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The analysis and design of complex energy systems is generally performed starting from a single operating condition and assuming a series of design parameters as fixed values. However, many of the variables on which the design is based are subject to uncertainty because they are not determinable with an adequate precision. For advanced energy system and other processes, the uncertainties associated with model input parameters can affect both the performance and the cost. Methods for system design under uncertainty thus become essential. As uncertainty is a broad concept, it is possible, and often useful, to approach it in several ways. One rather general approach, which is applied to a wide variety of problems, is to assign a probability distribution to the various uncertain input parameters of the model. Many studies have faced optimization problems, but almost no one has considered the uncertainty as a factor to be taken into account. An off-design static model of a micro-turbine has been studied: it is built on the configuration of a Turbec T100 actually installed at the University research laboratory. Stochastic analysis has been treated implementing the approximated method Response Sensitivity Analysis (RSA) based on Taylor series expansion. RSA methods have been used on this system model to estimate its main performance and economic parameters under the influence of uncertainties related to various operating parameters of the turbo-machinery.

INTRODUCTION

Almost all the existing design methods are deterministic since the presence of uncertainties in parameters and measurements are not taken into account. For realworld engineering systems, such simplification is generally impractical and this highly limits the applications of deterministic model updating methods. Therefore, stochastic updating methods involving uncertainty analysis are of great importance from a practical point of view. In a broad sense, uncertainties can be classified into two categories of aleatory (irreducible) and epistemic (reducible) uncertainties [START_REF] Fang | A stochastic model updating method for parameter variability quantification based on response surface models and Monte Carlo simulation[END_REF] and in many cases there is no strict distinction between these two categories. Aleatory uncertainty may result from geometric dimension variability due to manufacturing tolerances [START_REF] Kim | Stochastic Modeling and Uncertainty Analysis with Multi-objective Optimization Strategies for the Synthesis/Design and Operation/Control of a PEMFC Fuel Processing Subsystem[END_REF][START_REF] Kim | A hybrid multi-level optimization approach for the dynamic synthesis/design and operation/control under uncertainty of a fuel cell system[END_REF][START_REF] Heinze | A parametric model for probabilistic analysis of turbine blades considering real geometric effects[END_REF] or inherent variability of materials such as concrete, while epistemic uncertainty is caused by lack of knowledge (e.g. due to limited experimental data). The design of machinery, plants or any equipment connected to the world of energy, mechanical and civil engineering is often subjected to highly variable conditions; just think of how environmental condition can be aleatory for the working condition of energy plants, or how, during each design process, the uncertainties related to every parameter or chosen coefficients affect the final result. This is a very sensitive issue for the wide world of dynamic components, so does the need to refine methods able to take in account uncertainties of the studied system and to analyze their effects on monitored outputs. This work is part of a broader study that points to identify and develop one or more methods able to fulfill these tasks with more accuracy and speed as possible. In particular, this paper presents the study of a microturbine, the Turbec T100, at present installed at the research laboratory of the University of Genoa, located in Savona, under stochastic conditions, Figure 1. 

METHODS

Due to different reasons, a system can have input data affected by uncertainty. This may be due to the inability to accurately estimate some of these parameters, or more simply it is related to a sudden change in operating conditions. The approach starts from the identification of the variables behavior, estimating their probability distribution. In most of cases, input data populations are organized in normal distributions or in distributions shaped very close to them. The next step was to find a method able to manage stochastic inputs. In open literature, there are many different possible approaches: Monte Carlo Simulation MCS, Response Sensitivity Analysis RSA, Fast Probability Integration FPI and Analysis of Variance ANOVA [START_REF] Kim | Stochastic Modeling and Uncertainty Analysis with Multi-objective Optimization Strategies for the Synthesis/Design and Operation/Control of a PEMFC Fuel Processing Subsystem[END_REF][START_REF] Kim | A hybrid multi-level optimization approach for the dynamic synthesis/design and operation/control under uncertainty of a fuel cell system[END_REF]. Both the sampling methods and the approximation panoramas have been explored: in fact, while the first one is strictly a sampling method, the others use an approximated approach or a mix of both as in case of ANOVA. The investigation led to the conclusion that MCS and RSA could be the two most appropriate methods for the scope of this work. The MCS starts sampling a single value from each initial distribution and uses it as actual variable for the model execution. At this point, the mGT model, working as a deterministic system, returns univocal results for each monitored output. So, in order to create an appropriate group of sampled individuals able to evaluate the uncertainty propagation on the outputs, the procedure has to be repeated many times leading to the construction of the stochastic distribution of outputs. MCS can be accurate but can require large computational efforts. RSA is an approximated method, which utilizes the Taylor series expansion to estimate all the probabilistic parameters for calculation of output distribution. In this work different implementation schemes about RSA have been tested. The RSA methodology was analyzed and validated against MCS by other researchers in [START_REF] Kim | Stochastic Modeling and Uncertainty Analysis with Multi-objective Optimization Strategies for the Synthesis/Design and Operation/Control of a PEMFC Fuel Processing Subsystem[END_REF][START_REF] Kim | A hybrid multi-level optimization approach for the dynamic synthesis/design and operation/control under uncertainty of a fuel cell system[END_REF]. In fact, RSA can be orders of magnitude faster than MCS, but risking in losing accuracy. Moreover, different approximations of the derivatives in the RSA method, for example central and forward finite difference schemes, have been used and compared. The results were evaluated in order to understand the potentiality of RSA method in the proposed case study.

RSA

Simulation of a deterministic model provides a set of outputs which may give an incomplete and frequently misleading representation of the system. To complete this information, the sensitivity (variability) and uncertainties in the results are needed. A deterministic single-point simulation gives no value of the range of sensitivity which may be expected in the system, and it also does not provide information about the uncertainties in the results. A deterministic model (i.e. one without uncertainty considerations) or nondeterministic/probabilistic model (i.e. one with uncertainty considerations) can be described in general terms by:

M f X , Y (1) 
where the vector M represents a set of system output values, and vectors X and Y correspond to a set of synthesis/design and operation/control variables, respectively [START_REF] Kim | A hybrid multi-level optimization approach for the dynamic synthesis/design and operation/control under uncertainty of a fuel cell system[END_REF]. If the model is a nondeterministic or probabilistic one and the uncertainties on X and Y are known, their effects on system development and performance can be evaluated via several possible probabilistic design methods. Even though MCS produces exact solutions and is a powerful probabilistic design method for complex nonlinear energy systems, it is not very practical because of the very large computational effort or burden required. This computational difficulty can be overcome by approximated approaches. One of the practical uncertainty analysis methods is the sensitivity-based approximation approach, the RSA method, in which system outputs can be found by a Taylor series expansion [START_REF] Kim | A hybrid multi-level optimization approach for the dynamic synthesis/design and operation/control under uncertainty of a fuel cell system[END_REF]. The first order moment (mean value) and the second order moment (standard deviation) of the outputs can be estimated easily through the Taylor series expansion. If only the mean and variance of each system input (Zi) are known (the exact probability distribution functions are not known) and an implicit nonlinear functional relationship g Z between each system output M and the inputs Z is available, the approximated mean and variance of each system output M can be estimated by using a Taylor series expansion about the mean values μ of the inputs, i.e.,

M ≅ g μ Z μ ∂g Z ∂Z 1 2 Z μ Z μ ∂ g Z ∂Z ∂Z ⋯ (2) 
The first and second order approximated means μ of each output, Mj, can be respectively expressed as shown in equation 3 and 4.

μ μ M ≅ g μ , μ , … , μ (3) 
μ μ M ≅ g μ , μ , … , μ 1 2 ∂ g ∂Z ν Z (4) 
While the first order approximated variance ν is as follow:

ν ν M ≅ ∂g ∂Z ν Z (5) 
If there are no explicit functional relationships between the system responses and inputs, the partial derivatives of these functions (i.e., response sensitivities) with respect to the input variables cannot be determined analytically. However, they can be determined numerically using finite difference schemes. For example, for the i-th input variable, using the mean plus or minus one step size δ, the partial derivative in Equation ( 5) can be written as:

∂g ∂Z ≅ M M 2δ (6) 
where:

M g μ , μ , … , μ δ , … (7) 
M g μ , μ , … , μ δ , … (8) 
The above first-order approximations may be successively improved by including higher-order terms in the Taylor series. In order to find the 2nd-order variance, the third and fourth moments of all the Z must be known, which is seldom the case. Thus, for practical purposes, the first-order variance Equation ( 5) and the second-order mean Equation ( 4) are generally used. In equations ( 2) to (11), the derivative term is called the system response sensitivity for M associated with Z .

Note that the perturbation step size δ should be small enough to minimize the truncation error but also large enough to avoid sensitivity to simulation error. If the system has highly nonlinear behaviors and the input values have non-normal distribution characteristics, the RSA method may have some errors in its results. However, it is nonetheless easily applicable to dynamic system simulation because it is a computationally inexpensive method compared to MCS. When system responses show piecewise linear characteristics, the RSA method provides high fidelity analysis results being very close to those provided by MCS. If the truncation error is large and/or step size is too small, it is helpful to use a 4th-order central difference scheme which has a truncation error term of the order (δ 4 ) and it is given by:

∂g ∂Z ≅ M 8M 8M M 12δ (9) ∂ g ∂Z ≅ 16M M 30M 16M M 12δ (10) 
Where:

M g μ , μ , … , μ 2δ , … (11) 
M g μ , μ , … , μ 2δ , … (12) 

PROCEDURE

A first refinement of the model has been carried out by implementing the so called non-value added time costs.

Then, the deterministic model was translated into a stochastic one by inserting the frequency distributions related to the actual behavior of specific activities and by using the RSA method.

MODEL Figure 2. mGT model implemented in Matlab-Simulink environment

The model of the mGT, implemented in Matlab-Simulink environment, is based on the micro-gas turbine Turbec T100 installed at the research laboratory, feeding the electrical and thermal needs of the University campus [START_REF] Ferrari | Micro gas turbine recuperator: steady-state and transient experimental investigation[END_REF].In particular both compressor and turbine maps, based on experimental tests [START_REF] Caresana | Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components' behavior[END_REF], were implemented in the model. The probability distributions of parameters and responses are assumed according to known information or actual measurements. For most engineering problems, a clear probability inference of parameters usually requires a large volume of experimental data, which is often impractical due to expense consideration or experimental limitations. Thus a normal (Gaussian) distribution is popularly adopted without losing the generality, which is, under such circumstance, more appropriate than other distributions. This is due to the facts that (a) normal distributions are often found in engineering problems when the data collection is adequate and (b) in many cases a detailed description of probability distributions is not required since only the means and variances are sought [START_REF] Friswell | Stochastic model updating in structural dynamics[END_REF].

Since the nominal performance, both in terms of electrical efficiency and power&heat outputs, is a critical issue in the performance analysis of a mGT, in this paper the nominal efficiency of compressor and turbine were taken into account as stochastic inputs (Table2).

All the random variables were assumed as independent. A scatter of ±5% was assumed for the efficiencies and 0.5% for rotational speed. Normal distribution was assumed for all the random variables taken into account. In addition, in order to consider the possible uncertainty that could affect the load demand, it was assumed that mGT works at three different load conditions along the year. All these uncertainties were implemented in the model in order to understand their impact in the performance (electrical power, fuel consumption and gross efficiency) and cost (pay-back period) of mGT. The assumptions for the calculation of the payback period are:

 an initial investment of € 130.000 for the purchase of mGT  revenue of € 0.18 for each kWh of electric power consumed by the University campus  revenue of € 0.08 for each kWh of thermal power consumed by the University campus  a cost of € 0.6 per kilogram of fuel consumed (pipeline natural gas)  1% of the total investment cost for the annual maintenance cost  an operating period of 8000 hours per year

C. F. C P C P C m (13) PBP F. C. 1 C C. F. (14) 
In particular, the effect that each input has on the considered outputs was analyzed through the RSA method.

RESULTS AND DISCUSSION

The micro-turbine model gives the possibility to monitor various operating parameters, such as: electrical power, fuel mass flow and net efficiency of the system.

First of all, the model was implemented according to a deterministic approach in order to understand the behavior of the mGT in non-stochastic condition: 100% electrical load was assumed for 8000h, which is quite a non-realistic case. This first step is necessary in order to better compare and critically analyze the results obtained with the RSA approach. In Table 4 the output of the deterministic model at each percentage of load are reported: In a further step the probabilistic distribution of outputs were obtained using RSA analysis by introducing the effect of stochastic inputs described before. It is important to underline that all the distributions of parameters reported in Figure 3 were obtained maintaining the 100%±5% of electrical load for the whole year, in order to compare this case with the deterministic one summarized in Table4. The blue distributions are the results of stochastic analysis while each deterministic output is indicated with a squared marker on them. Since there is no difference between deterministic inputs and the means of stochastic input distributions used in RSA calculation, and because the boundary conditions for the two cases are very closed, as we could expect, the RSA approximates quite well the mean of the outputs in respect of the deterministic results, with differences not bigger than 3%. Moreover it returns more important information regarding the uncertainty of these values. Then, the model has been used to evaluate the performance also at part load. The calculation of PBP under stochastic conditions allows to estimate two different important aspects: on one hand, it allows to obtain the most probable period for the return of investment as the mean value of a normal distribution; on the other hand it is useful to evaluate the range of variation. The semi-amplitude of this interval is set here equal to the standard deviation.

The procedure done at 100%±5 load was repeated also at 50%±5 and 20%±5 of electrical load to evaluate the total PBP during the entire life of the mGT. In the end, the same economic analysis was developed, but this time taking in account all the three possible working conditions during the whole year. On the right hand side of Figure 4 the corresponding cash flow diagram is reported. In particular, for this mGT model, the combined effect of uncertainties of all the inputs seems to be more influent as the load is lower, and could explain the difference in estimation of standard deviation. 

SENSITIVITY ANALYSIS

An important advantage of RSA method is its capacity to estimate the impact of each single input uncertainty on the monitored outputs at the same time of the probabilistic analysis. This is done through the parameter called sensitivity, defined as the first derivative of outputs with respect to the input variable, that can be non-dimensionalized as it follows:

Sensitivity ∂g ∂Z Z , g , (15) 
In this way, it is possible to know how much influence each input can have on the monitored parameters; higher is this value higher in the influence. The series of pictures in Figure 5 shows, on one hand, what is the different effect of inputs at a fixed operating condition, and, on the other hand, how this effect evolves if the working condition is changed. It is clear for this system that reducing the load condition the influence of each input increases: this behavior is observable with different magnitudes but it appears as a common aspect for every parameter. 

CONCLUSIONS

A stochastic analysis of a mGT was performed in order to understand how the uncertainty of the input parameters influence the outputs. In particular, the variability in load demand and in performance was taken into consideration to evaluate the impact on fuel consumption, net efficiency and cost (pay-back period). The analysis was performed using the RSA method. In general the RSA approximated method is able to return the most probable value of each monitored variable and the range, described in terms of standard deviation of the outlet probabilistic distribution, where it could fall. The advantage of RSA is that it provides the possibility of treating problems with high level of uncertainty linked to their internal variables, in particular:

 it shows an important saving in computational time if compared to traditional stochastic analysis like Monte Carlo simulation, keeping good accuracy.  it can be used to investigate the direct effect of a single uncertainty on final results, in order to know what are the most influent inputs and what are the negligible ones.

From the economic point of view, in this specific case study, the value of 2.34 years was found to be the most probable Pay Back Period, with a range of ±0.36 years of variation where it could fall with 68% level of confidence.
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 1 Figure 1. Energy Hub at laboratory of University of Genoa.
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 3 Figure 3. Outputs distributions: electrical power, net efficiency and fuel consumption.
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 4 Figure 4. (a) Pay Back Period [yr] distribution and (b) cash flow diagram.
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 5 Figure 5. Sensitivity of the outputs to each input variable at (a) 100%, (b) 50% and (c) 20% of electrical load condition

Table 1 .

 1 Compressor and turbine data at 100% of load condition

	Variable	Compressor Turbine
	[kg/s]	0.9003	0.9038
	[1/min]	71000	71000
	T [K]	288	1123
	R [J/kgK]	288.2	294.4
	P [Pa]	101300	430100
	;	4.3	4.1
	;	0.78	0.83

Table 2 .

 2 Uncertainty in input variables

	rpm		,		,	
	μ	σ	μ	σ	μ	σ
	71000 355	0.78	0.039	0.83	0.0415

Table 3 .

 3 Operating condition per year

	% of the load Operating hours
	100%±5%	1/3* O.P.
	50%±5%	1/3* O.P.
	20%±5%	1/3* O.P.

Table 4 .

 4 Deterministic results

	OUTPUTS	100% load 50%load 20% load
	Pel [kW]	97	49	21
	ηg [%]	0,34	0,22	0,11
	[nl/min] 0,000414 0,000329 0,000278
	PBP [year]	1,17	2,04	3,46

Table 5 .

 5 Mean and standard deviation of outputs at different load conditionsThe total PBP is calculated considering the combination of the three cases reported in Table5: so the mean

		Pel [kW]	/	
		μ	σ	μ	σ
	100%	97.52	20.19 4.01E-04 2.80E-05
	50%	48.12	18.29 3.18E-04 2.65E-05
	20%	20.40	16.59 2.76E-04 2.32E-05
		ηg		PBP	
		μ	σ	μ	σ
	100%	0.35	0.05	1.18	0.16
	50%	0.22	0.07	2.10	0.40
	20%	0.10	0.08	3.74	1.00