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Introduction

Acoustic communication is common in the animal world where individuals communicate with sequences of some different acoustic elements [START_REF] Kershenbaum | Acoustic sequences in nonhuman animals: a tutorial review and prospectus[END_REF]. An accurate analysis is important in order to give a better identification of some animal species and interpret the identified song units in time. There is a lack of methodologies focused on real world data, and with further applications in ecology and wildlife management. One of the major bottlenecks for the application of these methodologies is their inability to work under heavy complex acoustic environment, where different taxa may sing together or conversely, their extreme sensitivity which may result in an over classification due to the high degree of variability insight many repertoire of the vocal species. In this paper, we model the sequence of a non-human signals and determine their acoustic song units. The way according to which non-human acoustic sequences can be interpreted can be summarized as shown in Manual segmentation is time consuming and not possible for a large acoustic dataset. That is why automatic approaches are needed. Furthermore, in bioacoustic signals, the problem of segmenting signals of many species, is still an issue. Hence, a well-principled learning system based on unsupervised approach can help to have a better understanding of bioacoustics species. In this context, we investigate statistical latent data models to automatically identify song units. First, we study Hidden Markov Models (HMMs) [START_REF] Rabiner | An introduction to hidden Markov models[END_REF].The main issue with HMMs is to select the number of hidden states. Because of the lack of knowledge on non-human species, it is hard to have this number. This rises a model selection problem, which can be addressed by information selection criteria such as BIC, AIC [START_REF] Schwarz | Estimating the dimension of a model[END_REF][START_REF] Akaike | A new look at the statistical model identification[END_REF], which select an HMM with a number of states from pre-estimated HMMs with varying number of states. Such approaches require learning multiple HMMs. On the other hand, nonparametric derivations of HMMs constitute a well-principled alternative to address this issue. Thus we used Bayesian parametric (BNP) formulation for HMMs [START_REF] Teh | Hierarchical Dirichlet Processes[END_REF], also called the infinite HMM (iHMM) [START_REF] Beal | The infinite hidden Markov model[END_REF]. It allows to infer the number of states (segments, units) from the data. The BNP approach for HMMs relies on Hierarchical Dirichlet Process (HDP) to define a prior over the states [START_REF] Teh | Hierarchical Dirichlet Processes[END_REF]. It is known as the Hierarchical Dirichlet Process for the Hidden Markov Models (HDP-HMM) [START_REF] Teh | Hierarchical Dirichlet Processes[END_REF]. The HDP-HMM parameters can be estimated by MCMC sampling techniques such as Gibbs sampling. The standard HDP-HMM Gibbs sampling has the limitation of an inadequate modeling of the temporal persistence of states [START_REF] Fox | An HDP-HMM for systems with state persistence[END_REF]. This problem has been addressed by [START_REF] Fox | An HDP-HMM for systems with state persistence[END_REF] by relying on a sticky extension which allows a more robust learning. Hence, we have a model to separate non-human signals into states that represent different activities (song units) and exploring the inference of complex data such as bioacoustic data in an environmental case (multispecies/multisources) this problem is not yet resolved.

In this paper, we investigate the BNP formulation of HMM, that is the HDP-HMM, into two challenges involving real bioacoustic data. First, a challenging problem of humpback whale song decomposition is investigated. The objective is the unsupervised structuration of whale bioacoustic data. Humpback whale songs are long cyclical sequences produced by males during the reproduction season which follows their migration from high-latitude to low-latitude waters. Singers from the same geographical region share parts of the same song. This leads to the idea of dialect [START_REF] Helweg | Geograpmc Variation in South Pacific Humpback Whale Songs[END_REF]. Different hypotheses of these songs were emitted [START_REF] Medrano | Sex identification of humpback whales, Megaptera novaeangliae, on the wintering grounds of the Mexican Pacific Ocean[END_REF][START_REF] Frankel | Spatial distribution, habitat utilization, and social interactions of humpback whales, Megaptera novaeangliae, off Hawai'i, determined using acoustic and visual techniques[END_REF][START_REF] Baker | Aggressive behavior between humpback whales (Megaptera novaeangliae) wintering in Hawaiian waters[END_REF][START_REF] Garland | Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale[END_REF]. Next, we investigate a challenging problem of bird song unit structuration. [START_REF] Catchpole | Birdsong: Biological Themes and Variations[END_REF][START_REF]Ecology and evolution of acoustic communication in birds[END_REF] show how birds sing and why birds have such elaborate songs. However, analysing bird song units is difficult due to the transientness of typical bird chirps, the large behavioural intraclass variability, the small amount of examples per class, the presence of wildlife noise, and so forth. As shown later in the obtained segmentation results, such automatic approaches allow large-scale analysis of environmental bioacoustics recordings

Related work

Discovering the call units (which can be considered as a kind of non-human alphabet) of such complex signals can be seen as a problem of unsupervised call units classification as [START_REF] Pace | Subunit definition and analysis for humpback whale call classification[END_REF][START_REF] Bartcus | Hierarchical Dirichlet Process Hidden Markov Model for Unsupervised Bioacoustic Analysis[END_REF].

[18] also tried to analyse bioacoustic songs using a clustering approach. They implemented a segmentation algorithm based on Payne's principle to extract sound units from a bioacoustic song. Contrary to [START_REF] Pace | Subunit definition and analysis for humpback whale call classification[END_REF], in which the number of states (call units in this case) has been fixed by Davies Bouldin criteria, or [START_REF] Picot | Automatic prosodic clustering of humpback whales song[END_REF] where a Kmeans algorithm is used, our approach is based on a probabilist approach on the MFCC1 ; it is non-parametric that is well-suited to the problem of automatically inferring the number of the states corresponding to the data. In the next section we describe the real-world bioacoustic challenges we used and explain our approach.

Data and Methods

The data used represent the difficulties of bioacoustic problems, especially when the only information linked to the signal is the species name. Thus, we have to determine a sequence without ground truth.

Humpback whale data

Humpback whale song data consist of a recording (about 8.6 minutes) produced at few meters from the whale in La Reunion -Indian Ocean [START_REF] Glotin | Neural information processing scaled for bioacoustics, from neurons to big data[END_REF] 2 , at a frequency sample of 44.1kHz, 32 bits, one channel.

We extract MFCC features from the signal, with pre-emphasis: 0.95, hamming window, FFT on 1024 points (nearly 23ms), frameshift 10 ms, 24 Mel channels, 12 MFCC coefficients plus energy and their delta and acceleration, for a total of 39 dimensions as detailed in the NIPS 2013 challenge [START_REF] Glotin | Neural information processing scaled for bioacoustics, from neurons to big data[END_REF] where the signal and the features are available. The retained data for our experiment are the 51336 first observations.

Multi-species bird data

Bird species song data from Fernand Deroussen Jerome Sueur of Musee National d'Histoire Naturelle [START_REF] Deroussen | La sonotheque du Museum: Oiseaux de France[END_REF], consists of a training and a testing set (not used here because it contains multiple species singing simultaneously). Theses sets were designed for the ICML4B challenge 3 .

The recordings have a frequency sample of 44.1kHz, 16 bits, one channel. The training set is composed of 35 recordings, 30 seconds each taken from 1 microphone. Each record contains 1 bird species in the foreground for a total of 35 different birds species.

The feature extraction for this application is applied as follows. First, a high pass filter is processed to reduce the noise (set at 1.000 kHz to avoid noises). Then, we extract the MFCC features with windows of 0.06 seconds and shift of 0.03 seconds, we keep 13 coefficients, with energy as first parameter, to be compact and sufficient accurate, considering only the vocal track information and removing the source information. Also, we focus on frequencies below 8.000 kHz, because of the alterations into the spectrum. We obtain 34965 observations with 13 dimensions each for train set, that is used to learn our model.

Method: Unsupervised learning for signal representation

To solve bioacoustic problems and finding the number of call units we propose to use the HDP-HMM model to model complex bioacoustic data. Our approach automatically discovers and infers the number of states from the non-human song data.

In this paper we present two applications on bioacoustic data. We study the song unit structuration, for the humpback whale and for the multi-species birds signal.

In the next section we give a brief description of the Hidden Markov Model and it's Bayesian non-parametric used in our bioacoustic signal representation applications.

Bayesian non-parametric alternative for Hidden Markov Model

The finite Hidden Markov Model (HMM) is very popular due to its stability to model sequential data (e.g. acoustic data). It assumes that the observed sequence X = (x 1 , . . . , x T ) is governed by a hidden state sequence z = (z 1 , . . . , z T ), where x t ∈ R d is the multidimensional observation at time t and z t represents the hidden state of x t values in a finite set {1, . . . , K}, K being the number of states, that is unknown. The generative process of the HMM can be described in general by the following steps. First, z 1 follows the initial distribution π 1 . Then, given the previous state (z t-1 ), the current state z t follows the transition distribution. Finally, given the state z t , the observation x t follows the emission distribution F(θ z t ) of that state. The HMM parameters, that are the initial state transition (π 1 ), the transition matrix (π), and the emission parameters (θ ) are in general estimated in a maximum likelihood estimation (MLE) framework by using the Expectation-Maximization (EM) algorithm, also known as the Bauch-Welch algorithm [START_REF] Baum | A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains[END_REF] in the context of HMMs. Therefore, for the finite HMM, the number of states K is required to be known a priori. This model selection issue can be addressed in a two-stage scheme by using model selection criteria such as the Bayesian Information Criterion (BIC) [START_REF] Schwarz | Estimating the dimension of a model[END_REF], the Akaike Information Criterion (AIC) [START_REF] Akaike | A new look at the statistical model identification[END_REF], the Integrated Classification Likelihood criterion (ICL) [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF], etc to select a model from pre-estimated HMMs with varying number of states. Such approaches are limited to learn N HMMs, N being suffi-ciently high to have an equivalent of a non parametric approach. In the light of this, a non parametric approach is more efficient because it theoretically tends to an infinite number of states. Thus, we use a Bayesian non-parametric (BNP) version of the HMM, that is able to infer the number of hidden states from the data. It is more flexible than learning multiple HMMs, because in bio-acoustic problems the model have to characterize multiple species/individuals, thus it possibly tends to a large number of hidden states.

The BNP approach for the HMM, that is the infinite HMM (iHMM), is based on a Dirichlet Process (DP) [START_REF] Ferguson | A Bayesian analysis of some nonparametric problems[END_REF]. However, as the transitions of states have independent priors, there is no coupling across transitions between different states [START_REF] Beal | The infinite hidden Markov model[END_REF], therefore the DP is not sufficient to extend the HMM to an infinite model. The Hierarchical Dirichlet Process (HDP) prior distribution on the transition matrices over countability infinite state space, derived by [START_REF] Teh | Hierarchical Dirichlet Processes[END_REF], extends the HMM to the infinite state space model and is briefly described in the next subsection.

Hierarchical Dirichlet Process (HDP)

Suppose the data divided into J groups, each produced by a related, yet distinct process. The HDP extends the DP by an hierarchical Bayesian approach such that a global Dirichlet Process prior DP(α 0 , G 0 ) is drawn from a global prior G j , where G 0 is itself a Dirichlet Process distribution with two parameters, a base distribution H and a concentration parameter γ. The generative process of the data with the HDP can be summarized as follows. Suppose data X, with i = 1, . . . , T observations grouped into j = 1, . . . , J groups. The observations of the group j are given by X j = (x j1 , x j2 , . . .), all observations of group j being exchangeable. Assume each observation is drawn from a mixture model, thus each observations x ji is associated with a mixture component, with parameter θ ji . Note that from the DP property, we observe equal values in the components θ ji . Now, giving the model parameter θ ji , the data x ji is drawn from the distribution F(θ ji ). Assuming a prior distribution G j over the model parameters associated for group j, θ j = (θ j1 , θ j2 , . . .), we can define the generative process in Eq. (1.1).

G 0 |γ, H ∼ DP(γ, H), G j |α 0 , G 0 ∼ DP(α 0 , G 0 ), ∀ j ∈ 1, . . . , J, θ ji |G j ∼ G j , ∀ j ∈ 1, . . . , J and ∀i ∈ 1, . . . , T , x ji |θ ji ∼ F(x ji |θ ji ), ∀ j ∈ 1, .
. . , J and ∀i ∈ 1, . . . , T .

(

The Chinese Restaurant Process (CRP) [START_REF] Pitman | Exchangeable and partially exchangeable random partitions[END_REF] is a representation of the Dirichlet Process that results from a metaphor related to the existence of a restaurant with possible infinite tables (clusters) where customers (observations) are sitting in it. An alternative of such a representation for the Hierarchical Dirichlet Process can be described by the Chinese Restaurant Franchise (CRF) process by extending the CRP to multiple restaurants that share a set of dishes.

The idea of CRF is that it gives a representation for the HDP by extending a set of (J) restaurants, rather than a single restaurant. Suppose a patron of chinese restaurant creates many restaurants, strongly linked to each other, by a franchise wide menu, having dishes common to all restaurants. As a result, restaurants are created (groups) with a possibility to extend each restaurant with an infinite number of tables (states) at witch the customers (observations) sit. Each customer goes to his specified restaurant j, where each table of this restaurant has a dish between the customers that sit at that specific table. However, multiple tables of different existing restaurants can serve the same dish.

The hierarchical Dirichlet process for the hidden Markov model (HDP-HMM)

The HDP-HMM uses a HDP prior distribution providing a potential countability infinite number of hidden states and tackles the challenging problem of model selection for the HMM. This model is a Bayesian non-parametric extension for the HMM also presented as the infinite HMM. To derive the HDP-HMM model we suppose a doubly-infinite transition matrix, where each row corresponds to a CRP. Thus, in a HDP formalism, the groups correspond to states, with CRP distribution on next states. CRF links these states distributions.

We assume for simplicity a distinguished initial state z 0 . Let G j describes both, the transition matrix π k and the emission parameters θ k , the infinite HMM can be described by the following generative process:

β |γ ∼ GEM(γ), π k |α, β ∼ DP(α, β ), z t |z t-1 ∼ Mult(π z t-1 ), θ k |H ∼ H, x t |z t , {θ k } ∞ k=1 ∼ F(θ z t ). (1.2)
where, β is a hyperparameter for the DP [START_REF] Sethuraman | A constructive definition of Dirichlet priors[END_REF] distributed according to the stick-breaking construction noted GEM(.); z t is the indicator variable of the HDP-HMM that follows a multinomial distribution Mult(.); the emission parameters θ k , are drawn independently, according to a conjugate prior distribution H; F(θ z t ) is a data likelihood density with the unique parameter space of θ z t equal to θ k . Suppose the observed data likelihood is a Gaussian density N (x t ; θ k ) where the emission parameters θ k = {µ k , Σ k } are respectively the mean vector µ k and the covariance matrix Σ k . According to [START_REF] Gelman | Bayesian Data Analysis[END_REF], the prior over the mean vector and the covariance matrix is a conjugate Normal-Inverse-Wishart distribution, denoted as N I W (µ 0 , κ 0 , ν 0 ,Λ 0 ), with the hyper-parameters describing the shapes and the position for each mixture components: µ 0 is the mean of Gaussian should be, κ 0 the number of pseudo-observations supposed to be attributed, and ν 0 ,Λ 0 being similarly for the covariance matrix.

In the generative process given in Eq. (1.2), π is interpreted as a double-infinite transition matrix with each row taking a CRP. Thus, in the HDP formulation the group-specific distribution, π k corresponds to the state-specific transition where the CRF defines distributions over the next state. In turn, [START_REF] Fox | An HDP-HMM for systems with state persistence[END_REF] showed that HDP-HMM inadequately models the temporal persistence of states, creating redundant and rapidly switching states and proposed an additional hyperparameter κ that increase the selftransition probabilities. This is named as sticky HDP-HMM. The distribution on the transition matrix of Eq. (1.2) for the sticky HDP-HMM is given as follows:

π k |α, β ∼ DP α + κ, αβ + κδ k α + κ , (1.3)
where a small positive κ > 0 is added to the k th component of αβ , thus of selftransition probability is increased by κ. Note that setting κ to 0, the original HDP-HMM is recovered. Under such assumption for the transition matrix, [START_REF] Fox | An HDP-HMM for systems with state persistence[END_REF] proposes an extension of the CRF to the Chinese Restaurant Franchise with Loyal Customers.

A graphical representation of (sticky) HDP-HMM is given in Fig 1 .2. The inference of the infinite HMM (the (sticky) HDP-HMM) with the Block Gibbs sampler algorithm is given in Algorithm 3 of Supplementary Material in [START_REF] Fox | An HDP-HMM for systems with state persistence[END_REF] paper. The basic idea of this sampler is to estimate the posterior distributions over all the parameters from the generative process of (sticky) HDP-HMM given in Eq. (1.2). Here, the CRF with loyal customers, hyperparameter κ of the transition matrix can be sampled in order to increase the self-transition probability.

Hence, the HDP-HMM model resolves the problem of advanced signal decomposition using acoustic features with respect to time. It allows identifying song units (states), behaviour and enhancing populations studies. From the other point, mod-elling data with the HDP-HMM offers a great alternative of the standard HMM to tackle the challenging problem of selecting the number of states, identifying the unknown number of hidden units from the used features (here: MFCC). The experimental results show the interest of such an approach.

Experiments

In this section we present two applications on bioacoustic data. We study the song unit structuration, for the humpback whale signal and for multi-species birds signals.

Humpback whale sound segmentation

The learning of the humpback whale song, applied via the HDP-HMM, is done with the Blocked Gibbs sampling. A number of iterations was fixed to N s = 30000 and a truncation level, that corresponds to the maximum number of possible states in the model (being sufficient big to approximate it to an infinite model), is fixed to L k = 30. The number of states estimated by the HDP-HMM Gibbs sampling is 6.

The All the obtained state sequence partitions fit the spectral patterns. We note that the estimated state 1 fits the sea noise, state 5 also fits sea noise, but it is right before units associated to whale songs. The presence of this unit can be due to an insufficient number of Gibbs samples. For a longer learning the fifth state could be merged with the first state. State 2 fits the up and down sweeps. State 3 fits low and high fundamental harmonic sounds, state 4 fits for numerous harmonics sound and state 6 fits very noisy and broad sounds. Fig 1.4 shows two spectrograms extracted from the 6 th song unit (left) and from the 2 nd song unit (right) of the whole humpback whale signal. We can see that the units fit specific patterns on the whole signal. Pr. Gianni Pavan (Pavia University, Italy), undersea NATO bioacoustic expert analysed the results on these humpback whale song segmentations we produced in this paper. He validated the computed representation, as the usual optimal segmentation an expert produces. This highlight the interest of learning BNP model on a single species to produce expert representation. In the next section we validate the approach on several bird species.

Birds sound segmentation

In this section we describe the obtained bird song unit segmentation. We segment the bird signals into song units by learning the HDP-HMM model on the training set (containing 35 different species). The main goal is to see if a such approach can model multiple species. Note that in this set, we assume there is no multiple species singing at the same time.

For this application, we considered 145000 Gibbs iterations and a truncation level of 200 for the maximum number of states. We suppose them to be sufficiently big for this data problem. Moreover, we use one mixture component per state, that appeared to give satisfactory results and we use a sticky HDP-HMM with the hyper-parameter κ set to 0.1.

We discovered 76 song units with this method. For more detailed information over the signal, we separated the whole train set into parts of 15 seconds each. All the spectrograms and the associated segmentation obtained are made available in the demo: http://sabiod.univ-tln.fr/workspace/MTAP/bird.zip.

Evaluation of the bird result

To evaluate the bird results, we used a ground truth produced by an expert ornithologist. He segmented each recording of the dataset according to the different patterns on the signal. Then we compare this ground truth with the segments produced by the model using the Normalized Mutual Information NMI [START_REF] Strehl | Cluster ensembles-a knowledge reuse framework for combining multiple partitions[END_REF] which calculates shared information between two clustering sets. We computed the NMI score for each species, as reported in Tab. 1.1. The highest score is 0.680 (Corvus Corone) and the lowest score is 0.003 (Garrulus Glandarius). Thus, for some species, the model has difficulties to segment the data. Sometimes, it uses less states than the expert to segment the data: for the Oriolus Oriolus (Golden Oriole), the model identifies 12 song units versus 50 identified by the expert. Nevertheless, the model also uses more states than the expert to segment the data: for the Fringilla Coelebs (chaffinch), the model identifies 15 song units versus 3 identified by the expert. In other cases, the model can't differentiate 2 distinct vocalizes if they have close frequencies (Phylloscopus Collybita and Columba Palumbus), background and foreground species (Streptopelia Decaocto). This can be due to the feature used (wrong time scale), or to an insufficient number of iterations of the Gibbs sampling. For most of species, the model and the ground truth have similar patterns observable on Fig. 1.6, 1.8 and 1.7, but not in the sample Fig. 1.10 and 1.9.

To improve the model, we can investigate better feature representation for species with different acoustic characteristics. We can also improve noise reduction which could be useful for background activities. Also, it can be dur to the fact we use one annotator. Nevertheless, the application highlights the interest of using BNP formulation of HMMs for unsupervised segmentation of bird signals.

Conclusions

We proposed BNP HMM formulation to a representation of real world bioacoustic scenes. The evaluations on two challenges, available online, show the efficiency of the method, which forms a possible answer to the questions opened in [START_REF] Kershenbaum | Acoustic sequences in nonhuman animals: a tutorial review and prospectus[END_REF]. The BNP formulation gives an estimate number of cluster needed to segment the signal and our experiments highlight the interest of such formulation on bioacoustic problems. We score with NMI the segmentation obtained for birds with the segmentation from an expert, showing promising results.One of the main topic in ecological acoustics is the development of unsupervised methods for automatic detection of vocalized species, which would help specialists in ecological works during their monitoring activities.Future work will consist in the MCMC sampling dealing with larger data problems, like variational inference [START_REF] Jordan | An introduction to variational methods for graphical models[END_REF] or stochastic variational inference used for HMMs [START_REF] Foti | Stochastic variational inference for hidden Markov models[END_REF], joint to feature learning to automatically adapt time frequency scales to each species. 
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 11 Fig. 1.1 The four acoustic common ways used to divide into units ([3].
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 12 Fig. 1.2 Graphical representation of sticky Hierarchical Dirichlet Process for Hidden Markov Model (HDP-HMM).

Fig 1 . 3

 13 shows the state sequences partition, for all 8.6 minutes of humpback whale song data, obtained by the HDP-HMM Gibbs sampling. For more detailed information, the result of the whole humpback whale signal segmentation is separated by several parts of 15 seconds. All the spectrograms of the humpback whale song and the obtained segmentation are made available in the demo: http://sabiod.univtln.fr/workspace/MTAP/whale.zip. This demo highlights the interest of using a BNP formulation of HMMs for unsupervised segmentation of whale signals. Three examples of the humpback whale song, with 15 seconds duration each, are presented and discussed in this paper (seeFig 1.5).
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 13 Fig. 1.3 State sequence for 8.6 min of humpback whale song obtained by the Blocked Gibbs sampling inference approach for HDP-HMM.
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 1 Figure 1.5 represents the spectrogram and the corresponding state sequence partition obtained by the HDP-HMM Gibbs inference algorithm. They respectively represent examples of the beginning, the middle and the end of the whole signal.All the obtained state sequence partitions fit the spectral patterns. We note that the estimated state 1 fits the sea noise, state 5 also fits sea noise, but it is right before units associated to whale songs. The presence of this unit can be due to an insufficient number of Gibbs samples. For a longer learning the fifth state could be merged with the first state. State 2 fits the up and down sweeps. State 3 fits low and high fundamental harmonic sounds, state 4 fits for numerous harmonics sound and state 6 fits very noisy and broad sounds.Fig 1.4 shows two spectrograms extracted from the 6 th song unit (left) and from the 2 nd song unit (right) of the whole humpback whale signal. We can see that the units fit specific patterns on the whole signal.
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 14 Fig. 1.4 Spectrograms of the 6 th whale song unit (left) and 2 nd song unit (right).

Fig. 1 . 5

 15 Fig. 1.5 Obtained song units starting at 60 seconds (left), 255 seconds (middle) and 495 seconds (right). The spectrogram of the whale song (top), and the obtained state sequence (bottom) by the Blocked Gibbs sampler inference approach for the HDP-HMM. The silence (unit 1 and 5) looks well separated from the whale signal. Whale up and down sweeps (unit 2), harmonics (unit 3 and 4) and broad sounds (unit 6) are also present.

Table 1 .

 1 1 NMI score for the obtained segmentation using HDP-HMM.

	Species	NMI Score
	Corvus Corone	0.680
	Picus Viridis	0.602
	Fringilla Coelebs	0.565
	Emberiza Citrinella	0.534
	Parus Palustris	0.521
	Luscinia Megarhynchos	0.497
	Dendrocopos Major	0.481
	Prunella Modularis	0.476
	Sturnus Vulgaris	0.467
	Pavo Cristatus	0.437
	Certhia Brachydactyla	0.417
	Turdus Viscivorus	0.417
	Parus Caeruleus	0.413
	Troglodytes Troglodytes	0.407
	Sylvia Atricapilla	0.405
	Turdus Philomelos	0.398
	Turdus Merula	0.395
	Erithacus Rubecula	0.394
	Carduelis Chloris	0.385
	Columba Palumbus	0.352
	Branta Canadensis	0.339
	Anthus Trivialis	0.332
	Sitta Europaea	0.332
	Oriolus Oriolus	0.316
	Streptopelia Decaocto	0.306
	Phoenicurus Phoenicurus	0.291
	Phasianus Colchicus	0.272
	Parus Major	0.270
	Phylloscopus Collybita	0.267
	Cuculus Canorus	0.205
	Aegithalos Caudatus	0.202
	Strix Aluco	0.200
	Alauda Arvensis	0.169
	Motacilla Alba	0.105
	Garrulus Glandarius	0.003
	mean	0.367

The MFCC are features that represent and compress short-term power spectrum of a sound. It follows the Mel scale.

http://sabiod.univ-tln.fr/nips4b/challenge2.html

http://sabiod.univ-tln.fr/icml2013/BIRD SAMPLES/
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