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Abstract—This paper presents a Software Product Line (SPL)
extraction approach to handle legacy software systems running
on the Java Virtual Machine (JVM), for which the source code
is unavailable, and factor in all input programming languages
for the JVM. The approach extracts from the bytecode of a
collection of software variants created using the Clone-And-Own
approach a full SPL with its feature model. We provide a full
implementation and integration in the BUT4Reuse framework.
An early experiment was carried out on the ArgoUML case study
and preliminary results are discussed.

Index Terms—Software Product Line, Bytecode, Analysis

I. INTRODUCTION

Software Product Lines Engineering (SPLE) [1] defines
two phases: domain and application engineering [2]. Domain
engineering defines the scope of the SPL, and specifies
the commonality and variability among products using the
concepts of features and feature models [2]. A feature is a
prominent or distinctive characteristic, quality or user-visible
aspect of a software system or systems [3]. Feature models
(FM) are popular in SPLE to describe both variability and
commonalities in a family of product variants [4]. Figure 1
shows a feature model illustrating a simplified example of an
electronic shop. The E-Shop FM consists of a mandatory
feature Catalogue, two possible Payment methods from
which one or both could be selected, an alternative between
two Security levels, and an optional Search feature.

Adopting an SPL approach and designing SPL variability is
a major challenge for companies [5], [6]. Berger et al. showed
that around 50% of companies participating in industrial SPL
Engineering cannot adopt SPL proactively [7]. On the one
hand, the variability is discovered as customers’ needs emerge
over time; so, it is tough, if not impossible, to anticipate all the
variations from the beginning. On the other hand, companies
already have created product variants using opportunistic ad-
hoc reuse to quickly respond to different customers’ needs. As
a consequence, instead of adopting an SPL, many companies
clone an existing product and modify it to fit new customer
needs [8]. This approach, called Clone-and-Own, is popular
because it is faster and more efficient to start with an already
developed and tested set of artifacts [8].

The Clone-and-Own approach incurs a severe drawback
which is the high cost of managing and maintaining many

Fig. 1. E-Shop feature model

variants at the same time [7]. For instance, when a bug is
identified and fixed in one variant, the question of propagating
the bug fix onto all existing variants becomes very difficult
and error-prone when the number of variants increases. One
solution to deal with this problem is to migrate these existing
variants into an SPL.

Although the migration is a well-known challenge [9],
several approaches, referred to as extractive or bottom-up
approaches, have been proposed for source code artifacts [10],
[11] or models [12]. In this work, we focus on the Java Virtual
Machine Bytecode [13] and propose an end-to-end solution for
dealing with what is referred to in an SPL extractive approach
as Feature identification. Feature identification consists in
analyzing and comparing the existing product variants to
identify commonality and variability in terms of features.

Instead of considering the source code of the product
variants, we analyze the bytecode to identify features. This
approach allows a generic end-to-end solution that can: i)
Support any programming language based on the bytecode
(e.g., Java, Scala, Groovy, Kotlin, etc.); ii) Perform feature
identification on legacy systems where the source code is not
available. We implemented our solution inside the BUT4Reuse
tool [14].

This paper thus makes the following contributions: i) an
original approach for commonality and variability identifica-
tion between the bytecode of a set of product variants; ii) a
full integration of the approach with an existing framework
for SPL extraction, BUT4Reuse. This solution reuses a set of
techniques for feature identification and location, reusable as-
set construction, variability model synthesis, and visualization;
iii) an assessment of the proposed approach with one real case
study.
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Fig. 2. ASM Model

The paper is structured as follows: Section II presents the
background concepts and states our motivations. Section III
details the technical workflow of our solution. Section IV
reports on the evaluation of the solution with an industrial case
study. Section V reports on related work. Finally, Section VI
sketches the perspectives to this work.

II. BACKGROUND AND MOTIVATIONS

A. Software Product Line Extraction with BUT4Reuse

In previous work, we introduced BUT4Reuse (Bottum-Up-
Technologies for Reuse) [15], [16], a generic and extensible
framework for extractive SPL adoption. It is generic by
enabling its use in different scenarios with product variants
of different software artifact types (e.g., source code in Java,
C, models, requirements, or plugin-based architectures). It is
extensible by combining different concrete techniques for the
relevant activities of extractive SPL adoption (i.e., feature
identification, feature location, mining feature constraints,
extraction of reusable assets, feature model synthesis and
visualizations). Several validation studies of BUT4Reuse using
different software artifact types or different extensions have
already been published [12], [17].

BUT4Reuse relies on adapters to support different artifact
types. These adapters are the main extensible, pluggable
components of the framework. An adapter is responsible for
decomposing each artifact type into the constituting, distinct
and atomic elements. It also defines how a set of elements
should be constructed to create a reusable asset. Designing an
adapter for a given artifact type requires three main tasks. The
first task is to identify the elements that compose an artifact,
at a selected granularity level. For the same artifact type, we
can select from coarse to fine granularity (e.g., package level
versus statement level for source code). The second task is to
define a similarity metric between any pair of elements. An
element comparing its similarity with another element returns
as output a value ranging from zero (completely different)
to one (identical). The last task is to identify structural
dependencies for the elements. When the artifact type is
structured, the elements will have containment relations. In
the case of source code, program dependence graphs usually
capture this information.

B. Bytecode as a universal JVM representation

The Java Virtual Machine (JVM) [13] is a widely spread
implementation of abstract computing machines [18], orig-
inally designed to interpret programs written in Java. Its
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Fig. 3. Our approach

defining feature as a platform (hardware / operating system)-
independent execution environment comes from its instruction
set, the Java Bytecode. Programs in several popular program-
ming languages can compile to the Java Bytecode (e.g., Java,
Kotlin, Scala, etc.).

Many libraries, such as ASM [19], provide an abstraction
for manipulating the bytecode. ASM allows to handle the
elementary instructions described above from a high-level
model. Figure 2 illustrates a partial view of this model.
It follows an object orientation, presenting concepts such
as ClassNode that abstracts the bytecode to represent a
class. Each ClassNode is composed of MethodNode and
FieldNode, that abstract, respectively, methods and fields.
The AbstractInsNode element abstracts the bytecode
related to the statements inside a method.

III. SOFTWARE PRODUCT LINE EXTRACTION FROM
BYTECODE VARIANTS

Figure 3 illustrates our approach, which runs in four steps.
a) Decomposition in Atomic Bytecode Elements and

identification of dependencies: This step takes as input the
bytecode of a collection of system variants created using the
Clone-And-Own approach. It decomposes each variant as a
set of Atomic Bytecode Elements (ABEs). ABEs correspond
to the main elements in the ASM model partially presented in
Fig. 2. In addition, dependencies between elements are inferred
at this stage. To implement this step, our approach uses the
different visitors proposed by ASM to go through the bytecode
and identify the ABEs.

b) Block Identification: We reuse our algorithm, called
Interdependent Elements [20], which automatically identifies
sets of ABEs that correspond to the distinguishable features
from the model variants. We named Blocks these sets of
ABEs. The detailed description of this algorithm was presented
in [20] and [12]. We only underline in the following the impor-
tant principles. The algorithm computes the interdependence
among ABEs. Given a set of bytecode variants BVs , two
ABEs abe1 and abe2 (of models from BVs) are interdependent
if the two following conditions are fulfilled:

1) ∃B∈BVs abe1∈B ∧ abe2 ∈ B;
2) ∀B∈BVs abe1∈B ⇔ abe2∈B.



A Block is thus a set of interdependent ABEs that are
distinguishable in the bytecode variants.

During this step, we also extract requires and exclusion-
mutual dependencies between blocks based on the ABEs
dependencies. This extraction is defined as follows:

1) a block B1 requires another block B2 iff ∃abe1 ∈B1
and ∃abe2∈B2 and abe1 requires abe2;

2) a block B1 is in mutual-exclusion dependency with and
block B2 iff ∃abe1∈B1 and ∃abe2∈B2 and abe1 is in
mutual-exclusion dependency with abe2.

c) Feature Identification: This step is a semi-automatic
process where domain experts manually review the elements
from the identified blocks to map them with the functionalities
(i.e., features) of the system. BUT4Reuse integrates VariCloud
[21], a technique that analyzes the elements inside each block
and extracts words that help domain expert to identify features.
VariCloud uses information retrieval techniques, such as the
IF-TDF (frequency-inverse document frequency), to analyze
the text describing elements inside blocks. The descriptions
used by BUT4Reuse to build word clouds are thus provided
by the specific adapter. For our bytecode adapter, words
correspond to the names of classes, fields, and methods.

d) Feature Model Synthesis: Once features are identi-
fied, the last step is to synthesize the feature model. Feature
model synthesis represents itself an independent research
field [22]. BUT4Reuse integrated many simple techniques
such as the alternatives before hierarchy. This technique is
based on calculating first the alternative constructions from the
mutual exclusion constraints, and then creating the hierarchy
using the requires constraints. Constraints not included in the
hierarchy are added as cross-tree constraints.

IV. EVALUATION

ArgoUML is an open source tool for modeling using
UML diagrams. Variants for this tool originate from its Java
codebase by removing specific features [23]. These features
are mainly related to the tool support for the edition of
different kinds of UML diagrams. We considered the bytecode
of the original ArgoUML and the seven variants related to
diagram edition support (8 artifacts in total). Table I shows
these variants along with their the number of lines and
atomic bytecode elements. As an example, the first row,
ActivityDisabled, means that this tool variant contains
all the features related to UML diagrams edition except for
Activity diagrams.

Figure 4 shows the distribution of the identified blocks
(colored stripes) over the artifacts (vertical bars) of the eight
variants of ArgoUML. Block 0 (first stripe in all variants) is
the most common one, representing the core of the ArgoUML
product line. Figure 5 shows the distribution of the identified
blocks over the eight ArgoUML variants. Again Block 0
is present in all variants, while Block 4 is present in all
variants except CollabDisabled, which corresponds to
the ArgoUML variants without the support of Collaboration
diagrams.

TABLE I
ARGOUML VARIANTS: NUMBER OF LINES OF CODE AND INSTRUCTIONS

IN THE BYTECODE.

LOC ABEs
ActivityDisabled 118,066 24282
CollabDisabled 118,769 26085
DeployDisabled 117,201 25912
Loggingdisabled 118,189 26010
Original 120,348 26289
SequenceDisabled 114,969 25570
StateDisabled 116,431 25687
UsecaseDisabled 117,636 25906

Fig. 4. Bars represent the artifacts of the eight variants, stripes the distribution
of blocks over the artifacts

Figure 6 shows the VariClouds for Block 3 (above the
black line) and Block 4 (below the black line). Their contents
reveal that Block 3 (fourth stripe in Fig. 4) implements the
support of Sequence diagrams, while Block 4 (fifth stripe in
Fig. 4) implements the support of Collaboration diagrams. This
confirms why Block 4 is missing in the CollabDisabled
variant, as shown in Fig. 5.

Table II shows the identified blocks and their respec-
tive sizes in terms of ABEs. ArgoUML variants’ specific
implementing features can be easily identified in the first
seven blocks, by manually inspecting their corresponding
VariClouds, as illustrated in Fig. 6. The other remaining blocks
contain fewer ABEs. After analysis of these remaining blocks,
we identified them as blocks implementing the concept named
feature interaction. Indeed, to implement any pair of two
distinct features, it is common to add some implementation
elements to glue these features.

The outcomes of our experiment are available online1, to
allow the reader to reproduce the same experiment.

V. RELATED WORK

The JVM Bytecode has been subject to an important body
of research investigations for a wide range of purposes, such
as bug, vulnerability, malware detection, program verification
and automatic testing, code obfuscation, and so on. The closest
research line in our context studies code clone detection. Code
clones may share a syntactic or functional similarity. Syntactic
similarity arises with similar code patterns. There are three
types of clones in this category. Type-1 clones are exact copies,
with perhaps differences in whitespace, comments, or layout.
In Type-2 clones, variables or functions have been renamed,

1 https://pages.lip6.fr/Tewfik.Ziadi/iceccs18.html
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Fig. 5. Distribution of identified blocks over the ArgoUML variants

Fig. 6. Words extracted for Blocks 3 and Block 4

TABLE II
NUMBER OF ATOMIC BYTECODE ELEMENTS PER BLOCK AND IDENTIFIED

FEATURES IN THE ARGOUML CASE STUDY

ABEs Identified feature
Block 0 21310 Core
Block 1 243 Cognitive
Block 2 376 Use cases
Block 3 688 Sequence
Block 4 195 Collaboration
Block 5 588 State
Block 6 370 Deployment
Block 7 2440 Activity

or types have changed. Type-3 clones have added or deleted
statements. Type-3 clones are also termed gapped clones [24].
Functional similarity refers to semantic similarity in Type-4
clones, regardless of syntactic code patterns.

Approaches in code clone detection generally fall into
six categories according to the underlying technique:
text-based [25], token-based [26], tree-based [27], graph-
based [28], metrics-based [29], and hybrid [30]. Some code
clone detection techniques have considered the bytecode as
the primary artifact [31]–[33], to detect Type 3 and 4 clones.

The Clown-and-Own paradigm in SPLE yields clones that
span across the four types. In Type-1, product variants
may share the same code, except for whitespace, comments,
and layout. This type of clones is rare in the context of
meaningful SPLE. In Type-2, some product variants might
have renamed, even changed the types of some variables
and functions. In Type-3, some product variants might have
enhanced, updated, added, or removed some features of the
product line according to the products development strategy
and customers’ needs. Finally, in Type-4, some algorithms
might have been redesigned (e.g., changing or tuning a sorting

algorithm for performance reasons), or the developers might
have switched to other programming languages to craft the
same features.

We would classify our solution as targeting all types of
clones. However, it bears some notable differences with other
code clone detection approaches. Firstly, it is semi-automated,
and each instance of extraction is domain-specific: the devel-
oper is always in the loop since s/he writes the corresponding
adapter in the BUT4Reuse framework. Secondly, our solution
is more generic and flexible, as it allows the product line
engineer to adapt the extraction procedure to the semantics
of similarity s/he considers. We believe this flexibility is
relevant in many industrial contexts. We experimented an
extraction approach where statements in methods’ bodies were
considered (not reported in this paper) and another where
they were discarded. In terms of granularity in extracting
feature-implementing blocks, we consider methods and classes
(thus identified thanks to their signature) as first-class units
of decomposition. Finally, there is no single tool that can
comprehensively handle all four types of clones, the costs
of complexity and scalability just being too high. Hence the
flexibility of our approach makes it amenable to business
context-focused applications, without paying a costly upfront
investment.

VI. CONCLUSION

The extraction of product lines from software artifacts has
demonstrated its relevance in leveraging a more systematic,
model-based product-line approach in developing large fam-
ilies of related software. It can help increase productivity in
companies and Open Source communities who produce large
code bases using a clown-and-own approach. The main trend
of the extraction paradigm is to consider source code. This
paper presented an extraction approach from the Java Virtual
Machine (JVM) Bytecode, to handle legacy software systems
for which the source code is unavailable, and factor in all input
programming languages for the JVM. An early experiment
was carried out on the ArgoUML case study and preliminary
results discussed.

The first perspective to this work is to consider the behavior
of methods, as mentioned in the previous section. To this aim,
we will adapt traditional clone detection techniques that deal
with programs semantics. The second perspective is to have
our adapter propose different options regarding the flexibility



of the bytecode decomposition approach, related to different
granularities of extraction. Last, we will enrich the evaluation
with various product families implemented in several JVM-
based languages.
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