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A new algorithm for DNS simulations of cavitating flows is developed. It is based on a form of Kim and Moin projection method. Intention is to use this algorithm to perform cavitation simulations with currently most often used cavitation models and gain better insight into the best possible description of cavitation-turbulence interactions and cavitation behaviour with such models. Therefore algorithm enables us to simulate cavitating flows where cavitation is modelled with homogeneous mixture approach and cavitation models which use transport equation for vapour volume fraction and source term from empirical or bubble dynamics equations. Algorithm is adapted for and implemented into MFLOPS-3D code which enables fast parallel computations with the use of influence matrix and matrix diagonalization techniques.

INTRODUCTION

Cavitation as a phenomenon is still not completely understood. One of the important areas, raising many questions considering behaviour, development and modelling of cavitation, is the area of cavitation-turbulence interactions. These are widely studied, mainly experimentally, with numerical work following and adding to experimental results [START_REF] Kubota | A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section[END_REF][START_REF] Xing | Numerical simulation of vortex cavitation in a three dimensional submerged transitional jet[END_REF].

As numerical simulations offer not just additional, but sometimes also better insight into the flow, they seem to be an interesting tool for obtaining more detailed description of mentioned interactions. There has been a lot of development in the field of numerical simulations of cavitation, from the first cavitation models and simulations which were able to describe simple, stable cavitation, to the models which are now able to describe not just unstable effects [START_REF] Kubota | A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section[END_REF][START_REF] Xing | Numerical simulation of vortex cavitation in a three dimensional submerged transitional jet[END_REF], but also include some compressibility effects as in [START_REF] Lu | Direct numerical simulation of bubbly flows and application to cavitation mitigation[END_REF]. The most often used models nowadays are based on homogeneous mixture approach where the density and viscosity of the fluid depend on the volume fractions of present phases which are treated as incompressible. Such models often introduce additional transport equation for vapour volume fraction. Although widely used, they are still not generally applicable to all flow conditions neither give same results if used in identical conditions. Moreover, RANS turbulence models usually accompany them, which leads to error increase, as the models, built on many simplifications, interact with each other.

Consequently, additional attention has to be given to the turbulence-cavitation interactions when such models are used in order to improve them and obtain better results from most practically used simulations. A plausible strategy to do this is to perform DNS simulations of cavitating flows using various models and compare obtained results with experimental data. There were some DNS simulations already performed, but their objective was not the mentioned issue [START_REF] Kubota | A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section[END_REF][START_REF] Xing | Numerical simulation of vortex cavitation in a three dimensional submerged transitional jet[END_REF][START_REF] Lu | Direct numerical simulation of bubbly flows and application to cavitation mitigation[END_REF]. Moreover, used algorithms could only accept certain models [START_REF] Kubota | A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section[END_REF][START_REF] Xing | Numerical simulation of vortex cavitation in a three dimensional submerged transitional jet[END_REF]. Therefore a new algorithm and a code are desired and under development in our laboratory. With them, we intend to perform simulations with mentioned most often used cavitation models that feature additional vapour volume fraction transport equation. As many simulations are to be done, it is requested that the code performs fast DNS simulations.

The aim of this paper is to present the new algorithm and the code. For this reason, the paper is composed as follows: at first, the MFLOPS-3D code, representing a basis for our work, is described. Then, the algorithm is presented through the equations solved in it and the procedure in which it runs. At the end, some verification results are given to describe its and code's accuracy and performance.

MFLOPS-3D CODE

As multiple highly CPU demanding DNS simulations are to be performed, it is required to use a code capable of fast DNS simulations. Because of this, the in-house code of our laboratory, named MFLOPS-3D, is used as a basis. The code was intentionally created for fast DNS and LES simulations of incompressible flows, which means that capability to simulate cavitating flows had to be introduced. More information about the code can be found in [START_REF] Marquillie | Direct numerical simulation of a separated channel flow with a smooth profile[END_REF]. Here, only brief description of its features, important for later parts of the paper, is given.

Governing equations and solution algorithm in MFLOPS-3D code

The code solves the system of governing equations presented by the non dimensional Navier-Stokes momentum and continuity equations, equations ( 1) and [START_REF] Xing | Numerical simulation of vortex cavitation in a three dimensional submerged transitional jet[END_REF]. The solution algorithm is built on pressure non-incremental form of Kim and Moin projection method [START_REF] Kim | Application of a fractional-step method to incompressible navier-stokes equations[END_REF]. This means that firstly, equation ( 1) is put into Helmholtz equation ( 3) to obtain predictor velocity u * . The real velocity u is found through the projection equation ( 4), which follows from the difference between equations ( 1) and [START_REF] Lu | Direct numerical simulation of bubbly flows and application to cavitation mitigation[END_REF]. Therefore prior to u, variable Φ has to be obtained, which is done by applying divergence to (4), thus creating Poisson equation. The boundary conditions for u * and Φ are given in equation [START_REF] Kim | Application of a fractional-step method to incompressible navier-stokes equations[END_REF].

∂ u ∂t + u • ∇ u = -∇p + 1 Re ∆ u (1) 
∇ • u = 0 (2) ∆ - 3Re 2dt u * = -4 u n + u n-1 2dt + u • ∇ u n, n-1 (3) 
∇Φ = - 3 u n+1 -u * 2dt ( 4 
)
u n+1 • n = u * • n , u * • τ = u n+1 + 2dt∇Φ n 3 • τ (5)
If written, the superscripts in the presented equations define the time level of a certain explicitly treated variable, with n being previous time level. In equation [START_REF] Kim | Application of a fractional-step method to incompressible navier-stokes equations[END_REF], n and τ depict normal and tangential direction.

Numerical methods used in MFLOPS-3D code

Equation (3) and Poisson equation for Φ form system of equations the code solves in parallel. Computational domain is divided into sub domains and in each sub domain, a system of equations is solved using matrix diagonalization technique [START_REF] Haldenwang | Chebyshev 3-d spectral and 2-d pseudospectral solvers for the helmholtz equation[END_REF]. Diagonalization has to be done only at the start of a simulation as the left hand side of equations is constant. This is not just a consequence of the nature of the equations to be solved but is actually demanded, because the multi domain method used in the code is based on influence matrix technique [START_REF] Danabasoglu | Application of the spectral multidomain method to the navierstokes equations[END_REF]. Consequently, the most time consuming operations are done only at the start, resulting in a code capable of fast DNS simulations. The code uses structured and collocated grids. Spatial discretization is done with compact finite differences (2 nd , 4 t h , 6 t h and 8 t h order can be used), while the time derivative terms use 2 nd order backward derivative scheme. The non linear term in equation ( 1) or ( 3) is defined with the skewsymmetric form [START_REF] Morinishi | Fully conservative higher order finite difference schemes for incompressible flow[END_REF], where the 2 nd order Adams-Bashford scheme is used for explicit time extrapolation of velocities. This scheme is denoted by n, n -1 superscript.

DEVELOPMENT AND IMPLEMENTATION OF THE NEW ALGORITHM

Governing equations

Governing equations describing cavitating flow are well known dimensional compressible Navier-Stokes momentum and continuity equations, equations [START_REF] Haldenwang | Chebyshev 3-d spectral and 2-d pseudospectral solvers for the helmholtz equation[END_REF][START_REF] Danabasoglu | Application of the spectral multidomain method to the navierstokes equations[END_REF], with the additional transport equation for the vapour volume fraction α, equation [START_REF] Morinishi | Fully conservative higher order finite difference schemes for incompressible flow[END_REF].

ρ ∂ u ∂t + u • ∇ u = -∇p + ∇ • µ(∇ u) + µ(∇ u) T - 2 3 ∇ µ(∇ • u) (6) 
∂ ρ ∂t + ∇ • ( ρ u) = 0 (7) ∂ ρ v α ∂t + ∇ • ρ v α u = S (8) 
Term S in equation ( 8) is the source term which governs creation or destruction of gaseous phase. In all the cavitation models considered to be used and also generally, it depends on pressure p and α. Moreover, as is shown in [START_REF] Sauer | Instationar kavitierende Stromungen-Ein neues Modell, basierend auf Front Capturing (VoF) und Blasendynamik[END_REF], it follows from equations [START_REF] Danabasoglu | Application of the spectral multidomain method to the navierstokes equations[END_REF] and (8) that the source term is proportional to the divergence of velocity. Connection is given in equation ( 9) and, as in [START_REF] Sauer | Instationar kavitierende Stromungen-Ein neues Modell, basierend auf Front Capturing (VoF) und Blasendynamik[END_REF], presents the basis on which we can use projection methods to solve the system of presented governing equations.

S 1 ρ v - 1 ρ l = ∇ • u (9) 
Connection between the density and viscosity of the mixture (ρ and µ) and those of present phases is given with equation [START_REF] Dimitropoulos | An efficient and robust spectral solver for nonseparable elliptic equations[END_REF]. Subscripts v and l stand for vapour and liquid phase.

ρ = α ρ v + (1 -α) ρ l , µ = α µ v + (1 -α) µ l (10)

Composition of the new algorithm

Composition of the new algorithm is similar to the one in the original code, as the existing form of the Kim and Moin projection method is the basis of the new algorithm. But as governing equations are different, the equations in all steps of the projection method were heavily changed and an additional solution step for α was added. It was also found that both pressure incremental and non-incremental schemes can be used. In this part, equations composing new algorithm are presented for the case of both (incremental and non-incremental) schemes. As best results were found if iterative procedure, including all steps of the projection method, is applied, the algorithm is presented with this in mind. Therefore notation k in the equations represents results from previous iterations. In case of first iteration, where k + 1 = 1, explicit values are taken from previous time step n. Also, all terms in following equations, which have k or k + 1 superscript, are meant to be considered as terms at current time step.

Predictor velocity

Equation for predictor velocity u * is given in equation [START_REF] Brown | Accurate projection methods for the incompressible navier-stokes equations[END_REF] and follows from equation [START_REF] Haldenwang | Chebyshev 3-d spectral and 2-d pseudospectral solvers for the helmholtz equation[END_REF]. In it, u n+1 is replaced with u * in time derivative and only the part of the viscous term which is written with ∆ u.

∆ - 3ρ l 2dt µ l u * ,k+1 =ρ k -4 u n + u n-1 2dt µ k + ρ k µ k (( u • ∇) u) k - 1 µ k (∇µ • ∇ u) k - 1 µ k (∇µ k ) • (∇ u k ) T - 1 3 ∇(∇ • u k ) + 2 3µ k ∇µ k (∇ • u k ) + ∇p n µ k + 3ρ k 2dt µ k - 3ρ l 2dt µ l u * e (11) 
Compared to equation (3), increase in explicitly treated terms is obvious and is a result of the unknown actual viscosity µ and density ρ at this step. In order to have as small amount of explicitly treated terms as possible and satisfy the need for constant left hand side, Concus and Golub (CG) method was used [START_REF] Dimitropoulos | An efficient and robust spectral solver for nonseparable elliptic equations[END_REF]. This results in the last term of equation [START_REF] Brown | Accurate projection methods for the incompressible navier-stokes equations[END_REF] and demands iterative solutions until u * ,k+1 and its explicit counterpart u * e converge (convergence is set to 10 -4 absolute difference between iterations). Equation [START_REF] Brown | Accurate projection methods for the incompressible navier-stokes equations[END_REF] can be used in pressure incremental or non-incremental scheme, the only difference is that penultimate pressure term is not present in non-incremental scheme. The boundary conditions, given in equation [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF], are however the same for both schemes and follow same logic as those in original MFLOPS-3D code.

u n+1 • n = u * • n , u * • τ = u n+1 + 2dt∇Φ k 3ρ k • τ (12)

Projection equation

After u * , k+1 is obtained, solution for intermediate variable Φ follows. Equation for it can be written in two forms and follows from the difference between equations ( 6) and [START_REF] Brown | Accurate projection methods for the incompressible navier-stokes equations[END_REF].

The two forms are given in equations [START_REF] Morinishi | Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-mach number flows[END_REF][START_REF]ANSYS FLUENT User Guide[END_REF] for theoretical case of knowing all variables of the current time step and are different only in the inclusion of ρ. This is in ( 14) included inside Φ.

3ρ n+1 2dt ( u n+1 -u * ) = -∇Φ (13) 3 2dt ( u n+1 -u * ) = -∇Φ (14) 
The form in ( 14) is actually recommended by [START_REF] Sauer | Instationar kavitierende Stromungen-Ein neues Modell, basierend auf Front Capturing (VoF) und Blasendynamik[END_REF], but in our tests gave worse results. Therefore the description will only focus on equation [START_REF] Morinishi | Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-mach number flows[END_REF]. In order to obtain Φ, divergence is applied to it and theoretically (again), equation ( 15) follows. In it, ∇ • u n+1 is replaced with S n+1 as given in equation ( 9). After Φ is obtained, one can easily get velocity u n+1 from equation [START_REF] Morinishi | Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-mach number flows[END_REF]. And as pressure is a very important variable in cavitation simulations, it can also be easily defined at this point by using equation ( 16) in case of pressure nonincremental scheme or equation ( 17) in case of incremental (in this, the viscous terms can be omitted as u * and u n+1 are very close [START_REF] Brown | Accurate projection methods for the incompressible navier-stokes equations[END_REF]). Both connections were proven to be correct using similar proof as in [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF].

∆Φ = - 3 u n+1 -u * • ∇ρ n+1 2dt - 3ρ n+1 S n+1 1 ρ v -1 ρ l -∇ • u * 2dt (15) p n+1 = Φ + µ n+1 S n+1 1 ρ v - 1 ρ l -∇ • u * (16) 
p n+1 = Φ + p n (17) 
As written, the given equations for Φ are theoretical. u n+1 , S and ρ are not known for the current time step and terms with them have to be treated explicitly, which made a stable solution procedure for Φ hard to develop. Although the usual recommendation of linearising S in respect to pressure and including the resulting new term on left hand side of equation ( 15) was known [START_REF] Sauer | Instationar kavitierende Stromungen-Ein neues Modell, basierend auf Front Capturing (VoF) und Blasendynamik[END_REF], it was not useful because of the demand for the constant matrix on this side and because we solve for Φ which is in non-incremental scheme not connected with p only. After trying numerous solution procedures and settings, we found the first procedure with better stability while respecting the demand for the constant left hand side. In it, S is (totally) linearised in respect to p and α, as given in equation ( 18). Then, the dα term is expressed using material derivative and equation [START_REF] Morinishi | Fully conservative higher order finite difference schemes for incompressible flow[END_REF], resulting in equation ( 19), meaning that another term including pressure change dp is now present. As this term can be (at least partially) expressed with Φ, an important result is that the presence of Φ is increased. This makes an iterative procedure, where Φ and u are updated between iterations for Φ, more stable. But the procedure however demands under relaxation of Φ with highest Φ update of 30 % and is therefore quite slow. Following to this, a much better and ideally stable procedure was obtained with the use of CG method. With it, a constant σ, based on the pressure derivative of S, is introduced on the left hand side and as recommended in [START_REF] Dimitropoulos | An efficient and robust spectral solver for nonseparable elliptic equations[END_REF], equals middle value from a range of possible values.

T h i s m a k e s t h e w h o l e s o l u t i o n f o r Φ m o r e i m p l i c i t , u n d e r r e l a x a t i o n i s n o l o n g e r n e e d e d a n d t h e r e f o r e l e s s i t e r a t i o n s a r e d e m a n d e d w h i l e s t a b i l i t y i s h u g e l y i m p r o v e d . T h e (fi n a l ) e q u a t i o n f o l l o w i n g f r o m t h i s p r o c e d u r e a n d u s e d i n t h e c o d e i s g i v e n i n e q u a t i o n (2 0 ). S u b s c r i p t i d e n o t e s t h e i t e r a t i o n s t e p f o r t h i s e q u a t i o n a n d i s u s e d f o r Φ (h i d d e n a l s o i n l i n e a r i s e d S) a n d u, w h i c h a r e t h e o n l y u p d a t e d v a r i a b l e s h e r e . A l l

o t h e r s a r e k e p t t h e s a m e a n d c h a n g e o n l y a f t e r c o n v e r g e d Φ i s o b t a i n e d (c o n v e r g e n c e c r i t e r i a i s s e t t o 1 0 -3 a b s o l u t e d i ffe r e n c e b e t w e e n i t e r a t i o n s ) o r i n t h e n e x t i t e r a t i o n o v e r a l l e q u a t i o n s .

S n+1 = S n + ∂S n ∂p dp + ∂S n ∂α dα ( 1 8 
) I n t e r e s t i n g l y a n d c o n t r a r y t o o t h e r a l g o r i t h m s u s e d t o s o l v e s u c h s y s t e m o f e q u a t i o n s , i t w a s f o u n d t h a t w h e n u s i n g i n c r e m e n t a l s c h e m e a n d i t e r a t i n g o v e r a l l e q u a t i o n s i n o n e t i m e s t e p , i t i s b e t t e r t o a l w a y s s o l v e f o r c o m p l e t e p r e s s u r e d i ffe r e n c e dp b e t w e e n t w o t i m e s t e p s . T h e r e f o r e Φ i n t h i s c a s e e q u a l s dp = p n+1p n a n d n o t p r e s s u r e c o r r e c t i o n b e t w e e n t w o i t e r a t i o n s , a s i n [START_REF] Sauer | Instationar kavitierende Stromungen-Ein neues Modell, basierend auf Front Capturing (VoF) und Blasendynamik[END_REF] . C o n s e q u e n t l y p n i s u s e d i n p r e s s u r e t e r m o f e q u a t i o n (1 1 ) a n d i n e q u a t i o n f o r p r e s s u r e u p d a t e (1 7 ). I t i s a l s o b e t t e r t o u s e S n a s a b a s i s f o r l i n e a r i s e d s o u r c e t e r m i n e q u a t i o n (2 0 ). N o r m a l u s e o f p o r S f r o m p r e v i o u s i t e r a t i o n n a m e l y r e s u l t e d i n u n s t a b l e s i m u l a t i o n s .

dα = S n + ∂S n ∂p dp 1 K a -∂S n ∂α K a = 1 ρ v -α k 1 ρ v - 1 ρ l dt (1 9 ) (∆ + σ) Φ i+1 = - 3 2 dt u k+1 i -u * , k+1 • ∇ρ k - - 3 ρ k 2 dt S n + ∂S n ∂p dp i + ∂S n ∂α dα i 1 ρ v - 1 ρ l + 3 ρ k 2 dt ∇ • u * , k+1 + σΦ i ( 2 

α solution T h e l a s t e q u a t i o n w h i c h n e e d s t o b e s o l v e d i s t h e t r a n s p o r t e q u a t i o n f o r α, w h i c h c a n n o t b e r e s h a p e d i n t o H e l m h o l t z e q u a t i o n . T h e r e f o r e t h e s o l v e r i n t h e c o d e c a n n o t b e u s e d , b u t a s a l l v a r i a b l e s e x c e p t α i t s e l f a r e k n o w n , w e s o l v e i t s e p a r a t e l y i n e a c h p o i n t . E q u a t i o n (2 1 ) i s u s e d f o r t h i s a n d f o l l o w s f r o m e q u a t i o n (8 ).

α k+1 i+1 = S k +1 i ρ v + 4 α n -α n -1 2 dt -( u k+1 • ∇)α k+1 i 1 2 dt + S k+1 i 1 ρ v -1 ρ l ( 2 

Other implemented numerical methods D e v e l o p m e n t a n d i m p l e m e n t a t i o n o f p r e s e n t e d e q u a t i o n s w a s n o t t h e o n l y n e e d e d c h a n g e t o t h e o r i g i n a l c o d e . I n o r d e r t o p e r f o r m s t a b l e c a v i t a t i n g fl o w s i m u l a t i o n s , a d d i t i o n a l m e t ho d s h a d t o b e i m p l e m e n t e d . F i r s t l y , t h e i n t r o d u c e d α v a r i a b l e e x p r e s s e d s t r o n g i s s u e s w i t h R u n g e p h e n o m e n a i n d e r i v a t i v e s w i t h c o m p a c t fi n i t e d i

Diagram of algorithm

A s m e n t i o n e d , t h e a l g o r i t h m g i v e s t h e m o s t a c c u r a t e r e s u l t s i f i t e r a t i o n s a r e d o n e o v e r a l l e q u a t i o n s o f t h e p r o j e c t i o n m e t h o d . T h e a l g o r i t h m h o w e v e r a l s o i n c l u d e s i t e r a t i v e l o o p s f o r s o l ut i o n s o f a l l v a r i a b l e s . B e c a u s e o f t h i s , v a r i o u s c o m b i n a t i o n s w e r e t r i e d , b u t t h e p r e s e n t e d w a y o f s o l v i n g , w h i c h i s a l s o s h o w n o n F i g u r e 1 , w a s f o u n d t o b e t h e m o s t a c c u r a t e t o f o r m t h e n e w a l g o r i t h m .

Figure 1. P r o c e d u r e i n w h i c h t h e a l g o r i t h m r u n s

T h e c o n v e r g e n c e c r i t e r i a f o r c e r t a i n e q u a t i o n s w a s m e nt i o n e d b e f o r e . C o n v e r g e n c e c r i t e r i a f o r w h o l e s e t o f e q u a t i o n s uses continuity equation's volume integral value and demands that it drops by two orders of magnitude from it's maximum value. This is fairly lower criteria compared to the similar one used in commercial code Fluent [START_REF]ANSYS FLUENT User Guide[END_REF]], but it was chosen as results showed that no improvements of accuracy are obtained if more iterations are performed.

VERIFICATION OF THE ALGORITHM

Analytical equations of the flow

The algorithm and the code were up to now tested mainly with verification tests based on the use of Method of Manufactured Solutions (MMS) [START_REF] Eca | Code verificaton of unsteady flow solvers with the method of the manufactures solutions[END_REF]. Analytical equations of the flow, featuring source term S as a function S = f (p, α) and corresponding density changes, were developed in order to obtain forcing terms which are then used to see if the algorithm and the code correctly solve the system of governing equations. These analytical equations are given in equations (22-25), while the forcing terms which follow are too long to be presented here.

u = C cos(gt) cos(ay) (22) v = 1 - ρ v ρ l
BC cos(gt) sin(gt) cos(ax) sin(ay)

1 -1 -ρ v ρ l α + Bg cos(gt) sin(ax)y 1 -1 -ρ v ρ l α (23) 
p = BCa cos(gt) sin(gt) cos(ax) cos(ay)

α 1 -ρ v ρ l α -1 + Bg cos(gt) sin(ax) α 1 -ρ v ρ l α -1 (24) α = B(sin(ax) sin(gt) + 1) + K 1 , S = -αpρ v (25)
Velocity in z direction, w, is 0 m/s. The constants in presented equations are used to govern behaviour of the flow. K 1 is used to set minimum α always present in the domain and B defines the amplitude of α oscillations. Frequency of spatial and temporal oscillations are governed by constants a and g, while C governs the amplitude of oscillations. With such equations, it is possible to verify how the code responds to the increase in amplitude and oscillations of certain variables. Here, it is very important that S is a function of p and α, as in this way we have a test case which better resembles real behaviour of the flow. Moreover, the use of CG method with constant σ can also be better verified, as σ follows the same logic as it would in the real flow. σ for the case of incremental and non-incremental scheme is presented in equations (26, 27).

Many different test cases were performed, which led to the final algorithm. Here we present some results showing accuracy of the algorithm and the code, their ability to perform simulations with different flow settings and general convergence characteristics.

σ = - 3α 0,5 ρ 0,5 2dt 1 - ρ v ρ l (26) σ = - 3 2dt α 0,5 ρ 0,5 1 + µ 0,5 α 0,5 ρ v (1/ρ v -1/ρ l ) 1 - ρ v ρ l (27)

Reference test case

As different tests were performed with various intentions, it was needed to choose one reference test case, used as a basis to compare all other results or performances. As such, a test case with cuboid domain sizes {-0, 2; 0, 2} m in x and y direction, {-0, 1; 0, 1} m in z and constants C = 1, B = 0, 5 , a = 2π and g = π, was chosen. The phases have ρ l = 10 kg/m 3 , ρ v = 3 kg/m 3 , µ l = 0, 05 Pa • s and µ v = 0, 01 Pa • s. Domain in this case was split into four sub domains, two in x and two in y. Each sub domain had 21 points in x, y directions, 11 in z. 1800 time steps with dt = 0, 014 s were performed. On Figure 2 one can see the results obtained with pressure incremental and non-incremental scheme and comparison with analytical values from equations (22-25) can also be done.

On Figure 2, plots of u, v velocity, pressure p and α at z = 0 m are shown from left to right. Top line presents analytical values while solutions obtained with pressure incremental scheme are given in the middle and solutions for non incremental scheme in the bottom line. As it can be seen, results show very good agreement between analytical and calculated values. Pressure incremental scheme reports better results, is also 10% faster than non-incremental and was therefore chosen as the default scheme for all other shown results. The mentioned time difference between the schemes and its origin can be observed on Figure 3. The diagram in it shows the time needed to obtain a converged solution for a certain variable, and time, needed to obtain a solution for one CG iteration. All of these solution times are also compared to the solution times in incompressible flow case, which was solved with original code, where no CG iterations for solutions of variables are requested. The incompressible case was chosen to have similarly demanding flow regarding oscillations, their amplitudes and CFL number and was performed in same domain. It can be seen that code with our algorithm generally obtains one solution of a system of equations slower than original code. It is faster only in case of Φ solution (or p as it is given on the diagram) when pressure incremental scheme is used. As multiple iterations are performed to obtain converged solution and as iterations are done also over all equations, the new code for cavitation simulations performs much slower than the original one. The speed decrease depends on the severity of solved case. For example, the lower the range of α, the lower the speed difference. Interestingly, we also observed that the more processors used in both codes, the less the speed difference is. In case of this reference test, the difference in total time required to perform 1800 time steps accounted to the ratio 17, but it has to be stressed that only four sub domains were used, while α had a range of {0; 1}. In more demanding tests, this ratio fell below 12. As converged solution is usually obtained after 3 iterations over all equations, this means that if iteration steps over all of the equations are not performed, the ratio is only 4. 

Convergence tests

Convergence tests were performed in order to determine the accuracy of the algorithm implemented in the MFLOPS-3D code and compare it with the accuracy of the original code. The case used in the tests is based on reference test case, which was then solved with gradually refined mesh and time step. Performed calculations used from 4 to 98 processors, making the finest mesh five times more refined than that in the reference test case. The refinement of the time step was done in a manner to keep CFL number constant. Same, but with the mesh up to seven times more refined (as calculations are shorter to perform), was also done for the original code, where aforementioned incompressible case was used as a basis. Accuracy was estimated using time and space averaged L2 norm. The equation for it is given in equation ( 28) and is a sum of all momentary space averaged L2 norms, which are given as a sum of squared differences between calculated and exact values of a certain variable ψ in all points in a domain, divided by the same number of points, N pt s . This L2 sum is then divided by number of time steps, N t i me . L2 =

Σ N t i me j=1 Σ N p t s m=1 (ψ c al -ψ e x t ) 2 N p t s 1/2 N t i me (28) 
Results for convergence of u, v components of velocity, p and also α for the case of new algorithm, are given on the graphs in Figures 4 and5. Reported orders of accuracy are noted under the names of the curves in the legends. It was found that original algorithm and the code express 2 nd order accuracy for velocities and practically 3/2 order of accuracy for pressure. Although we use 4 t h order compact difference schemes for spatial derivatives, it follows from [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF] that this Convergence curves with reported order of accuracy for incompressible flow algorithm is expected and also best possible result for an algorithm utilising such projection method as in the original code. For the new algorithm, worse convergence characteristics are reported. Many sets of simulations with different settings were performed and although simulations were stable, convergence was not always the same. Results in Figure 5 show convergence curves from one of the sets with usually reported convergence characteristics. u velocity in it has order of accuracy equal to 1, 6, v to 1, 4 while p exhibits order equal to 1, 3. This is also a result very close to the one reported in incompressible code. Which is actually surprising, as it is obtained with pressure incremental scheme, where equation (17) for definition of p n+1 does not include viscous terms. According to [START_REF] Brown | Accurate projection methods for the incompressible navier-stokes equations[END_REF][START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF] this should lead to pressure being only 1 st order accurate, but we obviously managed to obtain better accuracy. Nevertheless, it has to be mentioned that this might have an effect on α, as the order of accuracy mostly reported and also shown here was only 1, 1. As p plays a huge role in S, which greatly affects α, this might have an effect on decreasing the accuracy of α solution. Moreover, p might through α, and also generally, have an effect on velocity convergence being lower than theoretically possible, as ρ, µ and p play an important role in all equations. However, it was observed that in some sets, convergence between some simulations was for velocity close to 2 nd order, while pressure also had order closer to 3/2. This means that theoretically highest possible orders of accuracy, like in the incompressible code, are achievable, and at the moment work is being done on this. For instance, simulations with pressure non-incremental scheme, which use equation ( 16) for pressure, are still to be done. Because of the mentioned equation, the order of accuracy might be higher. Simulations with this scheme were not done in these convergence tests up to now as first observed results (Figure 3) were better with pressure incremental scheme and because computational resources we use for such tests have limited available CPU. On the other hand, equation ( 16) was not used with pressure incremental scheme, although it is more accurate, not only because the viscous term in it becomes very small in pressure incremental scheme [START_REF] Brown | Accurate projection methods for the incompressible navier-stokes equations[END_REF], but also because inclusion of it into this scheme actually made simulations unstable. 

Tests with increased amplitudes

The ability to perform calculations with different flow settings was tested with the change of constants in equations (22-25).

In such way, we also checked how simulations need to be set if certain cavitating flow behaviour is exhibited. The tests we performed include cases where separately, constants C, g and a were increased. Finally, we also performed tests with much increased ρ l /ρ v and µ l /µ v ratios. Especially ρ l /ρ v ratio is important, as it is very high in reality and often imposes issues when performing cavitation simulations.

Increased C constant

Increase in C constant increases amplitudes of all variables except α. As such, it was expectedly found that to successfully resolve cases with increased C, mesh has to be refined, while time step needs to be lowered. But the refinement demand does not have linear behaviour. Namely the highest C we reached was C = 2, which demanded use of 36 sub domains with 25, 25, 15 points in x, y, z directions. Time step was decreased to dt = 0, 0025 s. This means that mesh had to be more than three times more refined as in the reference case, while time step was decreased even more. Results for v velocity component and α from such calculation with 6150 time steps done are given on Figure 6. For better presentation of results' accuracy, Figure 6 shows also instantaneous differences between calculated and exact values of v and α, normalized with their highest (instantaneous) values. Zero values on boundaries are a consequence of Dirichlet boundary conditions for velocities and α.

Increased g constant

Increase in g is meant to test increase of frequency of oscillations in time. But following equations (22, 24) it also increases amplitudes of v velocity and p. Because of this, g was found very demanding to be increased while keeping domain size unchanged. However, a value of g = 4π was reached with refinement of the mesh in x direction, while the mesh in y direction was much coarser. Results for v velocity and p, obtained for such g, are shown on Figure 7 together with normalized differences between their calculated and analytical values. Domain in this simulation was split into 80 sub domains, 20 in x direction and only 4 in y. Each sub domain had 31, 21, 17 points in x, y, z direction respectively, while time step was dt = 0, 001 s. 3850 time steps were performed. Numerous peaks present in pressure difference plot on Figure 7 have zero values. This is a consequence of their location on edges of sub domain interfaces on physical boundaries, where we do not solve for variables. Because von Neumann conditions are used on boundaries, except the one at x = 0, 2 m, the difference has otherwise non zero value.

Increased a constant

Increase in a constant causes increase in spatial oscillations, but also an increase in p amplitude. Care must be taken for ax product not to exceed value of 0, 5 otherwise points with α = 0 are reached and these resulted in α issues, especially on boundaries (although a limiter for α to be minimum 0 or maximum 1 was included into the code). Therefore for a case with a = 8π, domain in x direction was limited to {-0, 05; 0, 05} m. It is however less demanding to increase a than previous two constants. Only twelve sub domains were needed to successfully solve case with such a, and results for u velocity and p are shown on Figure 8. Each sub domain had 25, 25, 13 points in x, y, z directions and 2550 time steps with dt = 0, 0025 s were performed. Contrary to previous two cases, Figure 8 does not show differences between calculated and exact values, as the amplitudes of differences are in the same range. Instead, exact values of u and p are shown to give an impression of how much such differences affect results. 

Increase in density and viscosity ratios

Increase in these ratios is important in order to predict how the code reacts to realistic phases and ratios of their variables. Here, density ratio is more important than viscosity, as it has bigger influence on governing equations and it is also higher than realistic viscosity ratio. We therefore tried to obtain realistic density ratio and come as close to the realistic viscosity ratio as possible. It was found that the code accepts realistic density ratio of ρ l /ρ v = 1000/0, 001 without problems. Requirements were mesh and time step refinement. Viscosity ratio can also be high, but mixture viscosity had to be kept much higher than in reality. Reason is in increased Re number which would demand a lot of CPU power used otherwise. We therefore performed for the mentioned density ratio stable and not too CPU intensive simulations with viscosity ratio and (lowest) viscosities of µ l /µ v = 20/0, 1. Results for u velocity and α from such a simulation can be seen on Figure 9. Simulation was performed using 14 sub domains, with 31, 31, 11 points in x, y, z directions in each of the sub domains. 8500 time steps with dt = 0, 0015 s were performed. As in the case before and because of same reason, we add exact values of u and α to Figure 9.

This test cases also revealed that the stability of the new algorithm matches ideal stability. To obtain this ideal stability, we namely used pure Dirichlet boundary conditions for Φ, which is easy in the case of performing such MMS tests, but impossible in real flow simulations. When performing all of the presented simulations also with the use of Dirichlet boundary conditions, we found that same demands for calculation settings are expressed, and if not satisfied, simulations become unstable at same point. This, combined with convergence results, which show good order of accuracy for pressure and also possibility to obtain theoretically highest possible order of accuracy for such an algorithm, means that the algorithm is ready for real flow simulations.

CONCLUSION

The paper presents a new algorithm suitable for fast DNS simulations of cavitating flows with homogeneous mixture approach. The algorithm is based on the adapted Kim and Moin projection method and offers two main ways in which the governing equations can be solved. Here, both of them are presented, but only the pressure incremental scheme using equation [START_REF] Morinishi | Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-mach number flows[END_REF] for Φ is presented in results. The algorithm shows practically same performance stability wise when compared to the ideal conditions in which equations can be solved. Moreover, it exhibits good pressure convergence behaviour for the pressure update equation used. It also shows chances to reach highest possible accuracy for an algorithm based on the used projection method. Although it solves much more demanding governing equations than those for incompressible flow, it is capable to correctly solve cases with different magnitudes of effects included in equations (22-25). It is therefore considered to be suitable for performing real flow DNS simulations of cavitation. Besides cavitating flows, the algorithm could also be used for simulations of other multiphase flows, where homogeneous mixture approach is used and present phases are considered incompressible.
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 2 Figure 2. Analytical values and obtained results for reference test case.
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 3 Figure 3. Diagram with time required to obtain solutions of predictor velocity and pressure variables.
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 4 Figure 4. Convergence curves with reported order of accuracy for incompressible flow algorithm
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 5 Figure 5. Convergence curves with reported order of accuracy for the new algorithm
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 6 Figure 6. Calculated v and α in case with increased C (top) and normalized instantaneous difference between obtained and analytical values of v and α (bottom).
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 7 Figure 7. Calculated v and p in case with increased g (top) and normalized instantaneous difference between obtained and analytical values of v and p (bottom).
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 8 Figure 8. Calculated (above) and exact (below) u and p in case with increased a.
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 9 Figure 9. Calculated (above) and exact (below) u and α in case with increased ρ l /ρ v ratio.
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