Genome-Wide Screening of Retroviral Envelope Genes in the Nine-Banded Armadillo (Dasypus novemcinctus, Xenarthra) Reveals an Unfixed Chimeric Endogenous Betaretrovirus Using the ASCT2 Receptor
Résumé
Retroviruses enter host cells through the interaction of their envelope (Env) protein with a cell surface receptor, which triggers the fusion of viral and cellular membranes. The sodium-dependent neutral amino acid transporter ASCT2 is the common receptor of the large RD114 retrovirus interference group, whose members display frequent env recombination events. Germ line ret-rovirus infections have led to numerous inherited endogenous retroviruses (ERVs) in vertebrate genomes, which provide useful insights into the coevolutionary history of retroviruses and their hosts. Rare ERV-derived genes display conserved viral functions , as illustrated by the fusogenic syncytin env genes involved in placentation. Here, we searched for functional env genes in the nine-banded armadillo (Dasypus novemcinctus) genome and identified dasy-env1.1, which clusters with RD114 interference group env genes and with two syncytin genes sharing ASCT2 receptor usage. Using ex vivo pseudotyping and cell-cell fusion assays , we demonstrated that the Dasy-Env1.1 protein is fusogenic and can use both human and armadillo ASCT2s as receptors. This gammaretroviral env gene belongs to a provirus with betaretrovirus-like features, suggesting acquisition through recombi-nation. Provirus insertion was found in several Dasypus species, where it has not reached fixation, whereas related family members integrated before diversification of the genus Dasypus >12 million years ago (Mya). This newly described ERV lineage is potentially useful as a population genetic marker. Our results extend the usage of ASCT2 as a retrovirus receptor to the mamma-lian clade Xenarthra and suggest that the acquisition of an ASCT2-interacting env gene is a major selective force driving the emergence of numerous chimeric viruses in vertebrates. IMPORTANCE Retroviral infection is initiated by the binding of the viral envelope glycoprotein to a host cell receptor(s), triggering membrane fusion. Ancient germ line infections have generated numerous endogenous retroviruses (ERVs) in nearly all vertebrate genomes. Here, we report a previously uncharacterized ERV lineage from the genome of a xenarthran species, the nine-banded armadillo (Dasypus novemcinctus). It entered the Dasypus genus >12 Mya, with one element being inserted more recently in some Dasypus species, where it could serve as a useful marker for population genetics. This element exhibits an env gene, acquired by recombination events, with conserved viral fusogenic properties through binding to ASCT2, a receptor used by a wide range of recombinant retroviruses infecting other vertebrate orders. This specifies the ASCT2 transporter as a successful receptor for ERV endogenization and suggests that ASCT2-binding env acquisition events have favored the emergence of numerous chimeric viruses in a wide range of species.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...