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Preprint

Unsupervised Bioacoustic Segmentation by

Hierarchical Dirichlet Process Hidden Markov

Model

Vincent Roger, Marius Bartcus, Faicel Chamroukhi, and Hervé Glotin

Abstract Bioacoustics is powerful for monitoring biodiversity. We investigate in

this paper automatic segmentation model for real-world bioacoustic scenes in or-

der to infer hidden states referred as song units. Nevertheless, the number of these

acoustic units is often unknown, unlike in human speech recognition. Hence, we

propose a bioacoustic segmentation based on the Hierarchical Dirichlet Process

(HDP-HMM), a Bayesian non-parametric (BNP) model to tackle this challenging

problem. Hence, we focus our approach on unsupervised learning from bioacous-

tic sequences. It consists in simultaneously finding the structure of hidden song

units, and automatically infers the unknown number of the hidden states. We inves-

tigate two real bioacoustic scenes: whale, and multi-species birds songs. We learn

the models using Markov-Chain Monte Carlo (MCMC) sampling techniques on Mel

Frequency Cepstral Coefficients (MFCC). Our results, scored by bioacoustic expert,

show that the model generates correct song unit segmentation. This study demon-

strates new insights for unsupervised analysis of complex soundscapes and illus-

trates their potential of chunking non-human animal signals into structured units.

This can yield to new representations of the calls of a target species, but also to

the structuration of inter-species calls. It gives to experts a tracktable approach for

efficient bioacoustic research as requested in [3].
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1.1 Introduction

Acoustic communication is common in the animal world where individuals commu-

nicate with sequences of some different acoustic elements [3]. An accurate analysis

is important in order to give a better identification of some animal species and in-

terpret the identified song units in time. There is a lack of methodologies focused

on real world data, and with further applications in ecology and wildlife manage-

ment. One of the major bottlenecks for the application of these methodologies is

their inability to work under heavy complex acoustic environment, where different

taxa may sing together or conversely, their extreme sensitivity which may result in

an over classification due to the high degree of variability insight many repertoire

of the vocal species. In this paper, we model the sequence of a non-human signals

and determine their acoustic song units. The way according to which non-human

acoustic sequences can be interpreted can be summarized as shown in Fig 1.1. Four

common properties are used to define potential criteria for segmenting such signals

into song units. The first way, shown in Fig 1.1(A), consists in separating the sig-

nals using silent gaps. The second way, shown in Fig 1.1(B), consists in separating

the signals according to the changes in the acoustic properties in the signal. The

third way, shown in Fig 1.1(C) consists in grouping similar sounds separated with

silent gaps as a single unit. The last common way, shown in Fig 1.1(D) consists in

separating signal in organized sound structure, considered as fundamental units.
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Fig. 1.1 The four acoustic common ways used to divide into units ([3].

Manual segmentation is time consuming and not possible for a large acoustic

dataset. That is why automatic approaches are needed. Furthermore, in bioacoustic

signals, the problem of segmenting signals of many species, is still an issue. Hence,

a well-principled learning system based on unsupervised approach can help to have

a better understanding of bioacoustics species. In this context, we investigate statis-

tical latent data models to automatically identify song units. First, we study Hidden

Markov Models (HMMs)[4].The main issue with HMMs is to select the number

of hidden states. Because of the lack of knowledge on non-human species, it is

hard to have this number. This rises a model selection problem, which can be ad-

dressed by information selection criteria such as BIC, AIC [5, 6], which select an
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HMM with a number of states from pre-estimated HMMs with varying number of

states. Such approaches require learning multiple HMMs. On the other hand, non-

parametric derivations of HMMs constitute a well-principled alternative to address

this issue. Thus we used Bayesian parametric (BNP) formulation for HMMs [7],

also called the infinite HMM (iHMM) [8]. It allows to infer the number of states

(segments, units) from the data. The BNP approach for HMMs relies on Hierarchi-

cal Dirichlet Process (HDP) to define a prior over the states [7]. It is known as the

Hierarchical Dirichlet Process for the Hidden Markov Models (HDP-HMM) [7].

The HDP-HMM parameters can be estimated by MCMC sampling techniques such

as Gibbs sampling. The standard HDP-HMM Gibbs sampling has the limitation of

an inadequate modeling of the temporal persistence of states [9]. This problem has

been addressed by [9] by relying on a sticky extension which allows a more robust

learning. Hence, we have a model to separate non-human signals into states that rep-

resent different activities (song units) and exploring the inference of complex data

such as bioacoustic data in an environmental case (multispecies/multisources) this

problem is not yet resolved.

In this paper, we investigate the BNP formulation of HMM, that is the HDP-

HMM, into two challenges involving real bioacoustic data. First, a challenging prob-

lem of humpback whale song decomposition is investigated. The objective is the un-

supervised structuration of whale bioacoustic data. Humpback whale songs are long

cyclical sequences produced by males during the reproduction season which follows

their migration from high-latitude to low-latitude waters. Singers from the same ge-

ographical region share parts of the same song. This leads to the idea of dialect [10].

Different hypotheses of these songs were emitted [11, 12, 13, 14]. Next, we investi-

gate a challenging problem of bird song unit structuration. [15, 16] show how birds

sing and why birds have such elaborate songs. However, analysing bird song units

is difficult due to the transientness of typical bird chirps, the large behavioural intra-

class variability, the small amount of examples per class, the presence of wildlife

noise, and so forth. As shown later in the obtained segmentation results, such auto-

matic approaches allow large-scale analysis of environmental bioacoustics record-

ings

1.1.1 Related work

Discovering the call units (which can be considered as a kind of non-human alpha-

bet) of such complex signals can be seen as a problem of unsupervised call units

classification as [17, 1].

[18] also tried to analyse bioacoustic songs using a clustering approach. They

implemented a segmentation algorithm based on Payne’s principle to extract sound

units from a bioacoustic song. Contrary to [17], in which the number of states (call

units in this case) has been fixed by Davies Bouldin criteria, or [18] where a K-

means algorithm is used, our approach is based on a probabilist approach on the
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MFCC1; it is non-parametric that is well-suited to the problem of automatically

inferring the number of the states corresponding to the data. In the next section we

describe the real-world bioacoustic challenges we used and explain our approach.

1.2 Data and Methods

The data used represent the difficulties of bioacoustic problems, especially when

the only information linked to the signal is the species name. Thus, we have to

determine a sequence without ground truth.

1.2.1 Humpback whale data

Humpback whale song data consist of a recording (about 8.6 minutes) produced

at few meters from the whale in La Reunion - Indian Ocean [19]2, at a frequency

sample of 44.1kHz, 32 bits, one channel.

We extract MFCC features from the signal, with pre-emphasis: 0.95, hamming

window, FFT on 1024 points (nearly 23ms), frameshift 10 ms, 24 Mel channels,

12 MFCC coefficients plus energy and their delta and acceleration, for a total of

39 dimensions as detailed in the NIPS 2013 challenge [19] where the signal and

the features are available. The retained data for our experiment are the 51336 first

observations.

1.2.2 Multi-species bird data

Bird species song data from Fernand Deroussen Jerome Sueur of Musee National

d’Histoire Naturelle [20], consists of a training and a testing set (not used here be-

cause it contains multiple species singing simultaneously). Theses sets were de-

signed for the ICML4B challenge3.

The recordings have a frequency sample of 44.1kHz, 16 bits, one channel. The

training set is composed of 35 recordings, 30 seconds each taken from 1 micro-

phone. Each record contains 1 bird species in the foreground for a total of 35 differ-

ent birds species.

The feature extraction for this application is applied as follows. First, a high pass

filter is processed to reduce the noise (set at 1.000 kHz to avoid noises). Then, we

1 The MFCC are features that represent and compress short-term power spectrum of a sound. It

follows the Mel scale.
2 http://sabiod.univ-tln.fr/nips4b/challenge2.html
3 http://sabiod.univ-tln.fr/icml2013/BIRD SAMPLES/
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extract the MFCC features with windows of 0.06 seconds and shift of 0.03 sec-

onds, we keep 13 coefficients, with energy as first parameter, to be compact and

sufficient accurate, considering only the vocal track information and removing the

source information. Also, we focus on frequencies below 8.000 kHz, because of

the alterations into the spectrum. We obtain 34965 observations with 13 dimensions

each for train set, that is used to learn our model.

1.2.3 Method: Unsupervised learning for signal representation

To solve bioacoustic problems and finding the number of call units we propose

to use the HDP-HMM model to model complex bioacoustic data. Our approach

automatically discovers and infers the number of states from the non-human song

data.

In this paper we present two applications on bioacoustic data. We study the song

unit structuration, for the humpback whale and for the multi-species birds signal.

In the next section we give a brief description of the Hidden Markov Model and

it’s Bayesian non-parametric used in our bioacoustic signal representation applica-

tions.

1.3 Bayesian non-parametric alternative for Hidden Markov

Model

The finite Hidden Markov Model (HMM) is very popular due to its stability to

model sequential data (e.g. acoustic data). It assumes that the observed sequence

X = (x1, . . . ,xT ) is governed by a hidden state sequence z = (z1, . . . ,zT ), where

xt ∈ Rd is the multidimensional observation at time t and zt represents the hidden

state of xt values in a finite set {1, . . . ,K}, K being the number of states, that is

unknown. The generative process of the HMM can be described in general by the

following steps. First, z1 follows the initial distribution π1. Then, given the previ-

ous state (zt−1), the current state zt follows the transition distribution. Finally, given

the state zt , the observation xt follows the emission distribution F(θ zt ) of that state.

The HMM parameters, that are the initial state transition (π1), the transition matrix

(π), and the emission parameters (θ ) are in general estimated in a maximum like-

lihood estimation (MLE) framework by using the Expectation-Maximization (EM)

algorithm, also known as the Bauch-Welch algorithm [21] in the context of HMMs.

Therefore, for the finite HMM, the number of states K is required to be known

a priori. This model selection issue can be addressed in a two-stage scheme by us-

ing model selection criteria such as the Bayesian Information Criterion (BIC) [5],

the Akaike Information Criterion (AIC) [6], the Integrated Classification Likelihood

criterion (ICL) [22], etc to select a model from pre-estimated HMMs with varying

number of states. Such approaches are limited to learn N HMMs, N being suffi-
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ciently high to have an equivalent of a non parametric approach. In the light of this,

a non parametric approach is more efficient because it theoretically tends to an in-

finite number of states. Thus, we use a Bayesian non-parametric (BNP) version of

the HMM, that is able to infer the number of hidden states from the data. It is more

flexible than learning multiple HMMs, because in bio-acoustic problems the model

have to characterize multiple species/individuals, thus it possibly tends to a large

number of hidden states.

The BNP approach for the HMM, that is the infinite HMM (iHMM), is based on

a Dirichlet Process (DP) [23]. However, as the transitions of states have independent

priors, there is no coupling across transitions between different states [8], therefore

the DP is not sufficient to extend the HMM to an infinite model. The Hierarchical

Dirichlet Process (HDP) prior distribution on the transition matrices over countabil-

ity infinite state space, derived by [7], extends the HMM to the infinite state space

model and is briefly described in the next subsection.

1.3.1 Hierarchical Dirichlet Process (HDP)

Suppose the data divided into J groups, each produced by a related, yet distinct pro-

cess. The HDP extends the DP by an hierarchical Bayesian approach such that a

global Dirichlet Process prior DP(α0,G0) is drawn from a global prior G j, where

G0 is itself a Dirichlet Process distribution with two parameters, a base distribu-

tion H and a concentration parameter γ . The generative process of the data with

the HDP can be summarized as follows. Suppose data X, with i = 1, . . . ,T observa-

tions grouped into j = 1, . . . ,J groups. The observations of the group j are given by

X j = (x j1,x j2, . . .), all observations of group j being exchangeable. Assume each

observation is drawn from a mixture model, thus each observations x ji is associated

with a mixture component, with parameter θ ji . Note that from the DP property, we

observe equal values in the components θ ji. Now, giving the model parameter θ ji,

the data x ji is drawn from the distribution F(θ ji). Assuming a prior distribution G j

over the model parameters associated for group j, θ j = (θ j1,θ j2, . . .), we can define

the generative process in Eq. (1.1).

G0|γ,H ∼ DP(γ,H),
G j|α0,G0 ∼ DP(α0,G0), ∀ j ∈ 1, . . . ,J,

θ ji|G j ∼ G j, ∀ j ∈ 1, . . . ,J and ∀i ∈ 1, . . . ,T ,

x ji|θ ji ∼ F(x ji|θ ji),∀ j ∈ 1, . . . ,J and ∀i ∈ 1, . . . ,T .

(1.1)

The Chinese Restaurant Process (CRP) [24] is a representation of the Dirichlet

Process that results from a metaphor related to the existence of a restaurant with

possible infinite tables (clusters) where customers (observations) are sitting in it.

An alternative of such a representation for the Hierarchical Dirichlet Process can

be described by the Chinese Restaurant Franchise (CRF) process by extending the

CRP to multiple restaurants that share a set of dishes.
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The idea of CRF is that it gives a representation for the HDP by extending a

set of (J) restaurants, rather than a single restaurant. Suppose a patron of chinese

restaurant creates many restaurants, strongly linked to each other, by a franchise

wide menu, having dishes common to all restaurants. As a result, restaurants are

created (groups) with a possibility to extend each restaurant with an infinite number

of tables (states) at witch the customers (observations) sit. Each customer goes to

his specified restaurant j, where each table of this restaurant has a dish between the

customers that sit at that specific table. However, multiple tables of different existing

restaurants can serve the same dish.

1.3.2 The hierarchical Dirichlet process for the hidden Markov

model (HDP-HMM)

The HDP-HMM uses a HDP prior distribution providing a potential countability

infinite number of hidden states and tackles the challenging problem of model se-

lection for the HMM. This model is a Bayesian non-parametric extension for the

HMM also presented as the infinite HMM. To derive the HDP-HMM model we

suppose a doubly-infinite transition matrix, where each row corresponds to a CRP.

Thus, in a HDP formalism, the groups correspond to states, with CRP distribution

on next states. CRF links these states distributions.

We assume for simplicity a distinguished initial state z0. Let G j describes both,

the transition matrix πk and the emission parameters θ k, the infinite HMM can be

described by the following generative process:

β |γ ∼ GEM(γ),

πk|α,β ∼ DP(α,β ),

zt |zt−1 ∼ Mult(πzt−1
),

θ k|H ∼ H,

xt |zt ,{θ k}
∞

k=1 ∼ F(θ zt ).

(1.2)

where,

β is a hyperparameter for the DP [2] distributed according to the stick-breaking

construction noted GEM(.);
zt is the indicator variable of the HDP-HMM that follows a multinomial distribution

Mult(.);
the emission parameters θ k, are drawn independently, according to a conjugate prior

distribution H;

F(θ zt ) is a data likelihood density with the unique parameter space of θ zt equal to

θ k.

Suppose the observed data likelihood is a Gaussian density N (xt ;θ k) where

the emission parameters θ k = {µk,Σ k} are respectively the mean vector µk and

the covariance matrix Σ k. According to [26], the prior over the mean vector and
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the covariance matrix is a conjugate Normal-Inverse-Wishart distribution, denoted

as N I W (µ0,κ0,ν0,Λ0), with the hyper-parameters describing the shapes and the

position for each mixture components: µ0 is the mean of Gaussian should be, κ0 the

number of pseudo-observations supposed to be attributed, and ν0,Λ0 being similarly

for the covariance matrix.

In the generative process given in Eq. (1.2), π is interpreted as a double-infinite

transition matrix with each row taking a CRP. Thus, in the HDP formulation the

group-specific distribution, πk corresponds to the state-specific transition where the

CRF defines distributions over the next state. In turn, [9] showed that HDP-HMM in-

adequately models the temporal persistence of states, creating redundant and rapidly

switching states and proposed an additional hyperparameter κ that increase the self-

transition probabilities. This is named as sticky HDP-HMM. The distribution on the

transition matrix of Eq. (1.2) for the sticky HDP-HMM is given as follows:

πk|α,β ∼ DP

(

α +κ,
αβ +κδk

α +κ

)

, (1.3)

where a small positive κ > 0 is added to the kth component of αβ , thus of self-

transition probability is increased by κ . Note that setting κ to 0, the original HDP-

HMM is recovered. Under such assumption for the transition matrix, [9] proposes

an extension of the CRF to the Chinese Restaurant Franchise with Loyal Customers.

A graphical representation of (sticky) HDP-HMM is given in Fig 1.2.

Fig. 1.2 Graphical representation of sticky Hierarchical Dirichlet Process for Hidden Markov

Model (HDP-HMM).

The inference of the infinite HMM (the (sticky) HDP-HMM) with the Block

Gibbs sampler algorithm is given in Algorithm 3 of Supplementary Material in

[9] paper. The basic idea of this sampler is to estimate the posterior distributions

over all the parameters from the generative process of (sticky) HDP-HMM given in

Eq. (1.2). Here, the CRF with loyal customers, hyperparameter κ of the transition

matrix can be sampled in order to increase the self-transition probability.

Hence, the HDP-HMM model resolves the problem of advanced signal decom-

position using acoustic features with respect to time. It allows identifying song units

(states), behaviour and enhancing populations studies. From the other point, mod-
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elling data with the HDP-HMM offers a great alternative of the standard HMM to

tackle the challenging problem of selecting the number of states, identifying the

unknown number of hidden units from the used features (here: MFCC). The exper-

imental results show the interest of such an approach.

1.4 Experiments

In this section we present two applications on bioacoustic data. We study the song

unit structuration, for the humpback whale signal and for multi-species birds signals.

1.4.1 Humpback whale sound segmentation

The learning of the humpback whale song, applied via the HDP-HMM, is done with

the Blocked Gibbs sampling. A number of iterations was fixed to Ns = 30000 and

a truncation level, that corresponds to the maximum number of possible states in

the model (being sufficient big to approximate it to an infinite model), is fixed to

Lk = 30. The number of states estimated by the HDP-HMM Gibbs sampling is 6.

The Fig 1.3 shows the state sequences partition, for all 8.6 minutes of humpback

whale song data, obtained by the HDP-HMM Gibbs sampling. For more detailed in-

formation, the result of the whole humpback whale signal segmentation is separated

by several parts of 15 seconds. All the spectrograms of the humpback whale song

and the obtained segmentation are made available in the demo: http://sabiod.univ-

tln.fr/workspace/MTAP/whale.zip. This demo highlights the interest of using a BNP

formulation of HMMs for unsupervised segmentation of whale signals. Three ex-

amples of the humpback whale song, with 15 seconds duration each, are presented

and discussed in this paper (see Fig 1.5).

Fig. 1.3 State sequence for 8.6 min of humpback whale song obtained by the Blocked Gibbs

sampling inference approach for HDP-HMM.
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Figure 1.5 represents the spectrogram and the corresponding state sequence par-

tition obtained by the HDP-HMM Gibbs inference algorithm. They respectively

represent examples of the beginning, the middle and the end of the whole signal.

All the obtained state sequence partitions fit the spectral patterns. We note that the

estimated state 1 fits the sea noise, state 5 also fits sea noise, but it is right before

units associated to whale songs. The presence of this unit can be due to an insuffi-

cient number of Gibbs samples. For a longer learning the fifth state could be merged

with the first state. State 2 fits the up and down sweeps. State 3 fits low and high

fundamental harmonic sounds, state 4 fits for numerous harmonics sound and state

6 fits very noisy and broad sounds. Fig 1.4 shows two spectrograms extracted from

the 6th song unit (left) and from the 2nd song unit (right) of the whole humpback

whale signal. We can see that the units fit specific patterns on the whole signal.

Fig. 1.4 Spectrograms of the 6th whale song unit (left) and 2nd song unit (right).

Pr. Gianni Pavan (Pavia University, Italy), undersea NATO bioacoustic expert

analysed the results on these humpback whale song segmentations we produced in

this paper. He validated the computed representation, as the usual optimal segmen-

tation an expert produces. This highlight the interest of learning BNP model on a

single species to produce expert representation. In the next section we validate the

approach on several bird species.

1.4.2 Birds sound segmentation

In this section we describe the obtained bird song unit segmentation. We segment

the bird signals into song units by learning the HDP-HMM model on the training

set (containing 35 different species). The main goal is to see if a such approach can

model multiple species. Note that in this set, we assume there is no multiple species

singing at the same time.

For this application, we considered 145000 Gibbs iterations and a truncation level

of 200 for the maximum number of states. We suppose them to be sufficiently big for
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this data problem. Moreover, we use one mixture component per state, that appeared

to give satisfactory results and we use a sticky HDP-HMM with the hyper-parameter

κ set to 0.1.

We discovered 76 song units with this method. For more detailed information

over the signal, we separated the whole train set into parts of 15 seconds each. All

the spectrograms and the associated segmentation obtained are made available in

the demo: http://sabiod.univ-tln.fr/workspace/MTAP/bird.zip.

1.4.2.1 Evaluation of the bird result

To evaluate the bird results, we used a ground truth produced by an expert ornithol-

ogist. He segmented each recording of the dataset according to the different patterns

on the signal. Then we compare this ground truth with the segments produced by

the model using the Normalized Mutual Information NMI [27] which calculates

shared information between two clustering sets. We computed the NMI score for

each species, as reported in Tab. 1.1. The highest score is 0.680 (Corvus Corone) and

the lowest score is 0.003 (Garrulus Glandarius). Thus, for some species, the model

has difficulties to segment the data. Sometimes, it uses less states than the expert to

segment the data: for the Oriolus Oriolus (Golden Oriole), the model identifies 12

song units versus 50 identified by the expert. Nevertheless, the model also uses more

states than the expert to segment the data: for the Fringilla Coelebs (chaffinch), the

model identifies 15 song units versus 3 identified by the expert. In other cases, the

model can’t differentiate 2 distinct vocalizes if they have close frequencies (Phyl-

loscopus Collybita and Columba Palumbus), background and foreground species

(Streptopelia Decaocto). This can be due to the feature used (wrong time scale), or

to an insufficient number of iterations of the Gibbs sampling. For most of species,

the model and the ground truth have similar patterns observable on Fig. 1.6, 1.8 and

1.7, but not in the sample Fig. 1.10 and 1.9.

To improve the model, we can investigate better feature representation for species

with different acoustic characteristics. We can also improve noise reduction which

could be useful for background activities. Also, it can be dur to the fact we use

one annotator. Nevertheless, the application highlights the interest of using BNP

formulation of HMMs for unsupervised segmentation of bird signals.

1.5 Conclusions

We proposed BNP HMM formulation to a representation of real world bioacoustic

scenes. The evaluations on two challenges, available online, show the efficiency of

the method, which forms a possible answer to the questions opened in [3]. The BNP

formulation gives an estimate number of cluster needed to segment the signal and

our experiments highlight the interest of such formulation on bioacoustic problems.

We score with NMI the segmentation obtained for birds with the segmentation from
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Species NMI Score

Corvus Corone 0.680

Picus Viridis 0.602

Fringilla Coelebs 0.565

Emberiza Citrinella 0.534

Parus Palustris 0.521

Luscinia Megarhynchos 0.497

Dendrocopos Major 0.481

Prunella Modularis 0.476

Sturnus Vulgaris 0.467

Pavo Cristatus 0.437

Certhia Brachydactyla 0.417

Turdus Viscivorus 0.417

Parus Caeruleus 0.413

Troglodytes Troglodytes 0.407

Sylvia Atricapilla 0.405

Turdus Philomelos 0.398

Turdus Merula 0.395

Erithacus Rubecula 0.394

Carduelis Chloris 0.385

Columba Palumbus 0.352

Branta Canadensis 0.339

Anthus Trivialis 0.332

Sitta Europaea 0.332

Oriolus Oriolus 0.316

Streptopelia Decaocto 0.306

Phoenicurus Phoenicurus 0.291

Phasianus Colchicus 0.272

Parus Major 0.270

Phylloscopus Collybita 0.267

Cuculus Canorus 0.205

Aegithalos Caudatus 0.202

Strix Aluco 0.200

Alauda Arvensis 0.169

Motacilla Alba 0.105

Garrulus Glandarius 0.003

mean 0.367

Table 1.1 NMI score for the obtained segmentation using HDP-HMM.

an expert, showing promising results.One of the main topic in ecological acoustics

is the development of unsupervised methods for automatic detection of vocalized

species, which would help specialists in ecological works during their monitoring

activities.Future work will consist in the MCMC sampling dealing with larger data

problems, like variational inference [28] or stochastic variational inference used for

HMMs [29], joint to feature learning to automatically adapt time frequency scales

to each species.
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Fig. 1.5 Obtained song units starting at 60 seconds (left), 255 seconds (middle) and 495 seconds

(right). The spectrogram of the whale song (top), and the obtained state sequence (bottom) by the

Blocked Gibbs sampler inference approach for the HDP-HMM. The silence (unit 1 and 5) looks

well separated from the whale signal. Whale up and down sweeps (unit 2), harmonics (unit 3 and

4) and broad sounds (unit 6) are also present.








