allows
controls to be added and removed, while the
panel on the right allows controls to be modi-
fied.

The appearance and arity of a control are

Figure 8: Big Red’s signature editor

defined using the canvas in the centre-right of
Figure 8. The black circles are the vertices of
the control’s oval, while ports are shown on
the oval as red circles (in this case, only one
is shown). All of these objects can be created,
moved and removed using the canvas and its
context menu.

ii.2 Creating the bigraph agent

Big Red’s bigraph editor, shown in Figure 7, is
essentially a structured vector graphics editor.
The palette on the left provides the tools that
can be used to modify the model, for example,
the “Link" tool can be used to connect points
and links, and the “Room" tool can be used
to create new nodes whose control is Room,

13

Executing BRS • SEP 2018

Figure 9: Reaction rule

while the view on the right shows the view of
the model.

The editor enforces the structural rules and
visual conventions of bigraphs; if the user at-
tempts to modify the model in a way that
would cause them to be violated (for example,
by dragging node R out of root 0), an explana-
tory error message will be displayed.

ii.3 Creating a reaction rule

We create a reaction rule allowing an agent to
enter a room, depicted in Figure 9. Likewise
editing bigraphs, the palette on the left of the
editor provides the tools that can be used to
modify the model and the set of controls that
can be used to create new nodes, while the
view on the right shows the view of the reac-
tion rule.

The rule requires the agent and the room to
be in the same place (presumably a building).
The site allows the room to contain other oc-
cupants and other agents. The matching dis-
cipline allows the ports of the agent to be al-
ready linked to a computer and other agents
somewhere, perhaps in another room.

ii.4 Launching the execution of the BRS

In order to execute a BRS, the designer uses
the interface depicted in Figure 10. He
chooses, first, the signature. Then, he chooses
the reaction rule to be applied and the model,
i.e., the bigraph on which will be executed the

Figure 10: Executing a BRS

Figure 11: Connecting to GMTE

14

Executing BRS • SEP 2018

Figure 12: The resulted Bigraph

rule. By clicking on “export", Big Red gener-
ates an XML file describing the BRS as showed
in Figure 11. Finally, the designer clicks on “To
tool" in order to connect to GMTE. Hence, the
encoding of the BRS into a GTS will be per-
formed.

The edited bigraph is encoded into a graph.
Likewise, the edited reaction rule is encoded
into a graph rule. The obtained graph and
graph rule are passed as input to GMTE.
GMTE executes the application of the rule
and generates a resulted graph. The resulted
graph is encoded into a bigraph that will be
then displayed through Big Red, as showed in
Figure 12.

iii. Evaluation of BiGMTE

In order to evaluate BiGMTE, we compared
its supported features and its performance
with two existing tools: LibBig [10] and BPL
Tool[4].

LibBig is a Java library for Bigraphs and
BRSs. It is an implementation of the ma-
chinery for defining and manipulating BRSs.
Matching is implemented as a constraint satis-
faction problem (CSP). BPL Tool (Bigraphical
Programming Languages) is a tool for experi-
menting with bigraphical models. It relies on
an SML (Standard Meta Language) compiler
with an interactive mode to provide a com-
mand line interface.

iii.1 Features evaluation

By comparing the features supported by each
tool, we can note that:

• BiGMTE is able to execute a rule as many
times as possible. That’s mean; it applies
the rule recursively until it will be not ap-
plicable. This feature is not supported by
LibBig and BPL.
• BiGMTE offers a GUI interface that helps

the user to edit bigraphs and reaction
rules. However, using LibBig and BPL,
this task is a bit difficult since it is done
through Java programs and SML pro-
grams, respectively.
• BiGMTE is able to apply a rule and exe-

cute all founded matching. It gives all re-
sulted bigraphs. This feature is supported
also by LibBig but not supported by BPL.
• Regarding the execution of parametric

rules, this feature is supported by BPL but
not supported by LibBig. The current ver-
sion of BiGMTE is able to execute some
parametric rules that allow copying pa-
rameters (deleting, moving and duplicat-
ing parameters are not yet supported).

Moreover, by manipulating BPL, we noticed
that it is not able to execute a rule that allows
linking more than three nodes.

iii.2 Performance evaluation

In order to evaluate the performance of
BiGMTE, we compared it with LibBig by per-
forming a set of tests. The generation of these
tests is based on increasing the number and
the hierarchical level of the nodes involved in
both the agent and the Redex. In the first ex-
perimentation, we considered the size of the
Redex. In the second and the third experimen-
tations, the tests are generating by increasing
the size of the agent. The last experimentation,
the tests are generating by increasing the hier-
archical level of nodes in the agent. In these
experimentations, we considered, as a refer-
ence parameter, the time of executing a reac-
tion rule on a bigraph and getting the new bi-
graph.

15

Executing BRS • SEP 2018

Figure 13: Execution time compared to Redex size

Evaluation compared to the Redex size In
this evaluation, we measured the execution
time of a reaction rule while increasing the
size of its Redex. To do so, we take, first, the
example of a reaction rule that allows to find
a pattern that contains one node. The agent
(i.e., the bigraph on which the reaction rule
will be applied) is a bigraph that is formed
by a set of nodes with different controls and
have the same parent. It contains one match-
ing of the Redex pattern. Then, we carry on the
generation of tests by modifying the reaction
rule and increasing, each time, the number of
nodes in the Redex. In each test, the added
nodes have the same parent and have differ-
ent controls.

Figure 13 depicts that the execution time in-
creases exponentially with LibBig. However, it
increases slightly with BiGMTE. Accordingly,
BiGMTE is faster than LibBig in this case. This
can be explained by the fact that LibBig is
based on a CSP solver. In fact, by increas-
ing the complexity of the Redex, the number
of constraints increases, too, and that slows
down the resolution of the constraint satisfac-
tion problem.

Evaluation compared to the agent size: one
matching In this evaluation, we measured
the execution time of a reaction rule while in-
creasing the size of the agent. To do so, we
take, the example of a reaction rule that allows
to find a pattern that contains one node. First,
we apply this reaction rule on an agent that
contains only the pattern to be matched. Then,
we modify the agent by increasing the number

Figure 14: Execution time while increasing the number
of non matchable nodes

of nodes. The application of the rule gives al-
ways one matching. As showed in Figure 14,
BiGMTE is faster than LibBig.

iii.3 Evaluation compared to the agent size:
several matching

In this evaluation, we take the same example
of a reaction rule that allows to find a pattern
that contains one node. However, we apply
this reaction rule, first, on an agent that con-
tains only the pattern to be matched (i.e., the
application of the rule gives only one match-
ing). Then, we modify the agent by increasing
the number of nodes (nodes have the same
types). Accordingly, the number of match-
ing increases with increasing the number of
nodes.

As depicted in Figure 15, we can note that
the execution time using the two tools is very
close when the number of matching is under
100. Whereas, when the number of matching
is more than 100, LibBig responds better than
BiGMTE.

iii.4 Evaluation compared to the agent
depth

At first, we take the example of a reaction
rule that allows to find a pattern that contains
one node and an agent that contains only the
pattern to be matched. Then, we modify the
agent by increasing, each time, the nesting
level of the Redex pattern to be found. The

16

Executing BRS • SEP 2018

Figure 15: Execution time while increasing the number
of matchable nodes

Figure 16: Execution time while increasing the nesting
level of nodes in the agent

application of the rule gives always one match-
ing. As showed in Figure 16, BiGMTE is faster
than LibBig.

VI. Conclusions and Future

Work

In this paper, we present a solution for execut-
ing BRSs based on an investigation on graph
matching. We initiate this investigation follow-
ing the closely relation between the theory of
BRSs and GTSs and considering also the ex-
haustiveness of studies on graph transforma-
tions. As an alternative to implement match-
ing for bigraphs, we propose to simulate a BRS
with a GTS. First, we encode a bigraph into a
ranked graph. The validity of this encoding is
ensured by providing a formal proof. Categor-
ically, both bigraphs and ranked graphs are
presented as arrows between two interfaces,

forming a category. So, we define a faithful
functor called Fsim that allows to move from
the bigraph category to the ranked graph cat-
egory.

Then, we show that reaction rules can be
simulated by graph rules. We encode a reac-
tion rule into a graph rule through Fsim that
preserves direct transformations, i.e., trans-
lates the applicability of reactions. Hence, we
provide a formal basis allowing to execute bi-
graph transformations by simulating their en-
coding in order to use well-established and ef-
ficient graph transformation tools.

As an implementation of this solution,
we presented BiGMTE, our tool for bigraph
matching and transformation. It allows to ex-
ecute the application of a reaction rule on a
given bigraph to be rewritten. BiGMTE is an
integration of existing tools. It uses Big Red, a
graphical editor allowing to create and edit bi-
graphs and reaction rules. The edited bigraph
and reaction rule are encoded into a graph and
a graph rule, respectively. To do so, we imple-
mented two algorithms allowing these encod-
ings. BiGMTE is also based also on GMTE,
a tool for graph matching and transformation,
for executing the encoded rule on the encoded
graph.

In order to improve the performance of our
implemented BiGMTE tool, we are working
on the issue of decreasing the execution time
when having a large number of matchings.
Moreover, we aim to extend BiGMTE to sup-
port the matching of labelled bigraphs. This
feature can be easily extended since it is sup-
ported by GMTE. We only have to encode la-
belled bigraphs into labelled graphs.

References

[1] R. Milner, The Space and Motion of Com-
municating Agents, Cambridge Univer-
sity Press, 2009.

[2] T. C. Damgaard, A. J. Glenstrup,
L. Birkedal, R. Milner, An inductive char-
acterization of matching in binding bi-

17

Executing BRS • SEP 2018

graphs, Formal Aspects of Computing
25 (2) (2013) 257–288.

[3] A. J. Glenstrup, T. C. Damgaard,
L. Birkedal, E. HÃÿjsgaard, An imple-
mentation of bigraph matching, Tech.
Rep. TR-2010-135, IT University of
Copenhagen (December 2010).

[4] E. HÃÿjsgaard, A. J. Glenstrup, The BPL
Tool: A Tool for Experimenting with Bi-
graphical Reactive Systems, Tech. Rep.
TR-2011-145, IT University of Copen-
hagen (October 2011).

[5] H. Ehrig, M. Pfender, H. J. Schnei-
der, Graph-grammars: An algebraic ap-
proach, in: the IEEE Conference Record
of 14th Annual Symposium on Switching
and Automata Theory (SWAT), 1973, pp.
167–180.

[6] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer,
Fundamentals of Algebraic Graph Trans-
formation (Monographs in Theoretical
Computer Science), Springer-Verlag,
2006.

[7] G. Bacci, M. Miculan, R. Rizzi, Finding a
forest in a tree, in: Trustworthy Global
Computing: 9th International Sympo-
sium, TGC, Springer Berlin Heidelberg,
2014, pp. 17–33.

[8] M. Sevegnani, C. Unsworth, M. Calder,
A SAT based algorithm for the matching
problem in bigraphs with sharing, Tech.
rep., University of Glasgow, Department
of Computing Science (2010).

[9] M. Miculan, M. Peressotti, A CSP
implementation of the bigraph em-
bedding problem, CoRR abs/1412.1042.
arXiv:1412.1042.

[10] M. Miculan, M. Peressotti, Lib-
big: A library for bigraphs
and bigraphical reactive systems,
http://mads.uniud.it/wordpress/downloads/libbig/

(2014).

[11] A. Mansutti, M. Miculan, M. Peres-
sotti, Distributed execution of bigraphical
reactive systems, CoRR abs/1503.02434.
arXiv:1503.02434.

[12] H. Ehrig, Bigraphs meet double pushouts,
Bulletin of the EATCS 78 (2002) 72–85.

[13] F. Gadducci, R. Heckel, An inductive
view of graph transformation, in: Re-
cent Trends in Algebraic Development
Techniques, Vol. 1376 of Lecture Notes
in Computer Science, Springer, 1998, pp.
223–237.

[14] R. Milner, Embeddings and contexts for
link graphs, in: Formal Methods in Soft-
ware and Systems Modeling, Springer,
2005, pp. 343–351.

[15] R. Bruni, U. Montanari, G. Plotkin, D. Ter-
reni, On Hierarchical Graphs: Recon-
ciling Bigraphs, Gs-monoidal Theories
and Gs-graphs, Fundamenta Informati-
cae 134 (3-4) (2014) 287–317.

[16] T. C. Damgaard, Syntactic theory for
bigraphs, Tech. rep., IT University of
Copenhagen (2006).

[17] A. Gassara, I. B. Rodriguez, M. Jmaiel,
K. Drira, Encoding bigraphical reactive
systems into graph transformation sys-
tems, Electronic Notes in Discrete Math-
ematics 55 (2016) 207–210.

[18] V. Sassone, P. Sobocinski, Reactive Sys-
tems over Cospans, in: the 20th IEEE
Symposium on Logic in Computer Sci-
ence (LICS), 2005, pp. 311–320.

[19] A. Gassara, I. B. Rodriguez, M. Jmaiel, A
tool for modeling sos architectures using
bigraphs, in: Proceedings of the Sympo-
sium on Applied Computing, 2017, pp.
1787–1792.

[20] A. Gassara, I. Bouas-
sida Rodriguez, BiGMTE,
http://www.redcad.tn/projects/bigmte/

(2017).

18

Executing BRS • SEP 2018

[21] A. J. Faithfull, G. Perrone, T. T. Hilde-
brandt, Big red: A development environ-
ment for bigraphs, Electronic Communi-
cations of the EASST, 2013, 61.

[22] M. A. Hannachi, I. Bouassida Rodriguez,
K. Drira, S. E. Pomares Hernandez,
GMTE: A tool for graph transformation
and exact/inexact graph matching, in:
Graph-Based Representations in Pattern
Recognition, Springer, 2013, pp. 71–80.

19

Appendix A. Mathematical framework

Bigraphs may be defined as arrows in certain kinds of category. In our work,
we are concerned with concrete bigraphs, in s-categories, where nodes and edges
have identifiers. In this section, we present some definitions related to the theory
of category.

Definition Appendix A.1 (category [20]). A category C has a set of objects
and a set of arrows. We shall often denote objects by I, J,K and arrows by
f, g, h. Each arrow f has a domain and a codomain, both objects; if these are
I and J then we write f : I → J , I = dom(f) and J = cod(f).

For each object I there is an identity arrow idI : I → I. The composition
g ◦ f of f and g satisfies the following:
(C1) g ◦ f is defined iff cod(f) = dom(g)
(C2) h ◦ (g ◦ f) = (h ◦ g) ◦ f when either are defined
(C3) id ◦ f = f and f = f ◦ id.

In s-categories, each arrow is associated with a set called its support. This
association will be arbitrary, subject to simple constraints detailed in the fol-
lowing definition. In a bigraph, the support will include its nodes, and this
immediately allows to handle occurrences and the sharing of nodes.

Definition Appendix A.2 (s-category [20]). An s-category is a category in
which each arrow f is assigned a finite support |f | and composition of f and g
may be undefined even when cod(f) = dom(g).

Furthermore, g ◦ f is defined iff cod(f) = dom(g) and |f | ∩ |g| = ∅, and in
that case |g ◦ f | = |f | ⊎ |g|.

Appendix B. Casting the DG category as an s-category

The obvious way to cast a category (Definition in Appendix A.1) into an
s-category (Definition in Appendix A.2) is to give all morphisms a support
and to verify that the composition of two morphisms g and f is defined iff
cod(f) = dom(g) and |f | ∩ |g| = ∅.

Let f = ⟨r, d, v⟩ and g = ⟨r′, d′, v′⟩ be two ranked graphs (having supports
since d and d′ are concrete graphs, i.e., nodes have identifiers). We demonstrate
that g ◦ f is defined iff cod(f) = dom(g) and |f | ∩ |g| = ∅.

Proof. (⇐) Evident since DG is a category.
(⇒) DG is a category. So, g ◦ f is defined iff cod(f) = dom(g). Let demon-

strate that |f | ∩ |g| = ∅.
We assume that the statement is false (i.e., |f | ∩ |g| ̸= ∅). So, ∃ a node

x ∈ f and a node y ∈ g such that id(x) = id(y) (having the same identifier).
By definition, the composition f ◦ g = ⟨r, d′′, v′⟩ where d′′ is the disjoint union
modulo the equivalence on nodes induced by v(x) ≈ r′(x). So, {x, y} ∈ f ◦ g.

Since in a concrete graph each node has an unique identifier, id(x) must be
different to id(y) and this is in a contradiction with the assumption.

26

Appendix C. Fsim preserves composition

We demonstrate here that Fsim(H ◦ B) = Fsim(H) ◦ Fsim(B) for all mor-
phisms in BG. To do so, we give, first, the definition of bigraph composition
and ranked graph composition.

Bigraph composition

The composition of two bigraphs is defined by matching the inner interface
of the first graph with the outer interface of the second (i.e., filling the sites
(holes) of the first with regions of the second and merging the inner names of
the first with the outer names of the second).

Definition Appendix C.1 (Bigraph composition [20]). LetB = (VB , EB , ctrlB ,
prntB , linkB) : ⟨m,X⟩ → ⟨n, Y ⟩ and H = (VH , EH , ctrlH , prntH , linkH) :
⟨n, Y ⟩ → ⟨k, Z⟩ be two bigraphs. Their composite

H ◦B = (V,E, ctrl, prnt, link) : ⟨m,X⟩ → ⟨k, Z⟩

has V = VB ⊎VH , E = EB ⊎EH , ctrl = ctrlB ⊎ ctrlH , prnt is defined as follows:
If w ∈ m ⊎ VB ⊎ VH is a site or node of H ◦B then

prnt(w) =

 prntB(w) if w ∈ VB ⊎m and prntB(w) ∈ VB

prntH(j) if w ∈ VB ⊎m and prntB(w) = j ∈ n
prntH(w) if w ∈ VH

and link is defined as follows:
If q ∈ PB ⊎ PH ⊎X is a point (a port or an innername) of H ◦B then

link(q) =

 linkB(q) if q ∈ PB ⊎X and linkB(q) ∈ EB

linkH(y) if q ∈ PB ⊎X and linkB(q) = y ∈ Y
linkH(q) if q ∈ PH

Ranked graphs composition

The composition of two ranked graphs is obtained by gluing the variables
of the first one with the roots of the second one (i.e., matching them and then
eliminating them). It is defined only if their number is equal.

Definition Appendix C.2 (Ranked graph composition [9]). LetG1 = [⟨r1, d1, v1⟩]
and G2 = [⟨r2, d2, v2⟩] be two ranked graphs. Their composition is the ranked
graph H = G1;G2 defined as H = [⟨ind2◦r2, d′′; ind1◦r1⟩], where ⟨d′′, ind2, ind1⟩
is a pushout of : ⟨v2 : j → d2, r1 : j → d1⟩ in DG (category of ranked graphs). d′′

is the disjoint union, modulo the equivalence on nodes induced by v2(i) ≈ r1(i).

Let B = (VB , EB, ctrlB, prntB , linkB) : I = ⟨m,X⟩ → J = ⟨n, Y ⟩,
H = (VH , EH , ctrlH , prntH , linkH) : J = ⟨n, Y ⟩ → K = ⟨k, Z⟩ and
H ◦ B : I → K. In order to demonstrate that Fsim(H ◦ B) = Fsim(H) ◦
Fsim(B), we start by giving the expression of Fsim(H ◦B) then the expression
of Fsim(H) ◦ Fsim(B). For sake of simplicity, we use the notation F instead of
Fsim.

27

The expression of F (H ◦B)

We give the expression of F (H ◦ B) based on the Definition Appendix C.1
of the composition H ◦B.
F (H ◦B) : F (I)→ F (K) is a ranked graph that has:

• V = F (VB ⊎ VH) = VF (B) ⊎ VF (H)

• V E = F (EB ⊎ EH) = V EF (B) ⊎ V EF (H)

• lv = F (ctrlB ⊎ ctrlH) = ctrlF (B) ⊎ ctrlF (H)

• The identifiers of nodes are defined as follows:
If w ∈ VB ⊎ VH is a node of H ◦B then ∃! fv(w) ∈ F (H ◦B) such that:

id(fv(w)) =


id(w) if w = i, i ∈ k
id(w).id(fv(prntH(w))) if w ∈ VH

id(w).id(fv(prntB(w))) if w ∈ VB

id(w).id(fv(prntH(j))) if w ∈ VB and prntB(w) = j, j ∈ n

• t defined as follows: If q ∈ PB⊎PH⊎X is a point of H ◦B then ∃! edge e =
fp(q) ∈ F (H ◦B) such that:

t(fp(q)) =

 fe(linkB(q)) if q ∈ PB ⊎X and linkB(q) ∈ EB

fe(linkH(y)) if q ∈ PB ⊎X and linkB(q) = y ∈ Y
fe(linkH(q)) if q ∈ PH

The expression of F (H) ◦ F (B)

Let F (B) = ⟨r1, (VF (B), V EF (B), tF (B)), v1⟩ : F (I)→ F (J) and
F (H) = ⟨r2, (VF (H), V EF (H), tF (H)), v2⟩ : F (J) → F (K) where F (I) = i ,
F (J) = j and F (K) = k.
F (H) ◦F (B) is the disjoint union modulo the equivalence on nodes induced by
v2(i) ≈ r1(i), i ∈ j. So, F (H) ◦ F (B) is a ranked graph which has:

• V = VF (H) ⊎ VF (B)

• V E = V EF (H) ⊎ V EF (B)

• The identifiers of nodes are determined as follows: For v ∈ V

id(v) =


id(v) if v = r2(i), i ∈ k
id(v) if v ∈ VF (H)

id(v) if v ∈ VF (B)

id(v).id(v2(i)) if v ∈ VF (B) and v = r1(i), i ∈ j

Since v ∈ VF (B) (resp. ∈ VF (H)) then ∃! w ∈ VB (resp. ∈ VH) such that
fv(w) = v.
Hence, for fv(w) ∈ V

id(fv(w)) =


id(fv(w)) if fv(w) = r2(i), i ∈ k
id(fv(w)) if fv(w) ∈ VF (H)

id(fv(w)) if fv(w) ∈ VF (B)

id(fv(w)).id(v2(i)) if fv(w) ∈ VF (B) and fv(w) = r1(i), i ∈ j

28

id(fv(w)) =


id(fv(w)) if w = i ∈ k
id(fv(w)) if w ∈ VH

id(fv(w)) if w ∈ VB

id(fv(w)).id(v2(i)) if w ∈ VB and prntB(w) = j, j ∈ n

According to the definition of Fsim, we obtain the following expression:

id(fv(w)) =


id(w) if w = i ∈ k
id(w).id(fv(prntH(w))) if w ∈ VH

id(w).id(fv(prntB(w))) if w ∈ VB

id(w).id(fv(prntH(w))) if w ∈ VB and prntB(w) = j, j ∈ n

• t is determined by:

t(e) =

 tF (B)(e) if e ∈ EF (B) and tF (B)(e) ̸= r1(i), i ∈ j
tF (H)(i) if e ∈ EF (B) and tF (B)(e) = r1(i), i ∈ j
tF (H)(e) if e ∈ EF (H)

Since e ∈ EF (B) (resp. ∈ EF (H)) then ∃! q ∈ PB ⊎X (resp. ∈ PH) such
that fp(q) = e.
Hence, for fp(q) ∈ V E

t(fp(q)) =

 tF (B)(fp(q)) if q ∈ PB ⊎Xand linkB(q) ∈ EB

tF (H)(fp(q)) if q ∈ PB ⊎Xand linkB(q) = y ∈ Y
tF (H)(fp(q)) if q ∈ PH

Since F preserves link mapping (i.e., fe◦linkB = tF (B)◦fp and fe◦linkH =
tF (H) ◦ fp), then:

t(fp(q)) =

 fe(linkB(q)) if q ∈ PB ⊎Xand linkB(q) ∈ EB

fe(linkH(y)) if q ∈ PB ⊎Xand linkB(q) = y ∈ Y
fe(linkH(q)) if q ∈ PH

By looking at the expression of F (H ◦ B) and F (H) ◦ F (B), we can notice
that F (H ◦B) = F (H) ◦ F (B). Hence, Fsim preserves composition.

Appendix D. Frev preserves composition

Let B = ⟨r, d, v⟩ : i→ j where d = ⟨NB , EB , sB , tB⟩, H = ⟨r′, d′, v′⟩ : j → k
where d′ = ⟨NH , EH , sH , tH⟩ and H ◦B : i→ k.

In order to demonstrate that Frev(H ◦B) = Frev(H) ◦ Frev(B), we start by
giving the expression of Frev(H ◦B) then the expression of Frev(H) ◦ Frev(B).
For sake of simplicity, we use the notation F instead of Frev.

29

The expression of F (H ◦B)

H ◦B is a ranked graph that represents the disjoint union modulo the equiv-
alence on nodes induced by v(i) ≈ r′(i), i ∈ j. So, F (H ◦B) is a bigraph which
has:

• V = F (VH ⊎ VB) = VF (H) ⊎ VF (B)

• E = F (V EH ⊎ V EB) = EF (H) ⊎ EF (B)

• ctrl = F (lvH ⊎ lvB) = ctrlF (H) ⊎ ctrlF (B)

• prnt is determined as follows: If w ∈ VB ⊎ VH is a node of H ◦ B then
∃! fv(w) ∈ F (H ◦B) such that:

prnt(fv(w)) =

 fv(prntB(w)) if w ∈ VB and prntB(w) ̸= r′(i), i ∈ j
fv(prntH(w)) if w ∈ VH

fv(vH(i)) = fv(prntH(i)) if w ∈ VB and prntB(w) = r′(i), i ∈ j

• link defined as follows: If e ∈ EB ⊎ EH is an edge of H ◦ B such that
s(e) = v then ∃! port p = fe(e) ∈ F (H ◦B) such that:

link(fe(e)) =

 fv(tB(e)) if e ∈ EB and tB(e) ̸= r′(i), i ∈ j
fv(vH(i)) if e ∈ EB and tB(e) = r′(i), i ∈ j
fv(tH(e)) if e ∈ EH

The expression of F (H) ◦ F (B)

Let
F (B) = (VF (B), EF (B), ctrlF (B), prntF (B), linkF (B)) : F (i) = I → F (j) = J
and
F (H) = (VF (H), EF (H), ctrlF (H), prntF (H), linkF (H)) : F (j) = J → F (k) = K
F (H) ◦ F (B) is a bigraph which has:

• V = VF (H) ⊎ VF (B)

• E = EF (H) ⊎ EF (B)

• ctrl = ctrlF (H) ⊎ ctrlF (B)

• prnt is determined as follows: For v ∈ V

prnt(v) =

 prntF (B)(v) if v ∈ VF (B) and prntF (B)(v) ∈ VF (B)

prntF (H)(v) if v ∈ VF (H)

vF (H)(i) = prntF (H)(i) if v ∈ VF (B) and prntF (B)(v) = j ∈ n

Since v ∈ VF (B) (resp. ∈ VF (H)) then ∃! w ∈ VB (resp. ∈ VH) such that
fv(w) = v.
Hence, for fv(w) ∈ F (H) ◦ F (B)

prnt(fv(w)) =

 prntF (B)(fv(w)) if fv(w) ∈ VF (B) and fv(prntB(w)) ∈ VF (B)

prntF (H)(fv(w)) if fv(w) ∈ VF (H)

prntF (H)(fv(i)) if fv(w) ∈ VF (B) and fv(prntB(w)) = i ∈ n

30

Since F preserves prnt mapping (i.e., fv ◦ prntB = prntF (B) ◦ fv and
fv ◦ prntH = prntF (H) ◦ fv), then:

prnt(fv(w)) =

 fv(prntB(w)) if w ∈ VB and prntB(w) ̸= r′(i), i ∈ j
fv(prntH(w)) if w ∈ VH ∈ VF (H)

fv(prntB(i)) if w ∈ VB ∈ VF (B) and prntB(w) = r′(i), i ∈ j

• link is determined by: For q ∈ PF (B) ⊎ PF (H)

link(p) =

 linkF (B)(p) if p ∈ PF (B) and linkF (B)(p) ∈ EF (B)

linkF (H)(p) if p ∈ PF (B) and linkF (B)(p) = y ∈ Y
linkF (H)(p) if p ∈ PF (H)

Since p ∈ PF (B) (resp. ∈ PF (H)) then ∃! e ∈ EB ⊎X (resp. ∈ EH) such
that fe(e) = p.
Hence, for fe(e) ∈ F (H) ◦ F (B)

link(fe(e)) =


linkF (B)(fe(e)) if fe(e) ∈ PF (B) and linkF (B)(fe(e)) ∈ EF (B)

linkF (H)(fe(e)) if fe(e) ∈ PF (B) and linkF (B)(fe(e)) = y ∈ Y
linkF (H)(fe(e)) if fe(e) ∈ PF (H)

Since F preserves targetmapping (i.e., fv◦tB = linkF (B)◦fe and fv◦tH =
linkF (H) ◦ fe), then:

link(fe(e)) =

 fv(tB(e)) if e ∈ EB and tB(e) ̸= r′(i), i ∈ j
fv(vH(i)) if e ∈ EB and tB(e) = r′(i), i ∈ j
fv(tH(e)) if e ∈ EH

31

