
HAL Id: hal-01879398
https://hal.science/hal-01879398

Submitted on 21 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

P systems with randomized right-hand sides of rules
Artiom Alhazov, Rudolf Freund, Sergiu Ivanov

To cite this version:
Artiom Alhazov, Rudolf Freund, Sergiu Ivanov. P systems with randomized right-hand sides of rules.
Theoretical Computer Science, 2020, 805, pp.144–160. �10.1016/j.tcs.2018.07.016�. �hal-01879398�

https://hal.science/hal-01879398
https://hal.archives-ouvertes.fr

P Systems with Randomized Right-hand Sides of Rules

Artiom Alhazova,d,1, Rudolf Freundb,∗, Sergiu Ivanovc

aInstitute of Mathematics and Computer Science, Academy of Sciences of Moldova
Str. Academiei 5, Chişinău, MD 2028, Moldova

bTechnische Universität Wien, Institut für Computersprachen
Favoritenstraße 9–11, A-1040 Wien, Austria

cIBISC, Université Évry, Université Paris-Saclay
23 Boulevard de France, 91025, Évry, France

dKey Laboratory of Image Information Processing
and Intelligent Control of Education Ministry of China,

School of Automation,
Huazhong University of Science and Technology,

Wuhan 430074, China

Abstract

P systems are a model of hierarchically compartmentalized multiset rewriting. We intro-

duce a novel kind of P systems in which rules are dynamically constructed in each step

by non-deterministic pairing of left-hand and right-hand sides. We define three variants of

right-hand side randomization and compare each of them with the power of conventional P

systems. It turns out that all three variants enable non-cooperative P systems to generate

exponential (and thus non-semi-linear) number languages. We also give a binary normal

form for one of the variants of P systems with randomized rule right-hand sides. Finally,

we also discuss extensions of the three variants to tissue P systems, i.e., P systems on an

arbitrary graph structure.

Keywords: P system; randomized rules

∗Corresponding author
Email addresses: artiom@math.md (Artiom Alhazov), rudi@emcc.at (Rudolf Freund),

sergiu.ivanov@univ-evry.fr (Sergiu Ivanov)
1The work is supported by National Natural Science Foundation of China (61320106005 and

61033003) and the Innovation Scientists and Technicians Troop Construction Projects of Henan Province
(154200510012).

Preprint submitted to Theoretical Computer Science February 13, 2018

1. Introduction

Membrane computing is a research field originally founded by Gheorghe Păun in 1998,

see [13]. Membrane systems (also known as P systems) are a model of computing based

on the abstract notion of a membrane. Formally, a membrane is treated as a container

delimiting a region; a region may contain objects which are acted upon by the rewriting

rules associated with the membranes. Quite often, the objects are plain symbols coming

from a finite alphabet, but P systems operating on more complex objects (e.g., strings,

arrays) are often considered, too, e.g., see [9].

A comprehensive overview of different flavors of membrane systems and their expressive

power is given in the handbook which appeared in 2010, see [14]. For a state of the art

snapshot of the domain, we refer the reader to the P systems website [17], as well as to the

bulletin of the International Membrane Computing Society [16].

Dynamic evolution of the set of available rules has been considered from the very be-

ginning of membrane computing. Already in 1999, generalized P systems were introduced

in [8]; in these systems the membranes, alongside the objects, contain operators which act on

these objects, while the P system itself acts on the operators, thereby modifying the trans-

formations which will be carried out on the objects in the subsequent steps. Among further

ideas on dynamic rules, one may list rule creation [4], activators [1], inhibiting/deinhibiting

rules [7], and symport/antiport of rules [6]. One of the more recent developments in this

direction are polymorphic P systems [2, 3, 12], in which rules are defined by pairs of mem-

branes, whose contents may be modified by moving objects in or out.

We remark that the previous studies on dynamic rule sets either treated the rules as

atomic entities (symport/antiport of rules, operators in generalized P systems), or allowed

virtually unlimited possibilities of tampering with their shape (polymorphic P systems). In

the present work, we propose a yet different approach which can be seen as an intermediate

one.

In P systems with randomized rule-right-hand sides (or with randomized RHS, for short),

the available left-hand sides and right-hand sides of rules are fixed, but the associations

2

between them are re-evaluated in every step: a left-hand side may pick a right-hand side

arbitrarily (randomly). In Section 3, we present three different formal definitions of this

intuitive idea of randomized RHS:

1. rules exchange their RHS,

2. each rule randomly picks an RHS from a common collection of RHS, shared between

the rules,

3. each rule randomly picks an RHS from a possible collection of RHS associated with

the rule itself.

P systems with randomized RHS may have a real-world (possibly biological) application

for representing systems in a hostile environment. The modifications such P systems effect on

their rules may be used to represent perturbations caused by the environment (mutations),

somewhat in the spirit of faulty Turing machines (e.g., see [5]).

In this article, we will focus on the expressive power of P systems with randomized RHS,

as well as on comparing them to the classical model with or without cooperative rules.

One of the central conclusions of the present work is that non-cooperative P systems with

randomized RHS can generate exponential number languages, thus (partially) surpassing the

power of conventional P systems.

This paper is structured as follows. Section 2 recalls some preliminaries about multisets,

strings, permutations, as well as conventional P systems. Section 3 defines the three variants

of RHS randomization. Section 4 discusses the computational power of the three variants

of P systems with randomized RHS. Section 5 shows a binary normal form for one of the

variants of P systems with randomized RHS. Section6 discusses extensions of the three

variants of RHS randomization to tissue P systems. Finally, Section 7 summarizes the

results of the article and gives some directions for future work.

2. Preliminaries

In this paper, the set of positive natural numbers {1, 2, . . . } is denoted by N+, the set

of natural numbers also containing 0, i.e., {0, 1, 2, . . . }, is denoted by N. Given k ∈ N+, we

3

will call the set N+
k = {x ∈ N+ | 1 ≤ x ≤ k} an initial segment of N+.

An alphabet V is a finite set. The families of recursively enumerable, context-free, lin-

ear, and regular languages, and of languages generated by tabled Lindenmayer systems are

denoted by RE, CF , LIN , REG, and ET0L, respectively. The families of sets of Parikh

vectors as well as of sets of natural numbers (multiset languages over one-symbol alphabets)

obtained from a language family F are denoted by PsF and NF , respectively.

For further introduction to the theory of formal languages and computability, we refer

the reader to [14, 15].

2.1. Linear Sets over N

A linear set over N generated by a set of vectors A = {ai | 1 ≤ i ≤ d} ⊂fin Nn (here

A ⊂fin B indicates that A is a finite subset of B) and an offset a0 ∈ Nn is defined as follows:

〈A, a0〉N =

{
a0 +

∑d

i=1
kiai

∣∣∣∣∣ ki ∈ N, 1 ≤ i ≤ d

}
.

If the offset a0 is the zero vector 0, we call the corresponding linear set homogeneous ; we

also use the short notation 〈A〉N = 〈A,0〉N.

We use the notation NnLINN = {〈A, a0〉N | A ⊂fin Nn, a0 ∈ Nn}, to refer to the class of

all linear sets of n-dimensional vectors over N. Semi-linear sets are defined as finite unions

of linear sets. We use the notation NnSLINN to refer to the classes of semi-linear sets of

n-dimensional vectors. In case no restriction is imposed on the dimension, n is replaced by

∗. We may omit n if n = 1. A finite union of linear sets which only differ in the starting

vectors is called uniform semilinear:

NnSLINU
N =

{⋃
b∈B〈A,b〉N | A ⊂fin Nn, B ⊂fin Nn

}
Let us denote such a set by 〈A,B〉N.

Note that a uniform semilinear set 〈A,B〉N can be seen as a pairwise sum of the finite

set B and the homogeneous linear set 〈A〉N:

〈A,B〉N = {a + b | a ∈ 〈A〉N,b ∈ B}.

4

This observation immediately yields the conclusion that the sum of two uniform semilinear

sets 〈A1, B1〉N and 〈A2, B2〉N is uniform semilinear as well and can be computed in the

following way:

〈A1, B1〉N + 〈A2, B2〉N = {a + b | a ∈ 〈A1 ∪ A2〉N,b ∈ B1 +B2}.

As is folklore,

PsCF = PsLIN = PsREG = N∗SLINN.

2.2. Multisets

A multiset over V is any function w : V → N; w(a) is the multiplicity of a in w. A

multiset w is often represented by one of the strings containing exactly w(a) copies of each

symbol a ∈ V . The set of all multisets over the alphabet V is denoted by V ◦. By abusing

string notation, the empty multiset is denoted by λ. The projection (restriction) of w over

a sub-alphabet V ′ ⊆ V is the multiset w|V ′ defined as follows:

w|V ′(a) =

w(a), a ∈ V ′;

0, a ∈ V r V ′.

Example 1. The string aab can represent the multiset w : {a, b} → N with w(a) = 2 and

w(b) = 1. The projection w|{a} = w′ is defined as w′(a) = w(a) = 2 and w′(b) = 0.

We will (ab)use the symbol ∈ to denote the relation “is a member of” for multisets.

Therefore, for a multiset w, a ∈ w will stand for w(a) > 0.

2.3. Strings and Permutations

A (non-empty) string s over an alphabet V traditionally is defined as a finite ordered

sequence of elements of V . Equivalently, we can define a string of length k as a function

assigning symbols to positions: s : N+
k → V . Thus, the string s = aab can be equivalently

defined as the function s : N+
3 → {a, b} with s(1) = a, s(2) = a, and s(3) = b. We will use

the traditional notation |s| to refer to the length of the string s (i.e., the size k of the initial

segment N+
k it is defined on). In addition, the size of the empty string λ is 0.

5

A string s : N+
k → V is not necessarily surjective (there may be symbols from V that

do not appear in s). We will use the notation set(s) to refer to the set of symbols appearing

in s (the image of s):

set(s) =
{
a ∈ V | a = s(i) for some i ∈ N+

|s|
}
.

Given a string s : N+
k → V , a prefix of length k′ ≤ k of s is the restriction of s to

N+
k′ ⊆ N+

k. For example, aa is a prefix of length 2 of the string aab. We will use the

notation prefk′(s) to denote the prefix of length k′ of s.

Given a finite set A, a permutation of A is any bijection ρ : A→ A. Given a permutation

σ : N+
k → N+

k and a string s : N+
k → V of length k, applying σ to s is defined as

σ(s) = s ◦ σ (where ◦ is the function composition operator).

Example 2. Following the widespread tradition, we will write permutations in Cauchy’s

two-line notation. The permutation σrev of N+
3 which “reverses the order” of the numbers,

can be written as follows:

σrev =

1 2 3

3 2 1

 .

Applying σrev to a string reverses it:

σrev(aab) = baa.

Any finite set B trivially can be represented by one of the strings listing all of its el-

ements exactly once. All such strings are equivalent modulo permutations. Given a fixed

enumeration B = {b1, . . . , bn}, we define the canonical string representation of B to be the

string δ(B) = b1 . . . bn.

2.4. Rule Sides

We consider arbitrary labeled multiset rules r : u→ v over an alphabet V , where r is the

rule label we attach for convenience, and u and v are strings over V representing multisets.

As usual, the application of such a rule means replacing the multiset represented by u by

the multiset represented by v.

6

For a given rule r : u→ v, we define the left-hand-side and the right-hand-side functions

as follows:

lhs(u→ v) = lhs(r) = (u),

rhs(u→ v) = rhs(r) = (v).

Using the brackets (and), for a given string w, the notation (w) is used to describe

the multiset represented by w. As usual, we will extend the notations for these functions

lhs and rhs lifted to sets of rules: given a set of rules R, lhs(R) = {lhs(r) | r ∈ R} and

rhs(R) = {rhs(r) | r ∈ R}. Furthermore, for any string (finite ordered sequence) of rules

ρ : N+
k → R we define the strings of left-hand sides lhs(ρ) = lhs ◦ ρ and of right-hand sides

rhs(ρ) = rhs ◦ ρ.

Example 3. Take R = {r1 : aa → ab, r2 : cc → cd} and consider the string of rules

ρ = r1r1r2. Then lhs(ρ) = (aa)(aa)(cc) and rhs(ρ) = (ab)(ab)(cd). Thus, lhs(ρ) and rhs(ρ)

can be considered as strings of multisets.

We will (ab)use the symbol → for combining two strings of multisets α, β : N+
k → V ◦

of the same length k. The string α→ β will be defined as follows, for any i ∈ N+
k:

(α→ β)(i) = α(i)→ β(i).

Example 4. Consider the following two strings of multisets: α = (aa)(aa)(cc) and β =

(ab)(ab)(cd). α→ β is simply the string of rules that can be obtained by taking the multisets

from α as left-hand sides and β as right-hand sides, in the given order: α → β = (aa) →

(ab)(aa)→ (ab)(cc)→ (cd) (which exactly corresponds with ρ from Example 3).

2.5. (Hierarchical) P Systems

A (hierarchical) P system is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho),

where O is the alphabet of objects, T ⊆ O is the alphabet of terminal objects, µ is the

membrane structure injectively labeled by the numbers from {1, . . . , n} and usually given

7

by a sequence of correctly nested brackets, wi are the multisets giving the initial contents

of each membrane i (1 ≤ i ≤ n), Ri is the finite set of rules associated with membrane i

(1 ≤ i ≤ n), and hi and ho are the labels of the input and the output membranes, respectively

(1 ≤ hi ≤ n, 1 ≤ ho ≤ n).

In the present work, we will mostly consider the generative case, in which Π will be used

as a multiset language-generating device. We therefore will systematically omit specifying

the input membrane hi.

Quite often the rules associated with membranes are multiset rewriting rules (or special

cases of such rules). Multiset rewriting rules have the form u → v, with u ∈ Oo \ {λ} and

v ∈ Oo. If |u| = 1, the rule u→ v is called non-cooperative; otherwise it is called cooperative.

Rules may additionally be allowed to send symbols to the neighboring membranes. In this

case, for rules in Ri, v ∈ O × Tari, where Tari contains the targets out (corresponding

to sending the symbol to the parent membrane), here (indicating that the symbol should

be kept in membrane i), and inh (indicating that the symbol should be sent into the child

membrane h of membrane i). Note that all variants of the function rhs, as well as the

operator → from the previous section can be naturally extended to rules having right-hand

sides with target indications (from O × Tari).

In P systems, rules are often applied in the maximally parallel way: in any derivation

step, a non-extendable multiset of rules has to be applied. The rules are not allowed to

consume the same instance of a symbol twice, which creates competition for objects and

may lead to the P system choosing non-deterministically between the maximal collections

of rules applicable in one step.

A computation of a P system is traditionally considered to be a sequence of configu-

rations it can successively pass through, stopping at the halting configuration. A halting

configuration is a configuration in which no rule can be applied any more, in any membrane.

The result of a computation of a P system Π as defined above is the contents of the output

membrane ho projected over the terminal alphabet T .

Example 5. For readability, we will often prefer a graphical representation of P systems.

8

For example, the P system Π1 = ({a, b}, {b}, [1]1, a, R, 1) with the rule set R = {a →

aa, a→ b} may be depicted as in Figure 1.

a→ aa

a→ b

a
1

Figure 1: The example P system Π1

Due to maximal parallelism, at every step Π1 may double some of the symbols a, while

rewriting some other instances into b.

Note that, even though Π1 might express the intention of generating the set of numbers

of the powers of two, it will actually generate the whole of N+ (due to halting). Indeed, for

any n ∈ N+, an can be generated in n steps by choosing to apply, in the first n − 1 steps,

a → aa to exactly one instance of a and a → b to all the other instances, and by applying

a → b to every a in the last step (in fact, for n > 1, in each step except the last one, in

which a → b is applied twice, both rules are applied exactly once, as exactly two symbols a

are present, whereas all other symbols are copies of b).

While maximal parallelism and halting by inapplicability are staple ingredients, various

other derivation modes and halting conditions have been considered for P systems, e.g.,

see [14].

We will use the notation OPn(coo) to denote the family of P systems with at most n

membranes, with cooperative rules. To denote the family of such P systems with non-

cooperative rules, we replace coo by ncoo. To denote the family of languages of multisets

generated by these P systems, we prepend Ps to the notation, and to denote the family of

the generated number languages, we prepend N .

3. P Systems with Randomized RHS

In this section we consider three different variants of defining P systems with randomized

RHS. We immediately point out that, despite the common intuitive background, the details

9

of the resulting semantics vary quite a lot.

3.1. Variant 1: Random RHS Exchange

In this variant of P systems, rules randomly exchange right-hand sides at the beginning

of every evolution step. This variant was the first to be conceived and is the closest to the

classical definition.

A P system with random RHS exchange is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, ho),

where the components of the tuple are defined as in the classical model (Section 2.5).

As different from conventional P systems, Π does not apply the rules from Ri directly.

Instead, for each membrane 1 ≤ i ≤ n, we take the canonical representation of Ri, i.e.,

δ(Ri), and non-deterministically (randomly) choose a permutation σ : N+
|Ri| → N+

|Ri| to

compute the canonical representation of Rσ
i from δ(Ri) as follows:

δ(Rσ
i) = lhs(δ(Ri))→ σ(rhs(δ(Ri))).

We now extract the set of rules Rσ
i = set(δ(Rσ

i)) described by the string δ(Rσ
i) as constructed

above. Π will then apply the rules from Rσ
i according to the usual maximally parallel

semantics in membrane i.

In other words, Π non-deterministically permutes the right-hand sides of rules in each

membrane i, and then applies the obtained rules according to the maximally parallel seman-

tics.

Note that we first have to transform the set Ri into its canonical string representation

δ(Ri) in order to be able to obtain a correct representation of the |Ri| rules and from that a

correct representation of the |Ri| rules in Rσ
i , even if the number of different left-hand sides

and/or different right-hand sides of rules does not equal |Ri|.

Example 6. Consider the P system Π2 = ({a, b}, {b}, [
1

]
1
, a, R, 1) with the rule set R =

{a→ aa, c→ b}. Π2 is graphically represented in Figure 2.

10

a→ aa

c→ b

a
1

Figure 2: The P system Π2 with random RHS exchange generating the number language {2n | n ∈ N}.

The number language generated by Π2 (the set of numbers of instances of b that may

appear in the skin after Π2 has halted) is exactly {2n | n ∈ N+}. Indeed, while Π2 applies the

identity permutation on the right-hand sides, a → aa will double the number of symbols a,

while the rule c→ b will never be applicable. When Π2 exchanges the right-hand sides of the

rules, the rule a → b will rewrite every symbol a into a symbol b. After this has happened,

no rule will ever be applicable any more and Π2 will halt with 2n symbols b in the skin, where

n+ 1 is the number of computation steps taken.

We will use the notation

OPn(rhsExchange, coo)

to denote the family of P systems with random RHS exchange, with at most n membranes,

with cooperative rules. To denote the family of such P systems with non-cooperative rules,

we replace coo by ncoo. To denote the family of languages of multisets generated by these P

systems, we prepend Ps to the notation, and to denote the family of the generated number

languages, we prepend N .

3.2. Variant 2: Randomized Pools of RHS

In this variant of P systems, every membrane has some fixed left-hand sides and a pool

of available right-hand sides to build rules from. An RHS from the pool can only be used

once.

A P system with randomized pools of RHS is a construct

Π = (O, T, µ, w1, . . . , wn, H1, . . . Hn, ho),

11

where Hi defines the left- and right-hand sides available in membrane i and the other com-

ponents of the tuple are defined as in the classical model (Section 2.5).

For 1 ≤ i ≤ n, Hi = (li, ri) is a pair of strings of multisets over O. The string ri may

contain target indications (i.e., be a string of multisets over O×Tari). The strings li and ri

are not necessarily of the same length. The length of the shortest of the two strings li and

ri is denoted by

ki = min(|li|, |ri|).

At the beginning of every computation step in Π, for every membrane i, we construct

the set of rules it will apply in the following way:

1. non-deterministically choose two (random) permutations

σl : N+
|li| → N+

|li|, σr : N+
|ri| → N+

|ri|;

2. take the first ki elements out of σl(li) and σr(ri):

l′i = prefki(σl(li)), r′i = prefki(σr(ri));

3. construct the set of rules Ri to be applied in membrane i by combining the left- and

right-hand sides from l′i and r′i:

Ri = set(l′i → r′i).

In step (3), we combine the strings l′i and r′i using the operator → defined in Subsection 2.4

and then apply the operator set to obtain the corresponding set of rules from the string

representation.

After having constructed the set Ri for each membrane i, Π will proceed to applying the

obtained rules according to the usual maximally parallel semantics.

When computing the strings l′i and r′i, we apply two different permutations σl and σr to

li and ri, in order to ensure fairness for the participation of left-hand and right-hand sides

when |li| 6= |ri|. For example, if we only permuted ri in the case in which |li| > |ri|, the

left-hand sides located at positions k > |ri| in li would never be used.

We do not explicitly prohibit repetitions in li or in ri, but we avoid repeated rules by

constructing Ri using the set function.

12

Example 7. Consider the following P system with randomized pools of RHS: Π3 = ({a, b}, {b}, [1]1, a,H, 1),

with H =
(
(a), (aa)(b)

)
; (a) stands for the multiset containing an instance of a, while (aa)(b)

is the string denoting the two multisets (aa) and (b). The graphical representation of Π3 is

given in Figure 3.

a aa

b

a
1

Figure 3: The P system Π3 with randomized pools of RHS generating the number language {2n | n ∈ N}.

The pair H = (l, r) of strings of multisets is represented by listing the multisets of l and

r in two columns and by drawing a vertical line between the two columns.

Π3 follows exactly the same pattern as Π2 from Example 6: while the identity permutation

is applied to r, Π3 keeps doubling the symbols a in the skin. Once the multisets (aa) and

(b) are permuted in r, and thus the rule a → b is formed, all symbols a are rewritten into

symbols b in one step and Π3 must halt. Note that randomly taking the right-hand sides from

a given pool avoids having the extra dummy rule c→ b in Π2.

We will use the notation

OPn(rhsPools, coo)

to denote the family of P systems with randomized pools of RHS, with at most n membranes,

with cooperative rules. To denote the family of such P systems with non-cooperative rules,

we replace coo by ncoo. To denote the family of languages of multisets generated by these P

systems, we prepend Ps to the notation, and to denote the family of the generated number

languages, we prepend N .

3.3. Variant 3: Individual Randomized RHS

In this variant of P systems, each rule is constructed from a left-hand side and a set of

possible right-hand sides.

13

A P system with individual randomized RHS is a construct

Π = (O, T, µ, w1, . . . , wn, P1, . . . Pn, ho),

where Pi is the set of productions associated with the membrane i and the other components

of the tuple are defined as in the classical model (Section 2.5).

A production is a pair u → R, where u ∈ O◦ is the left-hand side and R ⊆ O◦ is a

finite set of right-hand sides. The right-hand sides in R may have target indications, i.e.,

for a production in membrane i, we may consider R ⊆ (O × Tari)◦. At the beginning of

each computation step, for every membrane i, for each production u → R ∈ Ri, Π will

non-deterministically (randomly) pick a right-hand side v from R and will construct the

rule u→ v (this happens once per production). Π will then apply the rules thus constructed

according to the maximally parallel semantics.

Example 8. Generating the language of the powers of two is the easiest compared with

Variants 1 and 2. Indeed, consider the P system with individual randomized RHS Π4 =

({a, b}, {b}, [1]1, a, P, 1) with only one production: P = {a→ {aa, b})}. Its graphical repre-

sentation is given in Figure 4.

a→ {aa, b}

a
1

Figure 4: The P system Π4 with individual randomized RHS generating the number language {2n | n ∈ N}.

Π4 works exactly like Π2 and Π3 from Examples 6 and 7: it doubles the number of symbols

a and halts by rewriting them to b in the last step.

We will use the notation

OPn(rndRhs, coo)

to denote the family of P systems with individual randomized RHS, with at most n mem-

branes, with cooperative rules. To denote the family of such P systems with non-cooperative

rules, we replace coo by ncoo. To denote the family of languages of multisets generated by

14

these P systems, we prepend Ps to the notation, and to denote the family of the generated

number languages, we prepend N .

We will sometimes want to set an upper bound k on the number of right-hand sides per

production. To refer to the family of P systems with individual randomized RHS with such

an upper bound, we will replace rndRhs by rndRhsk in the notation above.

3.4. Halting with Randomized RHS

The conventional (total) halting condition for P systems can be naturally lifted to ran-

domized RHS: a P system Π with randomized RHS (Variant 1, 2, or 3) halts on a config-

uration C if, however it permutes rule right-hand sides in Variant 1, or however it builds

rules out of the available rule sides in Variants 2 and 3, no rule can be applied in C, in any

membrane.

Note that, for Variants 1 and 3, the permutations chosen do not affect the applicability

of rules, because applicability only depends on left-hand sides, which are always the same

in any membrane. The situation is different for Variant 2, because the number of available

left-hand sides in a membrane of Π may be bigger than the number of available right-hand

sides. Therefore, if Π is a P system with randomized pools of RHS, the way rule sides are

permuted may affect the number of rules applicable in a given configuration. This is why,

for Π to halt on C, we require no rule to be applicable for any permutation.

In this paper, we will mainly consider P systems with randomized pools of RHS in which,

in every membrane, there are at least as many right-hand sides as there are left-hand sides.

To refer to P systems with this restriction, we will use the notation rhsPools′. In these

systems, the problem with the applicability of rules as described above can be avoided.

3.5. Equivalence Between Variants 1 and 2

Before discussing the computational power of the P systems with randomized RHS in

general, we will briefly point out a strong relationship between P systems with random RHS

exchange and P systems with randomized pools of RHS, with the restriction that every

membrane contains at least as many right-hand sides as it has left-hand sides, i.e., for P

systems with randomized RHS of type rhsPools′.

15

Theorem 1. For any k ∈ {coo, ncoo}, the following holds:

PsOPn(rhsExchange, k) = PsOPn(rhsPools′, k).

Proof. Any membrane with random RHS exchange trivially can be transformed into a

membrane with randomized pools of RHS by listing the left-hand sides of the rules in the

pool of LHS and the right-hand sides of the rules in the pool of RHS.

Conversely, consider a membrane i with randomized pools of RHS, with the string li of

LHS and the string ri of RHS, |li| ≤ |ri|. We can transform it into a membrane with random

RHS exchange as follows. For every LHS u from li, pick (and remove) an RHS v from ri,

and construct the rule u→ v. According to our supposition, we will exhaust the LHS before

(or at the same time as) the RHS. For every RHS v′ which is left, we add a new (dummy)

symbol z′ to the alphabet, and add the rule z′ → v′. Since the symbol z′ is new and does

not appear in any RHS, it will never be produced and the rule z′ → v′ will essentially serve

as a stash for the RHS v′. �

3.6. Flattening

The folklore flattening construction (see [14] for several examples as well as [10] for a

general construction) is quite directly applicable to P systems with individual randomized

RHS.

Proposition 2 (flattening). For any k ∈ {coo, ncoo}, the following is true:

PsOP1(rndRhs, k) = PsOPn(rndRhs, k).

Proof. [sketch] Since in the case of individual randomized RHS, randomization has per

rule granularity (whereas in the other two variants randomization occurs at the level of

membranes), we can simulate multiple membranes by attaching membrane labels to symbols.

For example, a production ab → {cd, f} in membrane h becomes ahbh → {chdh, fh}, while

the send-in production a→ {(b, ini), (b, inj)} becomes ah → {bi, bj}. �

On the other hand, for Variants 1 and 2 similar results cannot be proved in such a way,

a situation which happens very seldom in the area of P systems, especially in the case of

16

variants of the standard model. Yet intuitively, it is easy to understand why this happens, as

in both Variants 1 and 2 the right-hand sides in just one membrane can randomly be chosen

for any left-hand side, whereas different membranes can separate the possible combinations

of left-hand sides and right-hand sides of rules. A formal proof showing that flattening is

impossible for the types rhsExchange and rhsPools′ will be given in the succeeding section

by constructing a suitable example.

4. Computational Power of Randomized RHS

In this section, we look into the computational power of the three different versions of P

systems with randomized right-hand sides. We first shortly consider the case of cooperative

rules and then focus on the case of non-cooperative rules.

4.1. Cooperative Rules

The following result concerning the relationship between P systems with individual ran-

domized RHS and conventional P systems holds for both cooperative and non-cooperative

rules:

Proposition 3. For any n ∈ N+ and α ∈ {ncoo, coo}, PsOPn(rndRhs, α) ⊇ PsOPn(α).

Proof. Any conventional P system can be trivially seen as a P system with individual

randomized RHS in which every production has exactly one right-hand side. �

Now, the computational completeness of cooperative P systems trivially implies the com-

putational completeness of P systems with individual randomized RHS.

Corollary 4. For any n ∈ N+, PsOPn(rndRhs, coo) = PsRE.

4.2. Non-cooperative Rules

First we mention an upper bound for the families PsOPn(ρ, ncoo), for any variant ρ ∈

{rhsExchange, rhsPools′, rndRhs}:

17

Proposition 5. For any n ∈ N+ and ρ ∈ {rhsExchange, rhsPools′, rndRhs},

PsOPn(ρ, ncoo) ⊆ PsET0L.

Proof. No matter how the rule sets are constructed in the three different variants, we

always get a finite set of different sets of rules—tables—corresponding to tables in ET0L-

systems, which can also mimic the contents of different membranes in the usual way by

using symbols marked with the corresponding membrane label.

�

Next we show one of the central results of this paper: randomized rule right-hand sides

allow for generating non-semilinear languages already in the non-cooperative case.

Theorem 6. The following is true for ρ ∈ {rhsExchange, rhsPools′, rndRhs}:

{2m | m ∈ N} ∈ NOPn(ρ, ncoo) \NOPn(ncoo).

Proof. The statement follows (for n ≥ 1) from the constructions given in Examples 6,

7, and 8 and from the well-known fact that non-cooperative P systems operating under

the total halting condition cannot generate non-semilinear number languages (for example,

see [14]). �

This result is somewhat surprising at a first glance, but becomes less so when one re-

marks that the constructions from all three examples only effectively use one rule to do the

multiplication, which is non-deterministically changed to a “halting” rule. Since there is

only one rule acting at any time, randomized right-hand sides allow for clearly delimiting

different derivation phases.

It turns out that this approach of synchronization by randomization can be exploited to

generate even more complex non-semilinear languages.

Theorem 7. Given a fixed subset of natural factors {f1, . . . , fk} ⊆ N, the following is true

for any ρ ∈ {rhsExchange, rhsPools′, rndRhs}:

L = {fn1
1 · . . . · f

nk
k | n1, . . . , nk ∈ N} ∈ NOP1(ρ, ncoo).

18

Proof.

First consider the P system with randomized pools of RHS Π5 = ({a, b}, {b}, [1]1, a,H, 1)

with H = (l, r), l = (a) and r =
(
af1
)
. . .
(
afk
) (
b
)
. This P system is graphically represented

in Figure 5.

a af1

...

afk

b

a
1

Figure 5: The P system Π5 with randomized pools of RHS generating the number language {fn1
1 · . . . · f

nk

k |

n1, . . . , nk ∈ N}.

Similarly to the P systems from Examples 6, 7, and 8, Π5 halts by choosing to pick the

right-hand side b and constructing the rule a → b. If Π5 picks a different right-hand side,

it will multiply the contents of the skin membrane (membrane 1) by one of the factors fi,

1 ≤ i ≤ k. This proves that L ∈ NOP1(rhsPools′, ncoo), and, according to Theorem 1,

L ∈ NOP1(rhsExchange, ncoo) as well: take the P system with the rules {a → af1 , z2 →

af2 , . . . , zk → afk , zk+1 → b} (the rules with zj in their left-hand sides are dummy rules).

To show that L ∈ NOP1(rndRhs, ncoo), just construct a P system with the only produc-

tion a→ {af1 , . . . , afk , b}. �

Therefore, randomizing the right-hand sides of rules in non-cooperative P systems allows

for generating non-semilinear languages which cannot be generated without randomization.

A natural question to ask is whether randomizing the RHS leads to a strict increase in

the computational power. The answer is trivially positive for P systems with individual

randomized RHS (Variant 3).

Proposition 8. For any n ∈ N+, PsOPn(rndRhs, ncoo)) PsOPn(ncoo).

Proof. The inclusion follows from Proposition 3, as any conventional P system can be

19

trivially seen as a P system with individual randomized RHS in which every production has

exactly one right-hand side. Theorem 7 proves the strictness of the inclusion. �

On the other hand, the other two variants of randomizing right-hand sides—random

RHS exchange (Variant 1) and randomized pools of RHS (Variant 2)—actually prevent one-

membrane P systems with non-cooperative rules from generating some semilinear languages,

which result also shows that flattening is not possible for these two variants.

In what follows, we will use the expression “only one rule is applied” to refer to the fact

that only one given rule u → v is applied in a certain configuration, possibly in multiple

copies. Dually, by saying “at least two rules are applied”, we mean that at least two different

rules, u→ v and u′ → v′, are applied, possibly in multiple copies each.

Theorem 9. For ρ ∈ {rhsExchange, rhsPools′}, the following holds:

Lab = {an | n ∈ N} ∪ {bn | n ∈ N} /∈ PsOP1(ρ, ncoo).

Proof. Consider a P system Π with randomized RHS of the variant given by ρ and with

non-cooperative rules. We immediately remark that no left-hand side in Π may be a or b,

because in this case Π will never be able to halt with its only (skin) membrane containing

either the multiset an or bn. Furthermore, any RHS of Π contains combinations of symbols

a, b, or LHS symbols. Indeed, if an RHS contained a symbol not belonging to these three

classes, instances of this symbol would pollute the halting configuration. Finally, Π contains

no RHS v such that a ∈ v and b ∈ v. If Π did contain such an RHS, then any computation

could be hijacked to produce a mixture of symbols a and b.

With these remarks in mind, the statement of the theorem follows from the contradicting

Lemmas 10 and 11, which are shown immediately after this proof. �

Lemma 10. Take a Π ∈ OP1(ρ, ncoo), ρ ∈ {rhsExchange, rhsPools′}, such that it generates

the number language Ps(Π) = Lab. Then it must have a computation in which more than

one rule is applied (two different left-hand sides are employed) in at least one step.

Proof. Suppose that Π applies exactly one rule in every step of every computation. We

make the following two remarks:

20

1. Since the words in Lab are of unbounded length, Π must have an LHS t and an RHS v

such that t ∈ v, otherwise all computations of Π would have one step and would only

produce words of bounded length.

2. Every such RHS v must contain at most one kind of LHS, i.e., if t1 and t2 are two LHS

of Π then t1 ∈ v and t2 ∈ v implies t1 = t2. If this were not the case, after using v, Π

would have to apply two different rules (assuming that Π has at least as many RHS

as LHS).

According to these observations, as well as to those from the proof of Theorem 9, any

RHS v of Π is the of the form v = αβ, where α ∈ {ak, bk | k ∈ N}, β ∈ {tk | k ∈ N}, and

t is an LHS of Π. Note that both α and β may be empty. According to observation (1), Π

must have at least an RHS for which β 6= λ and there exists such an RHS which must be

applied an unbounded number of times.

In what follows, we will separately treat the cases in which Π contains or does not contain

mixed RHS, i.e., RHS for which both α 6= λ and β 6= λ.

No mixed RHS:. Suppose that any RHS of Π which contains a left-hand side is of the form

tk2. Then, according to our previous observations on the possible forms of the RHS of Π, all

RHS containing a are of the form ai and all RHS containing b are of the form bj. According

to the remarks from the proof of Theorem 9, a and b must not be LHS of Π. Therefore, in

any computation of Π, all of a’s and b’s are produced in the last step. But then, the number

of terminal symbols Π produces in a computation can be calculated as a product of the sizes

of the RHS of the rules it has applied, which implies that there exists such a p ∈ N such

that ap /∈ Ps(Π) and therefore Ps(Π) 6= Lab. (p may be picked to be the smallest prime

number greater than the length of the longest RHS of Π.)

Mixed RHS:. It follows from the previous paragraph that, in order to generate the number

language Lab, Π should contain and apply at least one RHS of the form aitk11 and at least

one RHS of the form bjtk22 . Take a computation C of Π producing a and applying the rule

t → aitk11 at a certain step. Instead of this rule, apply t → bjtk22 , and, in the following

21

step, the rule t2 → aitk11 . (We can do so because Π is allowed to pick any permutation of

RHS.) Now, Π may continue applying the same rules as in C and eventually halt with a

configuration containing both a and b. This implies that Ps(Π) 6= Lab.

It follows from our reasoning that, if Π applies exactly one rule in any step of any

computation, it cannot produce Lab, which proves the lemma. �

Lemma 11. Take a Π ∈ OP1(ρ, ncoo), ρ ∈ {rhsExchange, rhsPools′}, such that it generates

the number language Ps(Π) = Lab. Then, in every computation of Π, exactly one rule is

applied (one left-hand side is employed) in every step.

Proof. Suppose that, in every computation of Π, there exists a step at which at least

two different rules are applied. This immediately implies that Π has no RHS of the form

ai or bj, for i, j ≥ 0. Indeed, consider a computation producing the multiset an and a

step in it at which more than one rule is applied. Then Π can replace one of the RHS

introduced into the system at this step by bj and thus end up with a mix of a’s and b’s in

the halting configuration. Therefore, all RHS of Π containing a have the form aiva and all

RHS containing b have the form bjvb, where va and vb are non-empty multisets which only

contain LHS symbols (which are neither a nor b).

Now, consider a computation Ca of Π halting on the multiset an, and take the last step

sa at which at least two different rules are applied. We will consider three different cases,

based on whether a and an LHS t appear in the configurations of Ca after step sa.

Both a and t are present:. Suppose both a and an LHS t are present at step sa + 1 in

computation Ca. Then t is the only LHS present, because, by our hypothesis, only one rule

is applied (maybe in multiple instances) at step sa + 1. In this case, replace the rule applied

at step sa + 1 in Ca by t→ bjvb, where bjvb is a right-hand side of Π used in a computation

Cb producing b’s. From step sa + 2 on in the modified computation, just apply the same

rules as applied to the symbols of vb (and to those derived from vb) in Cb. The modified

computation will reach a halting configuration containing a mix of a’s and b’s.

22

Only a is present:. Suppose only a is present at step sa + 1 in computation Ca. Then all of

the RHS used at step sa are λ, because Π has no RHS of the form ai. Then, replace one

of these empty RHS by bjvb, where bjvb is a right-hand side of Π used in a computation Cb

producing b’s. As before, just apply the same rules as in Cb in the modified computation to

get a mix of a’s and b’s in the halting configuration.

No symbols a are present:. Suppose now that there are no instances of a present at step

sa + 1 in computation Ca. Recall that Π has no RHS of the form ai. Since we suppose that

sa is the last step at which at least two different rules are applied, this means that, in order

to produce any a’s in Ca, Π must have and use an RHS of the form aitk. This RHS contains

(multiple copies of) exactly one kind of LHS symbol: t.

Consider a computation Cb halting on the multiset bn. We pick n sufficiently big to ensure

that Cb uses at least two RHS containing b: bjvb and bj
′
v′b (possibly the same). Without

losing generality, we may suppose that these two RHS are either used at the same step in

Cb or that bj
′
v′b is used at a later step than bjvb. Then, replace bj

′
v′b by aitk, pick one of the

LHS symbols t′ ∈ v′b and apply the same rules to t (and to the symbols derived from t) in

the modified derivation as were applied to t′ (and to the symbols derived from t′) in Cb. The

modified derivation will therefore contain a mix of a’s and b’s in the halting configuration.

It follows from our reasoning that, if in any derivation of Π there is a step at which at

least two different rules are applied, then Ps(Π) 6= Lab, which proves the lemma. �

The previous two lemmas are contradicting each other, which means that there exist no

one-membrane P systems with random RHS exchange or with random pools of RHS which

generate the union language Lab = {an | n ∈ N} ∪ {bn | n ∈ N} (this is the statement of

Theorem 9). Together with Theorem 7, this leads us to the curious conclusion that one-

membrane non-cooperative P systems with random RHS exchange or with randomized pools

of RHS are incomparable in power to the conventional P systems.

23

Corollary 12. For ρ ∈ {rhsExchange, rhsPools′}, the following two statements are true:

PsOP1(ρ, ncoo) \ PsOP1(ncoo) 6= ∅, (1)

PsOP1(ncoo) \ PsOP1(ρ, ncoo) 6= ∅. (2)

Proof. Statement (1) follows from Theorem 7. Statement (2) follows from Theorem 9.

�

Theorem 9 also allows us to draw a negative conclusion as to the computational com-

pleteness of one-membrane non-cooperative P systems with random RHS exchange (Variant

1) and non-cooperative P systems with randomized pools of RHS (Variant 2).

Corollary 13. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

PsOP1(ρ, ncoo) (PsRE.

It turns out that allowing multiple membranes strictly increases the expressive power of

Variants 1 and 2 and allows for easily generating all semilinear languages, as shown by the

following theorem.

Theorem 14. For ρ ∈ {rhsExchange, rhsPools′}, the following holds:

N∗SLINN ∈ PsOP∗(ρ, ncoo).

Proof. Consider the following semilinear language of d-dimensional vectors L =
⋃

1≤i≤n〈Ai,bi〉N,

where Ai ⊂fin Nd and bi ∈ Nd. We construct the corresponding P system with randomised

pools of RHS:

Π6 =
(
O, T, [[]2 . . . []n+1]1, w0, λ, . . . , λ,H1, . . . Hn+1, 1

)
,

with the alphabet and the initial contents of the skin defined as follows:

• O = {a1, . . . , ad, t} contains a symbol per each dimension of the vectors, plus the

special symbol t,

• T = {a1, . . . , ad} contains exactly one symbol per dimension of vectors,

24

• w0 = t.

The pools of LHS and RHS H1 = (l1, r1) associated with the skin membrane 1 of Π6 are:

l1 = (t), r1 =
(
u1 (t, in2)

)
. . .
(
un (t, inn+1)

)
,

where the multiset ui corresponds to the offset bi: Ps(ui) = bi, 1 ≤ i ≤ n. Finally, the

pools of rule sides Hi+1 = (li+1, ri+1) associated with inner membrane i + 1 are defined as

follows:

li+1 = (t), ri+1 =
(
t (vi1, out)

)
. . .
(
t (viki , out)

) (
λ
)
,

where the multisets vij, 1 ≤ j ≤ ki, correspond to the vectors of the set Ai = {ai1, . . . , aiki}:

Ps(vij) = aij, 1 ≤ j ≤ ki. By abuse of notation, we write (w, out) to mean that every symbol

instance in w gets the target indication out. Π6 is graphically represented in Figure 6.

t t (v11, out)

. . .

t (v1k1 , out)

λ

λ
2

t t (vn1, out)

. . .

t (vnkn , out)

λ

λ
n+ 1

. . .

t u1 (t, in2)

. . .

un (t, inn+1)

t

1

Figure 6: The P system Π6 with randomized pools of RHS generating the semilinear language L =⋃
1≤i≤n〈Ai,bi〉N.

Π6 starts by non-deterministically building one of the rules t → ui (t, ini+1) in the skin

membrane. An application of this rule adds the multiset corresponding to the offset bi to

the skin membrane and puts t into inner membrane i+ 1. In the following steps only rules

in membrane i + 1 may become applicable. In this membrane, Π6 may build rules of the

form t → t (vij, out), 1 ≤ j ≤ ki, which will sustain t while also sending the multiset vij

corresponding to the vector aij ∈ Ai out into the skin. Alternatively, Π6 may choose to

build the rule t → λ, an application of which will erase t and halt the system. In such

a computation, Π6 generates the multiset language corresponding to 〈Ai,bi〉N. Since Π6

25

can choose to send t into any one of its inner membranes in the first step and since the

computations of said membranes cannot interfere, we conclude that Ps(Π6) = L.

To complete the proof, we evoke Theorem 1 to show that there exists a P system with

random RHS exchange (Variant 1) generating the same language L.

This theorem allows us to draw a definitive conclusion about the impossibility of flatten-

ing for non-cooperative Variants 1 and 2, in contrast to Proposition 2 showing the opposite

result for Variant 3.

Corollary 15. For ρ ∈ {rhsExchange, rhsPools′} and any k ≥ 2, the following holds:

PsOP1(ρ, ncoo) (PsOPk(ρ, ncoo).

We conclude this section with two more observations regarding the computational power

of the Variants 1 and 2. We have seen that, with a single membrane and without cooperation,

such P systems cannot generate all semilinear languages; yet it turns out they can generate

all uniform semilinear languages.

Theorem 16. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

N∗SLINU
N ⊆ PsOP1(ρ, ncoo).

Proof. Consider two finite sets of d-dimensional vectors A,B ⊂fin Nd, A = {x1, . . . ,xn},

B = {y1 . . . ,ym}, and the uniform semilinear set 〈A,B〉N. We will now construct the

P system Π = (O, T, []1, w0, H, 1) with pools of randomized RHS in the following way:

• O = {a1, . . . , ad, t} contains a symbol per each dimension of the vectors, plus the

special symbol t,

• T = {a1, . . . , ad} contains exactly one symbol per dimension of vectors,

• w0 = t,

• H = (l, r), with l = (t) and r = (w′1t) . . . (w
′
nt) (v′1) . . . (v

′
m),

such that Ps(w′i) = xi, 1 ≤ i ≤ n, and Ps(v′j) = yj, 1 ≤ j ≤ m.

26

In every step, Π either chooses one of the RHS (w′it) which will enable it to reuse the left-

hand side symbol t in the following step, or it constructs a rule of the form t → v′j, which

erases the only instance of t and halts the system. Thus, Π performs arbitrary additions of

vectors xi ∈ A and then, in the last step of the computation, introduces one of the initial

offsets yj ∈ B. Therefore, Ps(Π) = 〈A,B〉N. The fact that we can construct such a P

system Π for any uniform semilinear set proves the statement of the theorem. �

Even though one-membranenon-cooperative P systems with random RHS exchange and

with randomized pools of RHS cannot generate all unions of linear languages (Theorem 9),

they can still generate some limited unions of exponential languages.

Theorem 17. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

L′ab =
{
a2

n | n ∈ N
}
∪
{
b2

n | n ∈ N
}
∈ PsOP1(ρ, ncoo).

Proof. A P system Π7 generating the language L′ab can be constructed as follows: Π7 =

({a, b, t}, {a, b}, []
1
, t, H, 1), where H = (l, r), l = (t) and r = (tt)(a)(b). A graphical

representation of Π7 is given in Figure 7.

t tt

a

b

t
1

Figure 7: The P system Π7 with randomized pools of RHS generating the union language L′ab ={
a2

n | n ∈ N
}
∪
{
b2

n | n ∈ N
}

Π7 works by sequentially multiplying the number of symbols t by 2, until it decides to

rewrite every instance of t to a or every instance of t to b. Therefore, Ps(Π7) = L′ab. Accord-

ing to Proposition 1, there also exists a P system with random RHS exchange generating

L′ab, which completes the proof. �

The construction from the previous proof can be clearly extended to any number of

distinct terminal symbols and to any function of the number of steps f(n) given by a

27

product of exponentials (like in Theorem 7). That is, one can construct a P systems with

random RHS exchange or with randomized pools of RHS generating the union language{
a
f(n)
i

∣∣∣ n ∈ N, 1 ≤ i ≤ m
}

, for some fixed number m. Note, however, that we cannot use

the same approach to generate unions of two different exponential functions. We conjecture

that generating such unions is entirely impossible with Variants 1 and 2 of randomized RHS.

5. Variant 3: A Binary Normal Form

In this section we present a binary normal form for P systems with individual randomized

RHS: we prove that, for any such P system, there exists an equivalent one in which every

production has at most two right-hand sides.

We now introduce a (rather common) construction: symbols with finite timers attached

to them. Given an alphabet O, we define the following two functions:

timerso(t, O) =
t⋃
i=1

{〈a, i〉 | a ∈ O} ,

timersr(t) = {〈a, i〉 → 〈a, i− 1〉 | 2 ≤ i ≤ t}

∪ {〈a, 1〉 → a | a ∈ O}.

Informally, timerso(t, O) attaches a t-valued timer to every symbol in O, while timersr(t)

contains the rules making this timer work.

We also define the following function setting a timer to the value t > 0 for each symbol

in a given string a1 . . . an:

wait(t, a1 . . . an) = 〈a1, t〉 . . . 〈an, t〉.

For t = 0, wait is defined to be the identity function: wait(0, a1 . . . an) = a1 . . . an.

We can now show that, for any P system with individual randomized RHS there exists

an equivalent one having at most two RHS per production.

Theorem 18 (normal form). For any Π ∈ OPn(rndRhs, k), k ∈ {coo, ncoo}, there exists

a Π′ ∈ OPn(rndRhs2, k) such that Ps(Π′) = Ps(Π).

28

Proof. Consider the following P system with individual randomized RHS Π = (O, T, µ, w1, . . . , wn, P1, . . . Pn, ho)

that has at least one production with more than two RHS. We will construct another P sys-

tem with individual randomized RHS Π′ = (O′, T, µ, w1, . . . , wn, P
′
1, . . . P

′
n, ho) such that

Ps(Π′) = Ps(Π). The new alphabet will be defined as

O′ = O ∪ timerso(t, O) ∪ {p1, . . . , pt | p ∈ Vp},

where t + 2 is the number of right-hand sides in the productions of Π having the most of

them, and Vp is an alphabet containing a symbol for each of the individual productions of

Π. (If there are two identical productions in Π which belong to two different membranes,

Vp will contain one different symbol for each of these two productions.)

For every membrane 1 ≤ i ≤ n, the new set of productions P ′i is constructed by applying

the following procedure to every production p ∈ Pi:

• If p has the form u→ {v}, we add the production u→ {wait(t, v)} to P ′i .

• If p has the form u→ {v1, v2}, we add u→ {wait(t, v1), wait(t, v2)} to P ′i .

• If p has the form u → {v1, . . . , vk}, with k ≥ 3, we add the following productions to

Pi: {
u→ {wait(t, v1), p1}

}
∪
{
pj → {wait(t− j, vj+1), pj+1} | 1 ≤ j < k − 2

}
∪
{
pk−2 → {wait(t− k + 2, vk−1), wait(t− k + 2, vk)}

}
.

These productions are graphically represented in Figure 8, in which arrows go from

LHS to the associated RHS.

u p1

wait(t, v1)

. . . pj pj+1

wait(t− j, vj+1)

. . . pk−2 wait(t−k+2, vk)

wait(t − k +

2, vk−1)

Figure 8: Timers allow sequential choice between any number of right-hand sides.

29

Finally we add the rules from timersr(t), treated as one-RHS production, to every P ′i .

Instead of directly choosing between the right hand-sides of a production p : u →

{v1, . . . , vk} in one step, Π′ chooses between v1 and delaying the choice to the next step, by

producing p1. This choice between settling on an RHS or continuing the enumeration in the

next step may be kept on until k − 2 RHS have been discarded. If pk−2 is reached, Π′ must

choose one of the two remaining RHS.

Thus, Π′ evolves in “macro-steps”, each consisting of exactly t steps. In the first step of

a “macro-step”, Π′ acts on the symbols from O, producing some symbols with timers and

delaying some of the choices by producing symbols pj. All symbols with timers wait exactly

until the t-th step of the “macro-step” to turn into the corresponding clean versions from

O. Since t + 2 is the number of RHS in the biggest production of Π, Π′ has the time to

enumerate all of the RHS of this production.

Since every delayed choice of Π′ is uniquely identified by a production-specific symbol

pj, and since only the productions from timersr(t) can act upon the symbols with timers in

Π′, the simulations of two different productions of Π cannot interfere. This concludes the

proof of the normal form. �

6. Tissue P Systems with Randomized Right-hand Sides of Rules

We now extend the idea of randomized right-hand sides of rules to tissue P systems,

where the underlying graph structure is an arbitrary graph structure and not a rooted tree

as in the case of hierarchical P systems. Moreover, we also might allow every cell to interact

with the environment in case the underlying variant of tissue P system allows/requires that,

yet in the following we will assume one of the n cells to figure as the environment, thus being

the only cell in which some elementary objects may appear infinitely often

Following the general notation as described for networks of cells in [11], we define a tissue

P system as follows:

A tissue P system is a construct

Π = (n,O, T, w1, . . . , wn, R, hi, ho),

30

where n is the number of cell, labeled by 1 to n, O is the alphabet of objects, T ⊆ O is the

alphabet of terminal objects, wi are the multisets giving the initial contents of each cell i

(1 ≤ i ≤ n), R is the finite set of rules, and hi and ho are the labels of the input and the

output cells, respectively (1 ≤ hi ≤ n, 1 ≤ ho ≤ n). If e is the label of the environment,

then we may contain an infinite part. The rules in R are of the form

(u1, . . . , un)→ (v1, . . . , vn)

interpreted as follows: the multisets ui are replaced by the multisets vi, 1 ≤ i ≤ n. Such a

rule can also be written as follows:
n∏
i=1

(i, ui)→
n∏
i=1

(i, vi)

Special ingredients can be added to the rules, for example promoters Pi (which have to

be present in cell i) and/or inhibitors Qi (which must not be present in cell i), with Pi and

Qi being finite sets of multisets from O; then a rule

((u1, . . . , un)→ (v1, . . . , vn); (P1, . . . , Pn), (Q1, . . . , Qn))

is applicable to a configuration if and only if cell i contains all elements of Pi and no element

from Qi, 1 ≤ i ≤ n.

Now let m rules be given as

n∏
i=1

(i, u
(k)
i)→

n∏
i=1

(i, v
(k)
i), 1 ≤ k ≤ m.

According to the general definition of tissue P systems as given above, the rules are not

assigned to specific cells but to the whole tissue P system (although assigning rules to cells

is another interesting variant to be investigated in the future). For the rules we now have

several possibilities to interpret the randomization of the right-hand sides of rules:

Variant A This variant in the strictest way resembles the way randomization was defined

for hierarchical P systems:

For a rule
∏n

i=1(i, u
(k)
i)→

∏n
i=1(i, v

(k)
i), we simply take

∏n
i=1(i, v

(k)
i) as the right-hand

side of the rule and then define Variants 1, 2, and 3 as for hierarchical P systems.

31

Variant B For the Variants 1 and 2, the right-hand sides
∏n

i=1(i, v
(k)
i) of the m rules are

separated into the elements v
(k)
1 to v

(k)
n and the elements v

(k)
i for each cell i, 1 ≤ i ≤ n,

are randomized independently, i.e., we take the multisets

Mi = 〈v(k)i | 1 ≤ k ≤ m〉

as starting points for randomization and for constructing the rules by taking out one

element from Mi for each i, 1 ≤ i ≤ n, to construct the right-hand side of a rule.

Variant C As a special variant of Variant B, for randomization in Variants 1 and 2 we

only take those v
(k)
i for which v

(k)
i 6= λ, i.e., we now instead take the multisets

M ′
i = 〈v(k)i | v

(k)
i 6= λ, 1 ≤ k ≤ m〉 = 〈x ∈Mi | x 6= λ〉.

Moreover, we may consider two subvariants how to construct the new right-hand sides

of rules:

Variant C.1 If M ′
i is empty, then we cannot construct any randomized rule.

Variant C.2 If M ′
i is empty, then we take (i, λ) for every constructed randomized

rule.

We observe that for Variant 3, i.e., for individual randomized RHS, we only consider

Variant A. Therefore, for all three Variants 1 to 3 we will use the notation

OtPn(α,X)

to denote the family of tissue P systems with at most n cells using rules of type X with α

denoting the type of randomization according to Variants 1 to 3. To denote the family of

languages of multisets generated by these P systems, we prepend Ps to the notation, and

to denote the family of the generated number languages, we prepend N . For the Variants 1

and 2, we may also add an additional parameter β ∈ {B,C.1, C.2} (to indicate how to deal

with empty v
(k)
i) thus obtaining the notations OtPn(α, β,X) etc.

32

6.1. Equivalence Between Variants 1 and 2 for Variant A

For randomized pools of RHS, again we consider the restriction that there are at least as

many right-hand sides as it has left-hand sides for the rules to be constructed, i.e., the type

rhsPools′. Then again we obtain the equivalence between tissue P systems with random

RHS exchange and tissue P systems with randomized pools of RHS of type rhsPools′. The

proof follows the same lines as the proof of Theorem 1, now taking into account that we

only have to consider the whole system (or, if rules are assigned to cells, we simply replace

membrane by cell).

Proposition 19. For any n ∈ N+ and X ∈ {coo, ncoo}, the following holds:

PsOtPn(rhsExchange, X) = PsOtPn(rhsPools′, X).

7. Conclusions and Open Problems

In this article, we introduced and partially studied P systems with randomized rule right-

hand sides. This is a model of P systems with dynamic rules, in which the matching between

left-hand and right-hand sides is non-deterministically changed during the evolution. In each

step, such P systems first construct the rules from the available rule sides and then apply

them, in a maximally parallel way.

We defined three different randomization semantics: random RHS exchange (Variant 1),

randomized pools of RHS (Variant 2), and individual randomized RHS (Variant 3). We

studied the computational power of the three variants and showed that Variant 3 is quite

different in power from Variants 1 and 2. Indeed, P systems with individual randomized

RHS (Variant 3) appear as a strict extension of conventional P systems, while random RHS

exchange (Variant 1) and randomized pools of RHS (Variant 2) seem to increase the power

when only one LHS is used, but to decrease the power when more LHS are present. Finally,

we gave a binary normal form for P systems with individual randomized RHS (Variant 3).

7.1. Open Questions

The present work leaves open quite a number of open questions. We list the ones ap-

pearing important to us, in no particular order.

33

Full power of Variants 1 and 2:. Are cooperative, multi-membrane P systems with random

RHS exchange (Variant 1) or with randomized pools of RHS (Variant 2) computationally

complete? If not, what would be the upper bound on their power? In this article, we showed

that applying these two randomization semantics to the non-cooperative, one-membrane

case, yields a family of multiset languages incomparable with the family of semi-linear vec-

tor sets. How much more can be achieved with cooperativity? We conjecture that, even

with LHS containing more than one symbol, Variants 1 and 2 will not be computation-

ally complete. However, we expect that considering systems with multiple membranes may

actually bring a substantial boost in computational power, because, in both Variants 1

and 2, randomization happens over each single membrane, meaning that one might use a

rich membrane structure to finely control its effects.

Compare the variants:. How do the three variants of RHS randomization compare among

one another when applied to non-cooperative rules? We saw that, in all three cases, expo-

nential number languages can be generated. We also saw that individual randomized RHS

(Variant 3) produce a strict superset of the semi-linear languages (Proposition 8). Does

it imply that Variant 3 is strictly more powerful than Variants 1 and 2? We conjecture a

positive answer to this question.

Excess of LHS:. In the case of P systems with randomized pools of RHS (Variant 2), what

is the consequence of having more LHS available in a membrane than there are RHS? The

results in this paper concern a “restricted” version of Variant 2, in which we require that

LHS are never in excess. How strong is this restriction? Our conjecture is that allowing an

excess of LHS does not increase the computational power.

Applications to vulnerable systems:. As noted in the introduction to the present work, ran-

domized RHS can be seen as a representation of systems mutating in a toxic environment.

However, we did not give any concrete examples. It would be interesting to look up any

such concrete cases and to evaluate the relevance of this unconventional modeling approach.

34

7.2. Further Variants

Forbidding identical rules:. In any of the three variants, it may happen that identical rules

are constructed, in any membrane. In the previous chapters, in this case this rule was simply

taken into the set of rules. Yet we could also forbid such a situation to happen and in such

a case completely abandon the whole rule set. Another solution can be to take out all rules

having been constructed more than once from the constructed rule set.

The situation of getting identical rules can easily be avoided by avoiding identical RHS:

the right-hand sides of rules can be made different by adding suitable powers of a dummy

symbol d, which does not count for the final result (i.e., d is no terminal symbol). As d also

does not appear on the left-hand side of a rule, the computational power of any of the P

systems variant considered in this paper will not be changed by this changing of the set of

RHS available for constructing the set of rules.

Identical RHS in Variant 3:. In P systems with individual randomized RHS the compu-

tational power mainly arises from the possibility to specify different sets of RHS for the

left-hand sides of rules. What happens if the set R of RHS must be the same for all left-

hand sides?

References

[1] A. Alhazov, A note on P systems with activators, in: Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez,

F. Sancho-Caparrini (eds.), Second Brainstorming Week on Membrane Computing, Sevilla, Spain,

February 2-7 2004, 2004.

[2] A. Alhazov, R. Freund, S. Ivanov, M. Oswald, Observations on P systems with states, in: M. Gheorghe,

I. Petre, M. J. Pérez-Jiménez, G. Rozenberg, A. Salomaa (eds.), Multidisciplinary Creativity. Hommage

to Gheorghe Păun on His 65th Birthday, Spandugino, 2015.

[3] A. Alhazov, S. Ivanov, Yu. Rogozhin, Polymorphic P systems, in: M. Gheorghe, T. Hinze, Gh. Păun,

G. Rozenberg, A. Salomaa (eds.), Membrane Computing, vol. 6501 of Lecture Notes in Computer

Science, Springer, 2011, pp. 81–94.

[4] F. Arroyo, A. V. Baranda, J. Castellanos, Gh. Păun, Membrane computing: The power of (rule)

creation, Journal of Universal Computer Science 8 (2002) 369–381.

35

[5] I. Çapuni, P. Gács, A Turing machine resisting isolated bursts of faults, CoRR abs/1203.1335.

URL http://arxiv.org/abs/1203.1335

[6] M. Cavaliere, D. Genova, P systems with symport/antiport of rules, in: Gh. Păun, A. Riscos-Núñez,

A. Romero-Jiménez, F. Sancho-Caparrini (eds.), Second Brainstorming Week on Membrane Computing,

Sevilla, Spain, February 2–7 2004, 2004.

[7] M. Cavaliere, M. Ionescu, T.-O. Ishdorj, Inhibiting/de-inhibiting rules in P systems, in: Pre-proceedings

of the Fifth Workshop on Membrane Computing (WMC5), Milano, Italy, June 2004, 2004.

[8] R. Freund, Generalized P-Systems, in: G. Ciobanu, Gh. Păun (eds.), Fundamentals of Computation

Theory, 12th International Symposium, FCT ’99, Iaşi, Romania, August 30–September 3,1999, Pro-

ceedings, vol. 1684 of Lecture Notes in Computer Science, Springer, 1999.

[9] R. Freund, P systems working in the sequential mode on arrays and strings, in: C. Calude, E. Calude,

M. J. Dinneen (eds.), Developments in Language Theory, 8th International Conference, DLT 2004,

Auckland, New Zealand, December 13-17, 2004, Proceedings, vol. 3340 of Lecture Notes in Computer

Science, Springer, 2004.

URL https://doi.org/10.1007/978-3-540-30550-7_16

[10] R. Freund, A. Leporati, G. Mauri, A. E. Porreca, S. Verlan, Zandron, Flattening in (tissue) P systems,

in: A. Alhazov, S. Cojocaru, M. Gheorghe, Yu. Rogozhin, G. Rozenberg, A. Salomaa (eds.), Membrane

Computing, vol. 8340 of Lecture Notes in Computer Science, Springer, 2014, pp. 173–188.

[11] R. Freund, S. Verlan, A formal framework for static (tissue) p systems, in: G. Eleftherakis, P. Kefalas,

G. Păun, G. Rozenberg, A. Salomaa (eds.), Membrane Computing: 8th International Workshop, WMC

2007 Thessaloniki, Greece, June 25-28, 2007. Revised Selected and Invited Papers, Springer, 2007, pp.

271–284.

URL https://doi.org/10.1007/978-3-540-77312-2_17

[12] S. Ivanov, Polymorphic P systems with non-cooperative rules and no ingredients, in: M. Gheorghe,

G. Rozenberg, A. Salomaa, P. Sośık, C. Zandron (eds.), Membrane Computing - 15th International

Conference, CMC 2014, Prague, Czech Republic, August 20–22, 2014, Revised Selected Papers, vol.

8961 of Lecture Notes in Computer Science, Springer, 2014.

[13] Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences 61 (1998) 108–143.

[14] Gh. Păun, G. Rozenberg, A. Salomaa, The Oxford Handbook of Membrane Computing, Oxford Uni-

versity Press, Inc., New York, NY, USA, 2010.

[15] G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages, 3 volumes, Springer, New York,

NY, USA, 1997.

[16] Bulletin of the International Membrane Computing Society (IMCS), http://membranecomputing.net/

IMCSBulletin/index.php.

36

[17] The P Systems Website, http://ppage.psystems.eu/.

37

