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Central limit theorem for discretization errors based on
stopping time sampling

Emmanuel Gobet* Nicolas Landon® Uladzislau Stazhynski*

Abstract

We study the convergence in distribution of the renormalized error arising from the
discretization of a Brownian semimartingale sampled at stopping times. Our mild assump-
tions on the form of stopping times allow the time grid to be a combination of hitting times
of stochastic domains and of Poisson-like random times. Remarkably, a Functional Cen-
tral Limit Theorem holds under great generality on the semimartingale and on the form of
stopping times. Furthermore, the asymptotic characteristics are quite explicit. Along the
derivation of such results, we also establish some key estimates related to approximations
and sensitivities of hitting time/position with respect to model and domain perturbations.

Keywords: discretization of semimartingales, functional central limit theorem, stop-
ping times, exit time from a domain.
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1 Introduction

Statement of the problem and motivation. Let S be a R%valued It6 semimartingale
driven by a d-dimensional Brownian motion B and let us consider the discretization of S at
random stopping times 7§ =0 < 7' < --- < 7']’{]% = T'. The number of discretization times N
may be random as well. Our goal is to establish a functional Central Limit Theorem (CLT)
for the renormalized discretization error process (1/NJ'E[)o<t<r, Where & is R™-valued and
has the form & := 8:”1 + 5?’2 with

Tin/\t Tin/\t
gli= Y Men (Ss=Spn )ds, &= /n (85— Sz )T A dB,. (1.1)

n /T no<t 1
Ti—1 Ti—1

Here, M and A are arbitrary adapted continuous processes with values in Mat,,, 4 and Mat; 4 @R™
respectively (so that A; maps bilinearly (z,y) € R x R% to T Ay € R™; see the notation
at the end of this section). We consider quite general sequences of stopping times, combining
exit times by S of random domains and Poisson-like random times, as for instance

i =inf{t > 7y (St =S ) ¢ 5nD7T.LZL_1} A (T + 5?LGT£1(UTL¢) + Api) AT, (1.2)
for some parameter ¢, — 0, some stochastic domains D" indexed by time, some independent
random variables (Up ;)i n, some negligible error terms A, ;. More general forms are even
allowed in Section 3.

Actually, the representation (1.1) of the error term covers important applications such as
those presented below, where a discretization error process can be typically decomposed into



a linear part like (1.1) and the rest, that gives negligible contribution. To illustrate this, set
ASp:=S; — Sr» where 7" is the largest discretization time before ¢.

1. Integrated variance estimation. Here the goal is to estimate fo Tr(os0))ds using obser-
vations at random times (see, e.g., [RR12, LZZ13, LMR™14]). Usmg the It6 formula,
the estimation error writes

t t t
> 1ASal? - / Tr(os0) )ds = 2 / ASTo.dB; + 2 / bIAS,ds.
0 0 0

T <t

2. Optimal tracking strategies. This is related to the minimization of the tracking error of
a continuous-times strategy, which, for some function v : RT x R — R, may be written
in the form

t "/\t
/U(S,Ss)dSs— > o(r 8o JASnpe & Z / Vsv(ry, S )ASdSs,
0

T <t T <t
which is a particular case of (1.1). See, e.g., [Fukl1lb, Fuklla, GL14, GS18b|.

3. Parametric estimation for processes. Regarding the parametric inference of a diffusion
model based on discrete time observations, the study of the asymptotic statistical fluctu-
ations of minimum contrast estimators boils down to investigate the CLT for estimation
errors of the form (1.1). See [GJ93] in the case of deterministic observation times, and
[GS18¢] for random observation times, where furthermore optimal observation times are
derived.

Besides, the randomness of observation times is a quite common feature in real-life applications:
in [GWO02] the authors bring empirical evidence about the connection between volatility and
inter-transaction duration in finance; in [Fuk10] a relation between the bid/ask quotation data
and tick time sampling is highlighted.

Our contributions and comparison with background results. To the best of our
knowledge, this is the first attempt to study the convergence in distribution of discretization
errors for a general class of [t6 processes and random discretization grids given by stopping
times of the general form (1.2). In particular, our models for the process and the discretization
times are specified directly, in simple terms and without abstract assumptions, so that veri-
fication for a specific example is quite straightforward. In addition, we provide explicitly the
limit distribution (the asymptotic bias and covariance matrix) in a tractable form in terms of
the underlying model. We consider both multidimensional process and multidimensional error
term, which covers simultaneously most of the applications of interest. Our class of random
discretization grids (1.2) includes, in particular, hitting times of general random multidimen-
sional domains (under quite mild assumptions), but it also allows a combination of endogenous
(e.g. given by hitting times) and exogenous noise (given by independent random variables,
e.g. Poisson-like random times), while a majority of previous works is restricted to only one
of these cases. Note that we do not impose any Markovian assumptions either on the process
or on discretization times.

As a comparison, let us mention [Lanl3, Chapter 7|, where the second author investigates
the case where S is a Markovian Stochastic Differential Equation, D™ = D_is an ellipsoid



and where there is no Poisson-like random times (i.e. G.(.) = 400); in this reference, the
approach strongly uses the Markov structure of the problem and related Partial Differential
Equations, thus it is quite different from the current work which offers much more flexibility
on the setting.

Another situation, where a functional CLT can be derived, corresponds to one-dimensional
Ito6 process S, see [Fukl0, FR12, RR10, RR12]: when the time step is small, this situation is
locally close to a case of scaled Brownian motion which hits +1, for which the distribution of
hitting time/location are known. Therefore, the computations of the asymptotic characteristics
are easy to perform. Here, as a difference, we consider multidimensional S and general domains
D",

Certain works (such as e.g. [AMO3, AMO04, LR13, ZS16]) consider the case of random
but, so called, strongly predictable discretization times, possibly up to conditioning on some
independent noise. This implies that conditionally to the current time, the next increment of
Brownian stochastic integral can be well approximated by a Gaussian variable, and therefore
all the conditional moments are quite explicit up to some negligible errors. Then a functional
CLT can be derived, using the general machinery of [JS02|, and it usually leads to a mixture
of Gaussian variables having zero bias and zero correlation with the ambient Brownian motion
B. Though important, this case is more basic compared to general stopping times.

In [Fuk11b], the author handles multidimensional S and derives CLT-like results for errors
of the form (1.1). However, the asymptotic characteristics of the CLT depend on moment
conditions about the increments of the driving martingale along stopping times, see [Fuk11b,
Condition 2.3|. On the one hand, these conditions are natural extensions of those observed in
the one-dimensional case, but on the other hand, checking these conditions in multidimensional
case is really though, not to say impossible except in simple situations. Consequently, it is not
clear from [Fukl1b, Condition 2.3] which sequences of stopping times are compatible with a
CLT. As a comparison, in our setting, we show that the explicit and general family of stopping
times as defined in (1.2) leads to a functional CLT for (v/N:E")o<t<T; we do not try to check
[Fuk11b, Condition 2.3] and we tackle the problem directly. More general forms of stopping
times are even allowed in Section 3. In our CLT results, the asymptotic Gaussian distribution
may exhibit non-zero bias and non-zero correlation with the ambient Brownian motion.

To achieve this high level of generality and to derive the above CLT for general grids,
we have proved several important results about approximations of exit times/positions of
Brownian semimartingales from bounded domains, on sensitivities of these quantities with
respect to perturbations of model and domain. All these results are of their own interest and
may be useful in other problems.

Organization of the paper. In Section 2 we introduce the stochastic model for the semi-
martingale S and describe the class of random discretization grids under study. Further we
state the main theorem of this work and provide various examples and applications of our
result. Section 3 is devoted to the proof of the main theorem, which contains two impor-
tant blocks: a general abstract CLT for discretization errors based on random grids (Section
3.1) and certain important properties of the semimartingale exit times from general domains
(Section 3.2). The completion of the proof is given in Section 3.3. In Section 4 we continue
with the proof of the general abstract CLT, while Section 5 is devoted to the proof of the
semimartingale exit time properties. Supplementary material and technical results are given
in Appendix.



Notation used throughout this work.

v - w denotes the scalar product in R%.

Mat,, 4 denotes the set of m x d real matrices. Tr(.) and T stand respectively for the
trace and transpose operators.

We write (M );; for the components of a matrix M, M;. (resp. M) its i-th row (resp.
i-th column), and a* for the components of the vector a.

S, S:lr and Sd+Jr denote respectively the set of symmetric, positive semidefinite symmet-
ric and positive definite symmetric real d x d matrices.

For M € Mat,, 4 we denote by || M| := \/Tr(MMT) its Frobenius norm. For M €
Mat, 4, we recall the easy inequality | Tr(M)| < V/d||M]|.

For M € S5 we denote Apin (M) and Apax(M) the smallest and the largest eigenvalue of
M.

uw.c.a.S. . u.c.p. .
We denote by: —" - a.s. convergence uniform on [0,7], —> - convergence in prob-
n——+o0o n——+o0o

ability uniform on [0, 77, =4, . convergence in distribution on [0,7] in the sense of
T

processes w.r.t. the uniform topology.
By(zo, R) denotes a d-dimensional closed ball with radius R and center .
U(0,1) stands for the distribution of a uniform random variable on [0, 1].

Csup([0,T]) denotes the normed vector space of continuous processes on [0, 7] with the
sup-norm.

If f:R?— R is a smooth function, then Vf (resp. V2f) stands for the gradient (resp.
the Hessian) of f, as a row vector (resp. as a square matrix).

A f:R?— R is an a-homogeneous function (for some a € N) if f(cz) = c¢®f(z) for all
c>0,z € R

All the further asymptotic convergences are stated through a positive deterministic se-
quence (gp)n>0 with €, — 0. Without loss of generality and for the sake of simplicity,
from now on we assume e, < 1 for any n.

For any subinterval I C [0,7] denote N™(I) := #{7]* € I} for the number of grid times
in I. Let |I| denote the length of I.

In what follows, we may consider the conditional expectation of scalar random variables
X that are non necessarily integrable. We adopt the following convention. When X is
non-negative, E;(X') can be properly defined as a random variable valued in Ry U{+o00}.
In the case of E(|X|) < 400 a.s. we define Ei(X) := E4(X}) — Ei(X_) where Xy and
X_ are the positive and the negative parts of X.



2 Stochastic model, random grids, main result

2.1 Probabilistic model

Let T' > 0 and let (2, F, (F¢)o<t<7, P) be a filtered probability space supporting a d-dimensional
Brownian motion (B;)o<t<7. We assume that the filtration (F;)o<t<7 satisfies the usual as-
sumptions of being right-continuous and P-complete. Let (S;)o<t<7 be a d-dimensional con-
tinuous F-adapted semimartingale.

Our first CLT (Theorem 2.4) and the computation of explicit limits in Section 2.4 will be
derived under the following assumptions and for stopping times of the form (2.6). A slightly
more general version of CLT is established in Section 3.1, for abstract stopping times satisfying
some structure conditions (Hp)-(Hp).

(Hg):  The process S is of the form

t t
st:50+/ bsds+/ o.dB,, te0,T], (2.1)
0 0

where

the starting point Sy is a Fp-measurable random variable;

(bt)o<t<t is a F-adapted d-dimensional stochastic process;

e (0t)o<i<r is a continuous F-adapted Mat, 4-valued process, such that oy is invertible
a.s. for all ¢ € [0,7] and oy, 00_1 are bounded;

e for some a.s. finite random variable C, > 0 satisfying E (C§|]:0) < 400 and a parameter
Ne € (0, 1], we have

oy — 0| < Cylt —s|"/2 Vs te0,T] aus.

We remark that the boundedness of oy and o, L above is needed mainly to guarantee that
certain processes are integrable at 0 in the proof of Proposition 4.2 in Section A.2, which is an
important step of our main proof. Later similar boundedness condition is assumed for some
other processes for the same reason.

(Ha):  There exist positive F-adapted processes (vt)o<i<r and (6)o<i<7, such that v is
a.s. bounded and d; is a.s. continuous, and for which we have a.s. for all ¢t € [0, T

vt_l < inf /\mm(asasT) < sup HO’SU;I—H < vy, sup |bs| < vy,
t<s<y(t) t<s<u(t) t<s<u(t)

where
Y(t) :=inf{s >t :|Ss — S| >0} AT, te€][0,T].

The role of (Ha) is to ensure w-ise uniform controls on the coefficients of S, while the
process stays in a local neighborhood. This is a technical condition for the proofs, which is
easily satisfied as exemplified below. In (Ha) the key assumption is that v, is F-adapted, so
that it allows Fi-measurable control on [t,1(t)] for t € [0, 7.



Example 1. On (Q,F,P) consider a Brownian motion (Bi)o<i<T and a continuous-time
Markov chain (P;)o<i<T taking values in Ng := {1,..., R}, that is aimed at modeling a regime-
switching behavior (see [Nor98, Chapter 2/). The label v € Ni stands for indexing the different
regimes. The transition from state r to state v’ in two successive times is given by a Frobenius
matric Mg and the distributions of time interval between two jumps are exponential distribu-
tions, with a parameter depending on Mp. Define the P-augmented right-continuous extension
(Ft)o<t<T of the filtration generated by (B, P). Consider the processes

or = 0 (t, (Ssnt)o<s<T) 5 be = b (P, t, (Ssnt)o<s<T)

for functions o : [0,T] x Csup([0,T]) — Matyq such that o, exists for all t € [0,T] as.
and b : Ng x [0,T] x Csup([0,T]) — R Suppose that o(-,-) is continuous and that b(r,-,-) is
continuous for allr € Nr. Thus for a given continuous positive process vy, since oy is invertible,
we may choose &; (continuous in t) small enough, such that if the trajectory (Ssay(r))o<s<T
is at distance at most &; from (Ssat)o<s<T we may upper and lower bound the eigenvalues of
o (u, (Ssau)o<s<T) , u € [t,1(t)], using ve. Similar reasoning yields the condition on by in (Ha).
We remark that this model is path-dependent (thus non-Markovian) and non-only driven by
Brownian motions (which justifies the use of general filtration). It also includes the diffusion
model o = o(t,S¢) as a particular case.

2.2 Class of random discretization grids

In this section we discuss the class of random discretization grids for which we study the
discretization error, in particular, for which we establish the functional CLT with explicit
limit characterization.

e This class is quite large and includes the hitting times of general random domains.
Notably, it allows almost arbitrary random domain processes under some mild regularity
assumptions. We claim that this is the most general concrete framework (i.e. with
explicit description and without any abstract assumption) for endogenously generated
discretization schemes for multidimensional processes considered in the literature.

e In addition we allow to incorporate additional independent noise of quite general form
while constructing the discretization times.

In particular, examples include random grids given by a combination of the hitting times
of random domains with the times generated by a Poisson process having general random
path-dependent intensity and independent source of randomness.

We recall that (e5,)n>0 is a deterministic sequence with ¢, € (0,1] and &,, — 0.

2.2.1 A set of regular bounded domains

We recall that a domain is a non-empty open connected set, see [GT83, p.10]. Let D be the
set of bounded domains D in R% which contains 0, ~and let D be the subset of D which element
D has a boundary 0D of class C2. For any D € D, define the signed distance d5p : R* — R
to its boundary by

dop(7) := (lyep — Lygp) inf{|z —y| : y € ID}. (2.2)



We recall that without any regularity on 0D, dsp is a Lipschitz function with Lipschitz con-
stant smaller than 1 (see [GT83, Section 14.6, p. 354]). For any D', D? € D define

u(D',D?) = sup [6yp2(2)| + sup [gpi(z)]-
x€dD? z€dD?
The above definition is not exactly related to the usual Hausdorff distance, as described in
[HP18, Chapter 2|, it is slightly more adapted to our setting.

Lemma 2.1. u(.,.) is a distance on the set D of domains of R% containing 0.

Proof. Tt is obviously non-negative and symmetric.

Assume that p(D?', D?) = 0 for D, D? € D and let us show that D' = D?. We have 0 =
SUp,eapt [99p2 ()| = sup,esp2 |0sp1 (x)], which means that the Hausdorff distance between
the closed compact sets D! and 9D? is zero, therefore dD! = 9D?, see [HP18, Section 2.2.3].
But since D! and D? are open connected sets containing 0, we must have D! = D?.

It remains to prove that u satisfies to the triangular inequality: this is an easy verification
that we leave to the reader. The proof is complete. O

To allow greater generality and deal with intersection of J smooth domains (to encompass
domains with corners like polyhedrons) we introduce appropriate notations. For any integer
J >0, let

J
D’/ .= {(Dy,...,Dy): D; €D}, DI := { M D;:D; eD}. (2.3)
j=1

An element of D7 is a sequence of J domains, while an element of DY, is a domain of R?. We
generalize (-, -) to u?(-,-) on D’ (resp. DY) by setting, for any D', D? in D’ (resp. DY),

(D', D?) : Z“ D}, D?),

with obvious definitions of D; Since p is a distance on D, 1’ defines also a distance on D’
(resp. DZ). In what follows the continuity for a D’ or DZ-valued process is meant with respect
to :U'J('a )

For a domain D € D¢, the notation D stands naturally as eD := {y € R?: y/e € D} and
similarly for D € D.

2.2.2 Class of random discretization grids

Fix some integer J > 0. We consider a DZ-valued continuous F-adapted process (D¢)o<t<T
and a sequence of DZ-valued continuous F-adapted processes {(D)o<i<7 : n > 0}. All these
domains of DY are under the form

J
ﬂ D}y, Dy:=()Dju

Jj=1
Suppose that for some positive constants 7y, 7y the initial domain Dg verifies

Bd(O,T()) C Dg C Bd(O,f()) a.s. (2.4)

We will assume the following approximation and continuity properties.



(HL):  There exists a constant 7p > 0 such that

sup (5;’773 sup ,uJ(Dt",Dt)> < +o0. (2.5)

n>0 0<t<T

(H%):  There exists a continuous F-adapted positive process (L;)o<i<r such that L' is
a bounded random variable and the following holds a.s. for all ¢ € [0,7] and any D €
(D', Djsy n>0,=1,...,7}

1. the signed distance dgp(-) is C? on the set {x € R?: |§sp(x)| < Li};

2. we have sup,cp |z| < L; ! and

[

inf  |Vogp()| > =, sup  (Voon(@)| + [ V20n(@)]) < Li
@:|8ap ()| <Ly 2 |8 p ()| <Lt

Assumption (H?%)) ensures in a way that the main geometric characteristics of the domain
(diameter, distance function, curvature) remain w-ise locally uniformly controlled, this is a
technical condition for the subsequent proofs.

Remark 1. Actually Assumption (H2)) is quite mild. Indeed, following [GT83, Lemma 14.16]

for any D € D there exists Lp > 0 such that the distance function (2.2) is C*> on the set

{z € RY: |6pp(z)| < Lp}. Further, using that Visp(-) restricted to OD is the inward unit

vector at the boundary, the boundedness of D and 0D, we get the existence of Lp > 0 such

that, in addition, sup,cp |z| < Ly and
1

inf |Véop(z)| > =, sup (IVéap(z)] + |V20ap(z)|) < LBl.
z:|05p(x)|<Lp 2 x:10pp(x)|<Lp

Therefore (H%) only requires some continuity and uniformity properties of Lp for the random
domain-valued processes D7y, Djy, n > 0,5 =1,...,J.

Suppose that (€, F,P) supports an i.i.d. family of random variables U := {U,; : i,n € N}
with U, ; ~ U(0, 1), that are independent of Fr. Define the filtration FY := F; V o(U). Let
G: (t,w,u) €[0,T] x Q x [0,1] = RT U {+0c0} be a P ® B([0, 1])-measurable mapping, where
P denotes the o-field of predictable sets of [0,7] x Q. In what follows, we will simply write
Gt (u)

Now we present the class of random discretization grids that constitutes the principal
object of our analysis. Define a sequence of discretization grids 7 := {7" : n > 0} with
Tr={r]',i=0,...,N}} given by

70 =0,
2.6
{Tn = lnf{t > Tz‘n_l . (St - 57?71) ¢ gnD;r,lnil} /\ (Tzn_l + 872LG7—i”71 (Un,z) + A’I’L,Z) /\ T7 ( )

where (Ay, i)n,ien is a family of random variables such that 7"’s are F U_stopping times and
A, ; is independent of U, ; for m # n or j > 4. The variables A,, ; play the role of error terms,
we make an additional assumption on it later.



Remark 2. Note that G¢(-) may take the value of +o0o. However 7' is always well defined
since we take the minimum with the exit time in (2.6). In particular, if Gi(-) = +oo for all
t € [0,T] we simply get a sequence of random grids given by exit times without erogenous
source of randomness.

We consider the counting process N{* := #{i > 1 : 7/* < t} for any ¢t € [0,7], this is a
cadlag FU-adapted process. Define the normed vector space

H = {u:(un,nEN):uneR, Il 5:Z|;LZ|<+OO}7

neN

and consider the H-valued FV-adapted cadlag process Z; := (Zn+,n € N) on [0, 7] defined by

n € N.

NP
Ty =
TN 4T

Let (Ft)o<t<r be the right-continuous extension of the filtration (F; V o(Z,,r < t))o<t<r-
Since Z; is FU-adapted and FV is right-continuous, we naturally have

Fi C ﬁt C ./T"tU. (27)

Thus the filtration F verifies the usual conditions. We also remark that the definition of Z;
implies that the FU-stopping times 77 given by (2.6) are F-stopping times.
Suppose the following condition:

(Hg): 1. With probability 1, for all u € [0, 1] the process (Gt(u))o<t<7 is continuous on
R*TU{+00}. Moreover there exists an Fr®B([0, 1])-measurable mapping G, : 2x[0,1] —
R™ not a.e. equal to zero , such that a.s. foralln >0 and 1 <i < N7 we have

G (Upg) + E;2An’i > G*(Umi).

i—1

2. For some constant n > 0 and an F-adapted bounded process (pt)o<t<T We have a.s. for
alln>0and 1 <i < Np

E (\An7i||ﬁ¢1) < pon £, (2.8)
The following lemma states certain important properties of the filtration F.
Lemma 2.2. The following properties hold.

(i) The F-Brownian motion (Bi)o<i<T is also a F-Brownian motion. Moreover any F-
adapted continuous semimartingale has the same characteristics (finite variation part,

local martingale part and quadratic variation) w.r.t. F.

(ii) For any Frn @ B([0,1])-measurable mapping f : Q x [0,1] = R* we have

1
E(f(W,Un,i)\ﬁfgzl) :/0 f(w,x)dz.

10



Proof. Item (i). Observe that [Pro04, Theorem 2, Chap. VI| ensures that any F-semimartingale
remains a FU-semimartingale with the same characteristics. Now we extend this property to
the filtration F. For this, consider a square-integrable continuous F-martingale M: using that
it is a FU-martingale as recalled before, M is also a F-martingale in view of (2.7) and of the
equality

E(M|Fs) = E(E(M|F, )| Fs) = E(M| Fy) = M.

In addition, M has the same quadratic variation (M) w.r.t. F since it is characterized by the
fact that M2 — (M) is a martingale. The same conclusion can be extended to the case of local
martingales since the localization times may be chosen as v* = inf{t € [0,7] : (M); > k},
which are F-stopping times, and thus by the previous argument each process M., is a
F-martingale. Finally the property of having finite variation is independent of the filtration.

Item (ii). It is sufficient to show that U, ; is independent of ]?Tin_l. Indeed, U, ; is independent
of Fr and of (Zy,+)o<t<t for m # n. Moreover, N, is a counting process, thus its natural
filtration (or equivalently that of Z,, ) is right-continuous (see [Pro04, Theorem 25, Chap. IJ).
So, it is enough to show that U, ; is independent of vaﬁil' This follows from the construction
(2.6) of the times 7;* and the properties of A, ;, in particular, since U, ; is completely unused
up to the time 7;* ;, and no information about it is available at 7,* ;. O

In what follows by adapted process we mean F-adapted, for f—adapted_processes we will
specify it explicitly if this property is needed. We also denote E;(-) := E(-|F).

2.2.3 Example: combination of hitting times and Poisson point process with
general stochastic intensity

In this section we present the example of Poisson random times having general random path-
dependent intensity and based on independent source of randomness (see [Str10] for an intro-
duction to Poisson point processes), for which (H¢) holds.

Let (At)o<t<T be a strictly positive F-adapted continuous stochastic process, playing the
role of a stochastic intensity, and suppose that the following assumption holds.

(Hy):  For some constant 1y € (0, 1] we have
At — As] < Chlt—s|™, 0<s<t<T, as.

and, in addition, E(CyA; ™)) < 400 where A, := infoci<7 A

For a given trajectory of (At)o<t<7 define a sequence of independent Poisson point processes
(P™)n>0, where for each n > 0 the process P™ has the intensity {2\, t € [0, 7]} and is based
on the random noise (Up, ;)ien (see (2.11) below for a precise definition). Define a sequence of
random discretization grids 7 := {7" : n > 0} with 7" = {7",i =0, ..., N}} as follows

6 =0, (2.9)
= inf{t > 7 (Si— S ) & enDin orte PrYAT. '

Then our claim is that 7 belongs to the class of grids described in Section 2.2.2, of the form
(2.6), and it satisfies to (H¢). Indeed, let

Ci(u) == —;tlog(l —w), (2.10)
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which is the inverse c.d.f. of the exponential distribution with parameter A;. The next Poisson
time 7" after 7)* | is defined by the equation

Fn

6,;2/ U Nds = —log(1 — Up,), (2.11)

i—1

so that A, ; is such that (in view of (2.6))
=1 +erGen (Ung) + A (2.12)

It readily follows that

7
Grp (Uni) ey Api = & (7' =7l1y) > ( sup At)_le?f/ Asds = ((sup )~ log(1=Upy)|-
0<t<T n 0<t<T

Ti—1

We have completed the proof of (H¢)-1
Now, let us establish (2.8). Combining (2.10)-(2.11)-(2.12) and invoking Assumption (H)),
we obtain

=n

!

~n n -1 ¢

7 H—AT?_I/H Asds
!

i—1

Fn
-1 g

<t / Ao — Arn |ds
T

i—1

[Ani| = <NION =Ty

Further (2.11) yields
g
-ty < A;l/ Asds = A [log(1 — Un,i)les,
il

which finally implies
Al < CATCT™ log(1 = Uy )22,

Using Lemma 2.2-(ii), we deduce that

The process E; <C)\)\;(2+m)) < +oo is a martingale due to (H),) and thus has a cadlag

version, hence it is a.s. bounded. We have proved (Hg)-2. All in all, (Hg) holds in this
general framework of Poisson point process with stochastic intensity. ]

2.3 Main result: functional Central Limit Theorem

We are now in a position to state a functional CLT for a general multidimensional discretization
error in the setting presented in the previous subsections. The CLT limit is defined in terms
of the solution to the following matrix-valued quadratic equation.

Lemma 2.3 (|[GL14, Lemma 3.1]). Let ¢ be a d x d-matriz symmetric non-negative real matriz.
Then the equation
2Tr(z)x + 42° = ¢ (2.13)

admits exactly one solution x(c) € S;. Moreover, the mapping ¢ — x(c) is continuous.

12



Proof. We remark that in [GL14, Lemma 3.1], the input matrix on the right-hand side of
(2.13) is & instead of ¢ here. Of course, it does not modify the existence and uniqueness
properties in the form we state them here. Only the continuity property is questionable: in
[GL14, Lemma 3.1] the continuity of & — z(¢?) = z(c) is proved. However one may easily
deduce the continuity of ¢ — x(c) from their proof as well: indeed, this is a direct consequence
of the representation [GL14, eq. (A.7)] and of the fact that y is continuous in (A?)%_; (in the
notation of [GL14, Section A.4]). O

Fix a random grid sequence 7 := {7 : n > 0} of the form (2.6). Define

o(t) :=max{r € T" : 7 < t}, o) :=min{r e T": 7> t}, p(T) =T,

(2.14)
AXt = Xt — X@(t),

where the dependence on n is omitted for the sake of simplicity.

Let (My)o<t<t and (Ay)o<i<7 be adapted continuous processes with values in Mat,y, 4 and
Matg 4 ®R™ respectively (recall that an element A; € Maty 4 ®@R™ is given by m real d x d
matrices as [A1¢, ..., Amy)' for which we write 2T Ay = [2T A1y, ..., 2T Ay y]T € R™).
Consider an R™-valued discretization error process given by

gr=grt 4 M telo,T),

with &' and £ of the form

T AL T At
n? Pyp— ¢ n72 Pyp— ¢
gl=3" M ASids, &= > / A8 Az dB;. (2.15)
Ti 1

o <t? TN <t
i—1 i—1

Note that this is the most general form of an error term which is linear (or bi-linear) in terms
of ASs and dB;.

Now we introduce some processes that are involved in the explicit characterization of the
limit distribution. Let W be a standard Brownian motion with Wy = 0 and U ~ U(0,1) be
independent of W, both independent of Fp. Set

7(t) :=1inf{s > 0: oyW, ¢ D;} A G(U), t € [0,T).
In addition, for any measurable f : R? — R define
Byl f()] :=Ey (f(0:Wrwy)) , t € [0,T], (2.16)
and
my = Ey(7(t)), t € [0,T). (2.17)

Define an R%valued adapted continuous process (Qt)o<t<T by

Qt = -my : . (2.18)
(o0 )l Bilf (x) == (4)”]
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Denote Af :=[A],,... aA;zt‘]T and AV = %(AMAL + 'AZt-Aj,t)ﬂ Since A? is symmetric, by
Lemma B.1 we may write AY = A" — AP~ where AY" and A}~ are continuous symmetric
non-negative definite matrices. Define a Mat,, ,,-valued process (K¢)o<t<1 by

K7 = my By [£@) = (o7 2) X (07 12))? — (07 ') X (07 '0))?] - QT AP Q.
(2.19)

for all 1 < z ,j < m, where X}’* (resp. X;7) is the solution of the matrix equation (2.13) for
c=0of A7 o, (resp. of AT Ut>

Here is the main result of this paper which provides the F-stable functional convergence of
(/N{*E[")o<t<T in distribution as n — co. For stable convergence, see [JS02, p. 512|-[JP12,
Section 2.2.1.] for definition and properties.

Theorem 2.4. Assume that S satisfies (Hg), (Ha)and T is given by (2.6) and satisfies
(HY), (H%) and (Hg). Assume that Mg and Ay are bounded random variables. Then the
processes Q and K are adapted continuous and Ky € S}, a.s. for allt € [0,T]. Denote lCtl/Q the
matriz principal square root of K. Then there exists an m-dimensional Brownian motion W
defined on an extended probability space (Q, .7:", If”) and independent of B such that the following
functional F-stable convergence in distribution holds:

t t t t
VNpEr =L / myslds ( / M Qqds + / QI AdB; + / /c;/2dws). (2.20)
(0,77 0 0 0 0

2.4 Examples

Below we discuss several examples where the characteristics m,@, K of the limit distribution
(2.20) may be explicit or easily computable using only some basic numerical calculations. We
consider a general process (S¢)o<i<r verifying (Hg), (Ha) and sequence of domain-valued
processes (D")o<t<1,n > 0 verifying (H},), (H%), while we only specify explicitly the process
(Dt)o<t<r-

Case d = 1, hitting times of stochastic time-dependent barriers. First consider the
case d = 1, G¢(-) = 400 and the domain-valued process Dy := (—ay, 5;) C R for some adapted
continuous a.s. positive processes (at)o<i<r and (B¢)o<i<7. Recall that

7(t) :=1inf{r > 0: oW, & (—au, Bt) }, Bi[f()] = E¢ (f(0:Wrr)))-
Bt

In this case the distribution of o:W, ;) is explicitly known: Pi(oWep) = —a) = v and
Py(otWry = Be) = a5 so that Bi[f(z) := 2] = W%W In particular, an easy
calculation from (2.16) and (2.17) yields
_ 1 4 1
my = Ei(7(t)) = Et((WT(t))Z) = o310y 2, Qr = gmt 1Ut QBt[f(l’) = 333] = §(5t — o).

To calculate K; we remark that A" = (A;)%, A;'™ = 0 and thus (X;'7)? = 1o2(A;)%. This
further implies

(Ar)?
18

o=y SoH (Ao Bilf () i= o) - QAR = “TE-(0F + 5 + ).
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So finally we get

VNpEr =L =3 ,// ol /M ds—i—/ot(ﬁs—as)Asst .

NG As g 32 sBsdWs ).
+\/§/0 VaZ+ B+ agfaw,)

From (2.21) we can easily deduce the result of [Fukl0, Theorem 3.1] (for ¢(x) = x; the
general case may be easily deduce by applying ¢ ~1(-) to S;) which studies a particular case
of ay = B¢ = 1 and considers the estimation of integrated variance (see Section 1), so that
A; = 20;. In this case, invoking Theorem 3.1 yields

t
e ler =% /cg/2dws
[0,7]

where IC; = , and Theorem 4.4 justifies that

T
_ P
£ |AS |t — o2dt
" v n—-+00 [
T <T 0

which, all in all, coincide with the results in [Fukl0, Theorem 3.1]. Theorem 2.4 uses the
normalization /N/*, which is somewhat more natural for a CLT, and it writes

2 t t
\/Nﬁé’[lzdm// agds/ oo dW.
.11\ 3 .Jo 0

Note that our work provides tractable limit distribution characterization in a more general set-
ting than [Fuk10] in terms of the discretization times, the shape of the error terms; furthermore
it covers the multidimensional case.

Now suppose that Gy(+) is not always +00. Let Ty be deterministic and 7 be the first exit
time of oW from an interval [—a, 5]. Thus the distribution of W a7, is equal to

P(r < To,oWr = —a)6-a(dz) + k(7)1[_o 5)(z)dx + P(T < To, 0 Wr = B)dp(dx),
where, following [RY99, p.111, Exercise 3.15], k(x) equals

1 +o00 1 , 1 )
W 2 {exp <_2T002 (x+2k(a+ p)) ) — exp <_2Tm72($ — 28+ 2k(a+ 3)) ) } ,

and, from [BS02, p.212, formulas 3.0.6],

2Ty 2Ty
P(r <Tp, oW, = —a) = / sss(B,a+p)ds, P(r <Tp,ocW.=p)= / sss(a, a+B)ds
0 0

for ss¢(-, ) given under an explicit form in [BS02, p.641].

Let N(a,ﬁ,u,az,p) = ffa 2Ppy o (x)dx, where p,q(x) = (271'02)_1/2 exp (—(x;U’“QL)?).
Note that the explicit value of N'(«, 3, i1, 0%, p) in terms of the standard Gaussian c.d.f. maybe
easily deduced (recursively in p) via integration by parts. Further define

+0o0

Mp(Oé,B,O', TO) = Z {N(O&,B, —Zk(Oé +B)7T00-2ap) _N(OZ?Bv 26 - 2](5(0{ +B)7T00-2ap)}'

k=—o0
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Note that in practice M, (e, B, 0, Tp) is well approximated by a finite sum due to the fast decay

xT

of e=**. Now a simple calculation yields that B;[f(z) := 2] equals

1 a2Gy(u)
/0 oy (Mp(ata B, 01, Gi(u)) + /0 ((—ow)P sss(Be, o + Br) + B sss(au, ap + 5t))d8> du,

which allows to easily deduce the explicit form of the limit distribution in (2.20) through the
computations of m, @, KC (at least, using a numerical integration routine).

Case d > 1, hitting times of symmetric domains, ellipsoid based grids. Suppose
that for all ¢t € [0, T] the domain D, is symmetric (i.e. D; = —D;), denote 7(t) = inf{r > 0:
oW, ¢ D} A Gy(U). Let us prove that Q¢ = 0. Indeed, in view of (2.18), this follows from

Ed((Wpyar)?) = Bl (=W} _pyar)’) = Bl (=W pyar)?) = =Bl (W} (pyar)’)s

where we denote 7(D) the first exist time of oW from a domain D, and 7' > 0 is fixed.
We suppose again that Gy(-) = +o00. Consider the case d > 1. For an Sy -valued process
(Z¢)o<i<t we take Dy = {x € R? : 27z < 1}. Hence
7(t) = inf{r > 0: W,J (6] Sio0) W, > 1}.

Let o Y0y = UJAU; where U; is orthogonal and A; is diagonal. Then 7(t) is equal in
distribution to inf{r > 0 : W,JA;W,. > 1}. To characterize explicitly the limit distribution
(conditionally on o) in (2.20), it is enough to calculate K; (since Q¢ = 0), which requires only

the calculation of E.(7(¢)) and E, (H?ﬂ(WTi(t))k") for ky +---+ kg =4,k > 0.

In the case d = 2 we need only to calculate numerically the following 3 functions
) =E(Wo0)h, L) =E(Wi W2, f3(0) = E(Wi,) Wiy,

where 7(\) := inf{r > 0 : (W2 + AX(W?2)? > 1} for A > 0 (other calculations follow from

setting A — % and using basic scaling properties). To treat the case with general Gy(-) it is

enough to numerically calculate the following 3 functions in 2 parameters
fi ()\7 TO) = E((W:()\)/\TO)ZL)y fQ()\a TO) = E((WS(A)ATOWE(A)/\TO)Q%
F3(0T0) = E((W xam ) WEiam,)-

To the best of our knowledge, explicit formulas for these functions are not available and we
have to resort to numerical methods like Monte Carlo methods. For related efficient schemes,
see the boundary shifting scheme of [GM10], the walk on moving spheres algorithm of [DH13].

3 Proof of the main result (Theorem 2.4)

This is based on two general results: first, a CLT (Section 3.1) for discretization errors in an
abstract setting; second, general properties of exit times from intersection of regular domains
(Section 3.2). The proof of Theorem 2.4 is then completed in Section 3.3.
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3.1 A more general CLT

The result of this section is the key ingredient of the proof of Theorem 2.4 and constitutes
itself a stand-alone contribution. In particular, it generalizes the result of [Fukllb| in our
framework of multidimensional process and general multidimensional error term, with explicit
limit coefficients (as opposed to the non-explicit Condition 2.3 of [Fukl1b]).

Within Section 3.1 (and Section 4 for the proofs) we are working in a slightly more abstract
framework regarding S than in Section 2. Let (Q, F, (F;)o<t<r,P) be a filtered probability
space (with (F;)o<i<r satisfying the usual conditions) and consider a more general semimartin-
gale S satisfying the following extended assumption.

(HZ™):  The process S on [0,7] is given by

t
St:At-f-/ osdBs, te€ [O,T],
0
where

e the process A is continuous, adapted and of finite variation, and satisfies
|A — Ag| < Calt — s|™ Vs, t € [0,7] a.s., (3.1)
for a random variable C4, a.s. finite, and a parameter n4 € (1/2,1];

e (0¢)o<t<T is a continuous adapted Matg g-valued process, such that oy is invertible a.s.
for all t € [0, 7] and 0g,0, ' are bounded random variables;

e for some a.s. finite random variable C, > 0 and a parameter 7, € (0, 1], we have
oy — 0| < Cylt —s|"/2 Vs, te[0,T] aus.
Let T = {7T" :n > 0} be a sequence of discretization grids made of stopping times, where
Tr={r,i=0,...,N}}. We introduce two assumptions, whose formulation depends on the

choice of a particular sequence (gy,)n>0. For the subsequent CLT, we consider &, — 0; with
loss of generality, we assume ¢,, < 1 for any n.

) . . . (3.2) .
: . ¢
(Hg) 1. There exists an adapted continuous non-decreasing process (C;”™ )o<i<7 with
bounded 0(53'2)7 such that for o € {2,3,4} and for all n > 0 and 1 <14 < N},
sup (Et(\STi” = Srr %) + [Starr — ST;L_1|°“> < CS'Q)@% (3.2)
T <t<T i1

where E.(.) := E(. | 7).
2. The following non-negative random variable is a.s. finite:

Cz3) = ili% (5721]\7{,3) < 400. (3.3)

Observe that it is enough to verify (3.2) with o = 4, by invoking the non-expansion
property of (conditional) LP-norms.

For « € N we denote by P* the vector space spanned by a-homogeneous polynomial
functions f : R — R. The next set of assumptions is related to the mapping B;[-] arising
in (2.16) in our applications. Since we deal here with a more general setting, we state a more
general assumption.
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(Hp): 1. There is a linear operator B [.] from the vector space spanned by P* «a = 2, 3,4,
into scalar adapted continuous process (B:[f(-)])o<t<T, such that the random variable
Bo|[f] is bounded for any such f.

Bi[f(z) == 2]

2. The R-valued process my := is strictly positive and such that mg Lis

TI‘(O't )
bounded.

3. There exists a function g : [0,1] — R, with lim. ,o(g(e) + €20 g(e)~1) = 0 for some
€ (0,1), such that for any f € P with a € {2,3,4} we have, for some a.s. finite
random variable C3 4) and a parameter 1 € (0, 1], that

sup &n By (f(Srp = S ) = Brpr [fO)]] < Csapen (3-4)
i1 <(T=g(en))+

for all n > 0 a.s.

4. We have e, 2#{r"" : (T — g(en))+ <7 < T} = 0.

n—-+00

The assumption (Hp) imposes consistency on the distribution of the discretization grids
for various n and specifies a “scaling” property for the grid sequence as n — 4o00. At first
sight it looks like similar to [Fukl1b, Condition 2.3|, but as we see in Section 3.3, it is quite
tractable. Moreover, we remark that [Fukl1b, Condition 2.3| involves higher moments (up to
12, as opposed to 4 in our work) and is stated for moment ratios which makes the generalization
to the multidimensional case and the practical verification of this condition much harder.

We adopt some of the notations from Section 2.3 but with the general notion of B;[f(-)]
and my in (Hp) instead of (2.16) and (2.17), and for a general sequence of discretization grids
T . In particular, we similarly denote ¢(t), p(t) and AX; (for any process X;) as in (2.14).

We consider an R™-valued discretization error process &' := &' ! +& 2 with &' ! and & 2
given by (2.15). The processes (Q¢)o<t<7 and (Kt)o<i<r are derived from my and Bi[f(-)] in
the same way as in (2.18) and (2.19). Here is a general result which provides the F-stable
functional convergence of (y/NJ'E[")o<i<r in distribution.

Theorem 3.1. Assume that S satisfies (HL ™) and consider a sequence of discretization grids
T:={T":n>0} with T" = {1]",i=0,...,N}}. Assume that S and T are such that, there
s a positive sequence €, with €, — 0, such that for any subsequence (6[,(77,))7120 there exists
another subsequence (€yo,(n))n>0 for which (Hg) and (Hg) hold (for this sub-subsequence).
Suppose that My and Ay are bounded random variables.

Then there exists an m-dimensional Brownian motion W defined on an extended probability
space (Q,]}, INP’) and independent of Fr such that the following convergences hold:

1. the functional F-stable convergence in distribution

e ler = = </ M Qsds+/ QI AdB, +/ ICl/QdW>

2. the uniform convergence in probability

2Ny R /m (3.5)

n%Jroo

As a consequence, this justifies the convergence in distribution for (\/NJ*& : 0 <t < T)
in the functional sense (see [JP12, p.45]). The proof will be given in Section 4.
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3.2 Properties of exit times from domain

Let B be a d-dimensional Brownian motion on a filtered probability space (€2, F, (F)i>0,P),
which filtration satisfies the usual assumptions of being right-continuous and P-complete. In
this section we present some general properties of domain exit times for d-dimensional contin-
uous It6 semimartingales (S;)o<t<7 and (St)o<t<r of the form

t t
St = / bst +/ O'SdBS, St = O'OBt, t> 07 (36)
0 0

where (b;)¢>0 and (0)¢>0 are respectively R%-valued and Matg 4-valued F-adapted stochastic
processes, satisfying some assumptions presented below. Here the starting point is Sy = 0,
for the sake of simplicity; actually, this is enough for our analysis, since the stopping times
under study are essentially defined regarding the increments of S, extensions to Sy # 0 would
be straightforward. The subsequent results (Lemma 3.2, Propositions 3.4 and 3.5) play a key
role in the proof of the CLT (Theorem 2.4, which proof is provided in Section 3.3).

(H2):  The following assumptions hold.

loc

i) Let J > 1and D € D (ie. D = ﬂ}-]::le for some D; € D). Define the functions
dop; R¢ — R which are the signed distances to dD; (defined in (2.2)). Set Lp > 0 such
that for all j we have dyp,(-) € C*> on {x : |dsp,(2)| < Lp} and

1
sup |z| < L7}, inf Viogp,(z)| > =,
s el S L5 Vo, ()] 2 5

sup  (|Vdap, ()| + [ V?ap, (2)]) < Lp".
@:ldop, (2)|<Lp

(3.7)

ii) The Matg g-valued process (o¢)o<t<7 is adapted continuous, such that for all ¢ > 0 the
matrix o; is invertible and

oy — 00| < Cyt™ /2, Yt e[0,T] as.

for some 7, > 0 and some random variable C, > 0 satisfying m, := E (C’f,l) < +o00. In

addition, there exist strictly positive and finite constants A%, , AZ .., bmax such that

7 < inf Amin(o]) < sup |lovo] || < AZ sup |b¢] < bmax, (3.8)

min = max’
t€[0,70] te[0,70] t€[0,70]

where we denote 79 := inf{t > 0: S; ¢ D}.

Let f € C?(R%,R) be an a-homogeneous function for some « > 2. It is easy to check that
for some constant C'y we have for all x € R

[f@)] < Cplal®, V@) < Cylal®™h, V()] < Cplal* 7 (3.9)

In what follows, we fix the parameters Lp, 7y, Mg, AT, ATy, bmax, Cy that are specified by
the model. The following notation is quite convenient for the subsequent analysis, it will be

repeatedly used.

Notation 1. Let & be a set of variables. We denote by C(S) the set of strictly positive and
continuous functions of the variables of &.
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Remark that such a set C(&) is closed under addition, multiplication and all usual opera-
tions we may perform in the following analysis.

Let us fix & := {Lp, Mo, Mo, Al s Alax> bmax, Cr}. For the elements of C(&) we will omit

min’ “*max>
the dependence on the arguments, the value of a function in C(&) is by default assumed to be

equal to the value on the parameters fixed above.

Now we state the main results of this section (proofs postponed to Section 5). The next
lemma is a simple technical result.

Lemma 3.2. Assume (HD’”). For any € € (0,1] any stopping times vi,va € [0,7], with

loc

T:=1inf{t >0:S; ¢ eD}, we have

—(a— 1 o p—(a=2)\ _a—
E(F(S0n) = £ )] < Cplbmax L™ 4 5VAAG 1 L) B (11 — 1al)

Proof. Using the It6 formula, the inequality | Tr(M)| < V/d||M|| for any M € Mat,, 4, the
sub-multiplicativity of the Frobenius norm, and since € < 1, we obtain

B0~ 1) < [B ([ (500 5T st

o— 1 (a—
< CplbimaxLp ™V + SVAAG W L) E (11 — 1a])
O

The next results state some important properties of domain exit times, their proofs are
postponed to Section 5.2. These results are interesting on their own.

Lemma 3.3. Assume (Hif) with D € D (J = 1). There exists Rp € C(&) such that, for
any € € (0,1], 7 =inf{t > 0: S; ¢ eD} and any stopping time v, the following holds:

i) for any p € N*, a.s. on the event {v < 7} we have E, (1 — v)P) < p! (Rpe?)P;
ii) for any ¢ >0, a.s. on the event {v < 7} we have a.s. P,(1 —v > &%¢) < 9¢” D |

The next proposition estimates the weak error between the exit values for S and S.

Proposition 3.4. Assume (Hgf) and let f € C(RY,R) be an a-homogeneous function with

a €{2,3,4}. There exists K € C(S) such that for any € € (0,1], the stopping times
r=inf{t>0:5, ¢eD} and T=inf{t>0:5, ¢ eD}
satisfy, for any T > 0,
e |E(f(Srar) — f(S7ar))| < Ke™. (3.10)

The next result gives the estimation of the weak error between the exit values of S from
two domains that are close to each other.

Proposition 3.5. Assume (Hl]zf) and let f € C(RY,R) be an a-homogeneous function with

a €{2,3,4}. There exists K € C(& U{K'}) such that for any e € (0,1], any strictly positive
constants K',n' and any D' € D such that p’(D,D') < K'e", and for which (3.7) and
(HD’J) hold for D' instead of D with the same constants Lp,A%. A% . bmax, we have

loc min?

e [E(f(Sear) — f(Spar))| < K&,
for all T > 0, where
r=inf{t>0:S5,¢eD}, 7 =inf{t>0:5,¢cD'}.

20



3.3 Completion of the proof of Theorem 2.4

We come back to the setting of Section 2.3. Our strategy is to apply the general CLT stated
in Theorem 3.1. In particular, we aim at checking (Hp) and (Hpg) for the B;[-] given by (2.16)
for any e, satisfying >, <, €2 < +oo. For a general sequence &, — 0 the result will follow in
view of the subsequence formulation of Theorem 3.1: it is enough to verify the assumptions
for some subsequence €/, () (that may be chosen square summable) of arbitrary subsequence
€u(n) of g.

Let us prove (Hg)-1. Recall that we denote E;(-) := E(-|F;). From the definition of 7 in
(2.6), we have by (H%) that for allm > 0 and 1 <i < N2

sup (Et(IST;z = Sen ) + | Searn — STH\“) <2 ( sup Ls“> Ens

TZLl<t§T OSSSTZL17QG{27374}

which shows (Hpy)-1 with 015(3'2) =2 sup Ly, so that by (H7) the process C%2)
0<s<t,ac{2,3,4}
(3.2)

is continuous and Cj is bounded.

The verification of the assumptions (Hp)-2 and (Hp)-4 is technical, and it relies on the next
Lemma, which is proved in Appendix A.1. The result below gives a quantitative comparison
between the empirical measure related to the grid times and the Lebesgue measure.

Lemma 3.6. Assume the conditions of Theorem 2.4 and ano g2 < +o0o. Then, for any
sequence of non-empty deterministic intervals I, C [0,T], such that for some p € (0,1)

e, 22|, | = 400, (3.11)
there exists an a.s. finite random variable C such that

N™(I,) < Ce,;%|I,|, Vn >0, as. (3.12)

The condition (Hp)-2 follows from Lemma 3.6 (with I,, = [0, 7] and any p € (0, 1)), while
the condition (Hp)-4 follows from Lemma 3.6 with I,, := [(T' — g(ey))+,T] and the choice
gle)=¢,p=1/3.

We now prove that the statements 1-2-3 of (Hp) hold with B[f] and m defined in (2.16)-
(2.17). For a Brownian motion W starting at 0 and U ~ U(0, 1) independent of W (both
independent of Fr) let

7(t) :==inf{s > 0: 0:Ws & D:} N G¢(U), (3.13)
7(t) ;= 1inf{s > 0: ;W & Di} ANG(U) A&, (T — t). (3.14)

n

Since a.s. D is a bounded domain and oy is invertible, 7(¢) and 7"(¢) are a.s. finite random
variables. Moreover (Wa-(;) : s > 0) is a bounded martingale (with a Fj-measurable bound

depending on oy, O't_l, Lt_l), thus

By f ()] == Bt (f(0:Wr)))

(given in (2.16)) is well defined for any function f € P%* « € {2,3,4}. It obviously defines a
linear operator from the vector space spanned by P%, a = 2, 3,4, into scalar adapted processes.

21



Note that By[f] is bounded owing to the boundedness of oy, 061, Lal.

The aforementioned boundedness on W 57 () implies Et(WTi( n Wj ( t)) =0for0<i<j<dand
Et((Wj(t))z) = E(7(¢)): to see these, apply the optional sampling theorem at the stopping time
7(t) A k and take the limit as k T 400, each right-hand side converges using the dominated
convergence theorem, each left-hand side using the monotone convergence theorem. As a
consequence and using easy manipulations, we obtain the identity

Bi[f(x) := |=|*] _ _
Tr(oo]) = E(r(®)) (2.17) -

Since Dy contains 0 € RY, 7(¢) > 0 a.s. and therefore m; > 0 a.s.; in addition from (2.4), we
get the boundedness of mgy ' and Bo[f(-)]. We are done with the proof of (Hp)-2.

Observe that to get (Hp)-1, it remains only to justify the continuity of B.[f(-)]. Using that
Uo<t<T Dy is a.s. bounded and the local Lipschitz condition of f, we have for some a.s. finite
Cr and all 0 < s <t < T that

1Belf ()] = Bs[f (Il = [Ee(f(0:Wr 1)) = Es(f(0sWor(o))| < Or (loe — 05| + Er([Wr ity = Wiy)D)) -

The first term on the right-hand side is clearly continuous under our assumptions on o. For
the second, write

Er([Wrg) — Wrio)l) < Er(IWey — Weg) |92 = Ex(|7(t) — 7(s))"/2.

Let us fix ¢, assume s — ¢ and let us prove that Ep(|7(t) — 7(s)|) — 0. Define the domains
Dy :=0;'Dy, Dy := 0, D, (where 07D = {o7 'z : 2 € D}), and set

F(s,t) :=inf{r >0: W, ¢ D} A G(U),

so that
Er(|7(t) — 7(s)]) < Ex(|7(t) — 7(s,8)]) + Ex(|7(s, 1) — 7(s)]). (3.15)

From the continuity of o; and D; (w.r.t. u’(-,-)) one may check that u’ (D, D;) — 0: thus,
the convergence to 0 of the first term in (3.15) readily follows by invoking Corollary 5.5 with
D and D’ equal to the components of D, and D; respectively (see (2.3)), with S = W, and
making K’ — 0 (in the notation of Corollary 5.5).

The second term in (3.15) is bounded by Er(|7AG(U) —7AGs(U)|) (where 7 denotes the first
exit time of W from Utf)t), which converges to zero by the dominated convergence theorem
in view of (H¢)-1. The proof of (Hp)-1 is now complete.

It remains to show the condition (Hp)-3 with the choice g(¢) = € made at the beginning.
Fix n and 4, let f : R — R be any a-homogeneous polynomial function of degree o = 2,3, 4.
Let

Ti=inf{t > 7y S — Sen | F enDin YA (T +epGrn (Uni)) AT,
#=inf{t > 7 Sy — Spn | EenDen YA (T +E5Grn (Ung)) AT
(77" differs from 77" by the use of D;»  instead of Df_n_l in the definition, and 7" differs from
7' by the use of Ay ; in (2.6)). Recall that by (H) sup,,>q SUpP,ep,upy 2] < L; ' Define a
sequence of events Q,, := {e,L; ' < & Vt € [0,T]},n > 0, where &, is given by (Ha). For any
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7" 1 < (T —€p)4+ (since we consider g(e) =€) and in view of (2.16), write

Lo, |6, “Ben (f(Sen = Sen ) — Ben [f(4)]

< L0, [Ern, (F(Sep = S ) = B (f(S2 = S )|

10,5, [Er (£S5 = o)) = B (£(Sip = Sz )| (3.16)
+1g,6," |Ern  (f(Sin — Ser ) — Epr | (f(EnUTf_IWTn(TL)))‘

+ 10,5 [Brp, (Fentr, Wengen ) = B (F(en0, Ween )]

Remark that the assumption (HZIZ(’:U) is verified on §;, for D;» and D?in_ . due to (Ha), 7,
given by (Hg), my = ]ET;L_l(C;l), AT = v;i _and Afax = bmax = vr» . In addition we may
take Lp = L"'ﬁl'

For the first term of the right-hand side of (3.16), by applying Lemma 3.2 and using that
|7 — 1]'| < |Ap | together with (H¢)-2 we have for some ﬁffil—measurable K and for some
constant n > 0

La,e,® |Ern (f(Srp — Sen ) = Een (f(Szr — Spn )| < por Ke]l.

For the second term we apply Propositions 3.5 with D = D» and D = D:}nil conditionally on
Up,i and taking T' := €721GT¢"_1 (Un,i) N(T'—7" ). Note that the necessary conditions are verified
due to (H}). Since in Proposition 3.5 the variable K is independent of 7', we may further take
(in view of Lemma 2.2-(ii)) expectation w.r.t. Up;. Thus we get for some JFr» -measurable
K and the constant np > 0

Lo, e, |Brp  (f(S7p = Srp 1)) = Erp  (f(S7p = Srp )| < KepP.

For the third term we similarly apply Propositions 3.4 with D = D:» and D = Dl»

i1
conditionally on the coupling U, ; = U and taking T := E%Gﬁil(U) AN (T — 7). Again for
some Frn -measurable K > 0 (integrating with respect to Un; = U ~ U(0,1) since K is
independent of 7" in Proposition 3.4, and in view of Lemma 2.2-(ii)) we get

—Q

HQTL En

Ern (f(Ssn — Spn ) = Egn f(snaT?_len(Tﬁl)))‘ < Kello,

i—1

Finally for the last term we write using Lemma 3.3, 7* ; < (T — €5,)+ and (3.9), that

1g,€,”

Evp (fen0ep, Wen(rp ) = Eap (f(entrp, Wegen )|
< 210, CrL" Prn (7(7ity) > (T = 21)en”)
< KCexp(—Ce,') < Keysup (ve ™)
x>0
for some a.s. finite K (independent of 7" and 7" ;) and an fo_l—measurable C.

In addition from (H¢)-2, Lemmas 3.2, 3.3 and Propositions 3.4, 3.5 we also deduce that
JFrn -measurable K in the four latter bounds may be expressed as continuous positive simple

expressions of nU,IETi@l(C’ﬁ),vTﬁl and Lr» . This implies that, due to boundedness of the
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processes vy, Ly, E(C2) (since it is a martingale and thus has a cadlag version) and also py,
we may choose K > 0 uniformly in n > 0 and i = 1,..., Ny so that for all n > 0,

1o

n

wp [ B (F(Sep — 572,) — B 0| < Keppmrnent
T <(T—en)+

Finally, 1o, = 1 except for a finite number of n a.s., hence we easily derive the inequality
(3.4). Thus, (Hp)-3 is verified. The proof of Theorem 2.4 is finished. O

4 Proof of the general CLT (Theorem 3.1)

We adopt the framework of Section 3.1. The overall strategy of proof is standard and consists
in proving that the drift and the quadratic variation/covariation of the error &, converge
in probability to some limits (see details in Subsection 4.2). The trick is to switch from
convergence in probability to a.s. convergence by using a subsequence principle.

Lemma 4.1 (|Bil95, Theorem 20.5|). Consider real-valued random variables. X, % X if,
n—-+0oo

and only if, for any subsequence (Xb(n))nzo of (Xn)n>0 , we can extract another subsequence
(Xoor () In>0 such that Xop ) @3y

n—-+oo

In our framework, the flexibility in choosing another subsequence ¢/ is that it can be

made to guarantee ), stL,(n) < +oo and to make (Hpr)-(Hp) valid along this sequence

€n = €.0/(n)- In doing so, we define a new sequence of discretization grids T = {T‘OL,(") :
n > 0}. Because the new sequence (£, : n > 0) is square summable and (Hp)-(Hg) hold
for (&, : n > 0), we are back to the framework of admissible sequences of discretization grids
studied in [GL14, GS18b, GS18a] with a parameter py = 1. This latter framework is quite
interesting since some a.s. results for discretization errors are already available.

The careful reader will have observed that the above references study these convergence
results for admissible grid sequences in the context of a Brownian filtration F# (this choice
of filtration was motivated by the application at hand). However, the reader can check easily
that the results of [GL14, GS18b, GS18a| hold true even if the filtration satisfies the usual
assumptions of being only right continuous and P-complete, as for F in particular, because the
proofs of the above references mostly use the It6 formula for the continuous semimartingale S of
the form (HZ™) and the BDG inequalities for the Brownian integral (as in the decomposition
of S), both being available when the filtration satisfies the usual assumptions.

4.1 Part I: Preliminary almost sure convergence results

We now provide some auxiliary almost sure convergence results that are necessary for the
proof of Theorem 3.1. These results are, however, of their own interest and hence we put them
in a separate section. In view of the above subsequence principle, these results will have to
be established for a sub-subsequence (£, : n > 0) instead of (¢, : n > 0). But to maintain
simple notation, we keep writing &,, (instead of £,), and therefore, we will have to assume that
(en, : m > 0) is square summable and (Hp)-(Hg) hold for (e, : n > 0).

The next lemma allows to replace locally the values of homogeneous functions of the process
increments by their conditional expectations.
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Proposition 4.2. Assume the hypotheses (HL"") and (Hpg) for the sequence (en)n>0 with
> s0Es < +00. Let a € {2,3,4}. For any adapted continuous P*-valued process (fi)o<i<T
with bounded fy (i.e. given by f; = Zﬁnitely many & fEPy, where Py are monomials of degree a
and fF are adapted continuous scalar process with bounded random variables fé“), and for any
adapted continuous scalar process (Hy)o<t<T with bounded Hy, we have

0 Ha, (e (ASmad = Bon (frn (M) 255 0.

- n—-+4o0o
T <t

Similar convergence-in-probability results are typically deduced using the Lenglart inequal-
ity (see e.g. |Fukllb, Proof of Lemma A.2]). However, here, since we need a.s. results to
leverage the setting of admissible grid sequences, and due to lack of suitable references we
provide our own proof in Section A.2.

Next, we reformulate the above convergence in a form ready to be used in combination
with (HB)

Proposition 4.3. Assume (HE™), (Hg) and (Hp) for the sequence (e,)n>0 with Y, 5o €5 <
+o0o. Let (ft)o<t<T be adapted continuous P*-valued process for oo € {2,3,4} with bounded fo
(see the definition in Proposition 4.2). Then

(1) the process (B[ fi(-)])o<t<T is adapted continuous;

(ii) for some random wvariable C(41y a.s. finite and independent of n, we have a.s. for all
n>0

e Brp (e (S = Srp ) = By [F Ol < Capels (41)

sup
T <(T—g(en))+

(111) for any adapted continuous scalar process (Hy)o<i<T we have

2 30 Ho (50Een, (o, (e = Se ) = Ben [ O]) "S55 0. (42)
T <t

Proof. Statements (i) and (ii) are obvious to check from (Hzp)-1 and (Hg)-3.

Let us now prove (iii). Decomposing the sum in (4.2) into the contributions of the intervals
[0,t AT — g(en))+) and [t A (T — g(en))+, t], we write using (4.1)

Z HTZH <5;aETﬁl(fT{LI(ST;L — S"'fil)) — BTﬁl[fTﬁl(')])

Th <t
< Clunen 2Ny sup |H,|en
<s<t
n S 2 s (Hal(en B ot (Sot) — o)) + BaoFatn 1)
(T'—g(en))+ <7t <T 0<s<t
Uﬂ}s. 0
n—+00

where for the first term we used that £2 NJ* is a.s. bounded owing to (Hp)-2, and for the second
e . N 2 a.s.
term the convergence is proved by (i), (Hg)-1 and using that Z(T—g(an))+§Tf_1<T e 0

by (Hp)-4. 0
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The next theorem states the convergence of the renormalized sum of process values at the
discretization grid points.

Theorem 4.4. Assume (HY™), (Hg) and (Hp) for the sequence (en)n>0 with Y, ~q€2 <
+o00. Let (my)o<i<r be given by (Hp)-2. Let (Hi)o<i<T be an adapted continuous scalar
process with bounded Hy. Let o € {2,3,4} and (ft)o<i<T be an adapted continuous P*-valued
process with bounded fo. Then the following uniform convergences hold on [0,T):

2 u.c.a.s.
ZHz ln_>+oo/Hm (43)

T <t

S o o (Spw = 50,) 2 [ Had BI04

nHJroo
T 1<t

Proof. Let us first prove (4.3). The assumption (Hg)-2 reads B;[f () := |z|*] = m; Tr(oy0} ),
where the above right-hand side is positive continuous. Let

& =m; ' Tr(owa] )7L, t€0,T); (4.5)
note that £ is adapted continuous, &y is bounded in view of (Hpg)-2 and (H% ™), and we have
&Bi(f(z) == [a’] =1, te[0,T]. (4.6)

Now leverage the above equality to write

en Y Hey,=cp Y Hop & Bry [f(2) := ol

T <t T <t

> Hep & IASmnl?

<t

+ Z HT?71€7'5L1 (ETZLl(’AST[LP) - |ASTZ."/\t|2)

T <t
+2 > Hep &, (B [f(2) = 2] — 2B |AS,22)
T <t

Applying (4.2) from Proposition 4.3 with f;(z) = |z|?, a = 2, we justify that the third term
above converges uniformly a.s. to 0. Further using Proposition 4.2 with f;(z) = |z|, a = 2,
the second term above also converges uniformly a.s. to 0. Finally by [GS18b, Proposition 3.§]
(it easy to check in the proof that the convergence there holds in the sup-norm) we obtain

Z HT 157"1|AS "/\t‘z e / Hy& Tr Us dS—/ Hm_lds

<t
where for the last equality we recast the definition of £&. The proof of (4.3) is finished.
Regarding (4.4), write

en ™ > Hep fro (Seope = Sen ) =0 > Hep B [frn ()]

T <t T <t
+ &2 Z Hn <€;aETlﬂ_l (fT?_I(ST;l - ST[L_I)> — Brf_l[frf_l(')]) (4.7)
T{L_1<t
ten Y Hem, (fff,l(SrzlAt = Srm,) —Een, (fﬁzl(sff - Srzzl))) :
T <t
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Proposition 4.3 and Proposition 4.2 imply respectively that the second and the third terms
in the above right-hand side converge uniformly a.s. to 0. Last, apply (4.3) to the process
(HB:[ft(-)])o<t<r (which is adapted continuous by Proposition 4.3): this shows that the first
term of the right-hand side of (4.7) converges uniformly a.s. to fot Hym;1Bs[fs(-)]ds. We are
done. O

The next lemma gives the limit of integral of weighted increments of S.

Lemma 4.5. Assume (HE™), (Hg) and (Hp) for the sequence (en)n>0 with Y-,,~q & < +00.
Let (My)o<t<r be a Maty, g-valued adapted continuous process with bounded My, and recall
the definition (2.18) of the R¥-valued adapted continuous process (Qy)o<i<T:

(o) Bilf (z) == ()]
Qt := my : . (4.8)
(o0 ] )l Bilf (x) = (4)°]

Then

n—-+o0o

t
sgl/ M (5)ASsds "= /M Q.ds.
0

Proof. For any adapted continuous scalar process (Hy)o<t<7 with bounded Hy and any coor-
dinate k € {1,...,d}, the Itd formula yields that

—1/H JASKds = et Z Hep (07n 000 )i ¥

T <t

Ti—1 i—1

1 TN TN
X g(ASonM)?’— / ) (ASF)2dsF — / ) ASFA(g0 ) irds | .
First, by Theorem 4.4 applied with f;(z) = (2*)3 we obtain

S 3 oo 08t 5 [t oD () = (2

n—-+o0o
T <t

Second, apply Lemma B.3 with @ = 2 to get

n

TIAL
-1 T \—1 ! k k u.cas.
S S Ho (o 0T D [ (asbRask o
T,

n—-+o0o
Ti"_l<t i—1

Finally, in view of (3.2) in (Hp) and using the Holder continuity of ¢ in (HZ™), it readily
follows that

7L/\t
et Z Hen (o7, :n )kk:/ ASFA(s0 1) prds

T
z 1<t i-1

o /2
< e, ! sup |Hy(os0, )kk\ sup ]ASk| sup \A 050 )kl t<C< sup AT[‘)n

n
0<s<t 1<i<Np
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for some finite random variable C. The above time step goes almost surely to 0, this is
a consequence of (HZ™)-(Hg), see [GS18b, Theorem 3.4 and Lemma 3.2]. All in all, this
implies

n—)—i—oo

_1/ »(s) Skd ucas / Hsms_l(o-sa;r)];kllgs[f(l‘) = (xk)3] (4'9)

Now, apply the above for each component fo Mk o(s) AS¥ds arising in the product matrix-vector

S

fo 5)ASsds, we get the announced convergence. O

The next lemma handles the convergence of integral of weighted squared increments of S.

Lemma 4.6. Assume (HE™), (Hg) and (Hp) for the sequence (en)n>0 with Y, - e2 < 4o0.
Let (Hyt)o<t<T be an adapted continuous Sj—valued process with bounded Hy. Then

n——+o00

_2/ AST 5)ASs ds "% / my = ((o.12) " Xs(0; 1z))?]ds,

where X4 the solution of the matriz equation (2.13) for ¢ = ol Hyoy (remark that ol Hyo is
in ST ).
d

Proof. Set As := (07')T X 0!, First observe that, owing to the properties of Lemma 2.3, X
and A are adapted continuous processes. Moreover, multiply (2.13) (with ¢ = o] Hso,) by
(o717 on the left and 07! on the right: this gives the identity

20, Tr(os0) Ay) + 4As0.0) Ay = H,. (4.10)

Besides, for 7> ; < t, the It6 formula gives

o(s)d5s

TN
(ASTpArn [ ASnng)? = 4 / ASJ Ay AS;AS]A

2y
T,L-"/\t
T T TAT
+ / T AST 28000 Trlo0] Apgy) + Aol ALy | ASds.
Ti—1

Therefore, summing over i for 7" ; < ¢ and using the idendity (4.10), we get

t
en? 3 (ASTArn ASan)? = de;? /0 AST A (o) ASAS] A4S,

<t

t
+e7? / AS] (2859 Tr(A 00 ])Ag(e) + 49 Alaso] )ALy | ASids
0
t
+en2/ A8 Hy(s) ASsds. i
0

. o _9 ot
Lemma B.3 with o = 3 implies that e,2 [; ASSTA@(S)ASSAS;FA (5)dSs u_c)i; 0. Moreover,

the Holder continuity of o in (HZ ™) and the bound (3.2) of (Hp) ensure the existence of a
a.s. finite random variable C' > 0 such that

sup
t<T

_ t n Mo /2
e /0 AST [2%(5) Te(A(0507 YA ps)) + 40 () Aoy JAT, (S)} AS,ds <c( sup ATZ.) .

1<i<NR
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The latter bound converges to 0, see the arguments in the proof of Lemma 4.5. Therefore,
from (4.11), we obtain

2/ ASTHyASsds — €, Z ASTu iy ASznng)? "2 0.

——+00
T <t

Observe that due to the boundedness of og, oy L and Hy, and the properties of the solution
of (2.13), the coefficients of Xy and Ay are bounded random variables. Thus, we can apply
Theorem 4.4 with o = 4 and f,(x) := (2T Asx)?, to obtain

£, 2 Z (AS;:nATZglAS 2:_C>i;/ my LBs[f(x) == (" Asz)?]ds
T <t
/ m= B [f(2) = ((0='a) T Xa(0 2))2]ds.
The proof is complete. ]

4.2 Part II: Conclusion of the proof

Now we are in a position to finish the proof of Theorem 3.1. It boils down to combine previous
preliminary results with the application of an abstract CLT for semimartingale sequences.
The reference result on this subject is [JS02, Chapter IX, Theorem 7.3|. Next we state a
theorem that essentially follows from a simplified version of this general result given in [Fuk11b,
Theorem A.1|. For notions of stable convergence in distribution, [JS02, p. 512]-[JP12, Section
2.2.1..

Theorem 4.7. Let (Q, F, (Ft)o<i<r,P) be a filtered probability space supporting a F-adapted
d-dimensional Brownian motion (By)o<i<r. Let (S™)n>0 be a sequence of adapted continuous
semimartingales of the form

ST=A"+M",
where M™ are R™-valued F-local martingales of the form M™ = fo a?dBg, and A™ are R™-

valued adapted continuous processes with finite variation (note that m and d are not necessarily
equal). Suppose that:

a) (M™), fo Ksds for allt € [0,T] and (Ki)o<i<r s a S;},-valued adapted process;

n—H—oo

b) (M", B), N 0 for allt €[0,T7];

n——+oo

c) there exists an adapted continuous R™-valued process A such that supg<,«p |Af — Ay —>]P)+
- - n—-—+0o0o
0.

We denote by ICtl/2 the principal square root of the symmetric non-negative definite matrix
K. Let W be a m-dimensional Brownian motion independent of Fr defined on an extended
probability space (Q,]:", 15) Then, we have the following functional F-stable convergence in
distribution

t
[y / K12qw;.
(0,77 0
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Proof. First we apply [Fukl1b, Theorem A.1] to the martingale sequence M™. The conditions
of [Fukl1b, Theorem A.1| follow from (a)-(b) and the fact that M™ = [ adBs is orthogonal
to all martingales that are orthogonal to B. Note that this result in [Fukl1lb| can be easily
extended to our multidimensional setting using the standard Cramér-Wold argument. Finally
the convergence of S™ follows from (c) and the F-stability in [Fuk11b, Theorem A.1]. O

We now proceed to the proof of Theorem 3.1. We come back to the setting of Theorem 3.1
with general sequence ¢, — 0. Take any subsequence (El,(n))nZO' Then there exists another
subsequence (€,/5,(n))n>0 Which is square summable and for which the assumptions (Hg) and
(Hp) are verified. To simplify the notation we write simply &, instead of &,/0,(,) until the final
part of the proof.

Recall (see definitions (2.15)) that
g =& + &7,
with &' and £ given by
t t
‘E‘tn,1 :/ M@(S)Assd‘g’ gtn,Q :/ A‘5(‘:>’I-"4<F’(8)CIBS‘

0 0
For two continuous semimartingales (a;)o<;<r and (b;)g<;<7 with values in R and R? respec-
tively we denote by ({(a;b)¢)g<;<r their Mat,, g-valued quadratic covariation process. Recall
that A; = (A1, ..., Amy) | and set

L
A;J = 5(./47:,#/4‘;!—7?5 + A;I:tA]’t)

Using Lemma 4.5 we obtain for any [ =1,...,m and (Q¢)o<¢<7 given by (4.8)

: t
0 t 0 n—>+oo
Hence t
(ea'€"%B), = <€E ' / AS; Ap(s)dBs; B> vty / QT Aqds. (4.13)
0 tn%+oo 0

Further we have

t t
t

which in view of (4.13) yields

<—15”2 /QTA dB,; B> =i} (4.15)

n——+0o

We decompose the quadratic covariation matrix of £, 1&™2 — fo QI A,dB; at time t as follows:
for any 1 < 1,5 < m, we have

. ij t t
<€n15n,2 _ / QIASdBS> = 5n2/ ASSTALW(S _,AlTw(S AS,ds + / QIAZ',SAISQSds
0 ¢ 0 0

t
— / QT (A AT ) + Ai o AT )AS,ds.
0
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By symmetry of the matrix <5515"’2 — fO QIASdBS>t, we deduce
. ij t B t B
<€n18”’2 — / Q}ASdBS> =2 / ASTAY ASsds + / QI AYQ.ds
0 0
1/ QI ( (A;j, S.Al o(s) T A S.AT S))AS ds.

First, apply the dominated convergence theorem by invoking the a.s. continuity of A and Q.
on [0, 7], (Hr) and the convergence to 0 of the mesh size of 7™ (see the proof of Lemma 4.5),
it gives

t
-1 T 4if Tog. 4T T U.C.0:5.
- /0 20T A — QT AT )+ AisAT )] ASids 57 0. (4.16)
Second, from Lemma 4.5 we obtain
t t
—1 T i u.c.a,S. T A9
€n /(; Q@(S)Ap(s)ASSdS n—>—+>oo /0 Qs ASJQSdS. <417)

Last, we write A9 = A9T A9~ (see Lemma B.1), where AYT and AY” are adapted
continuous symmetric non-negative definite matrices. Owing to Lemma 4.6 we get

t ..

€n2/0 ASJ(.AZ(S))JFASSdS ::i;/ my )= (o5 ') T X (o7 2))?]ds,
t ..

€n2/0 ASST(.AZ(S))*ASSdS ::i;/ my )= (o3 t2) T XU~ (07 2))%]ds,

where X7 (resp. X 7) is the solution of the matrix equation (2.13) for ¢ = o] A ¥ o (vesp.
0T AY”5,). Hence, using that B[] is linear, we obtain

2/ASTA7,] AS dsucas
n—-+00

(4.18)
/0 my ' Bs[f (@) = (05 '2) T X7 (0, 12))? = (05 ') "X (01 2))?ds.

Recall the definition (2.19), i.e
K = my By [ (@) = (0 ) X (07 0) — (07 ") X7 (071 2))] — QT AV Q.

Thus from (4.16), (4.17) and (4.18) we get the convergence

<e;15"72/' QSTASdB> = //c ds. (4.19)
0 n—-+o0o

Note that K is a symmetric non-negative definite matrix since it is the a.s. limit of covariation
matrices.

Further we compute the limit for the finite variation part &' 1 Owing to Lemma 4.5 we
directly have

t
etem = ¢! / M ASds =™ / M Qds. (4.20)
0

n—-+o00
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For the convergence of €2 NJ* we take advantage of Theorem 4.4 to write

N = ) el = / my (4.21)

n%Jroo
T 1<t

Now we come back to the initial notation e,,, for the subsequence. Having proved the a.s.
convergences (4.15), (4.19), (4.20) and (4.21) for &,, = ,/0,, we use the arbitrary choice of ¢(n)
and the subsequence principle from Lemma 4.1 to get the same convergences in probability
along the initial sequence (g, : » > 0). So, in particular, we can apply Theorem 4.7 with

t
M =eteM? - / QTAdB, and A} =¢tel!
0

and after easy manipulations, we obtain the following functional F-stable convergence in

distribution:
eler =L = (/ M Qsds+/ QI AsdB +/ ic1/2dw)

The uniform convergence in probability (3.5) follows similarly from the P-version of the con-
vergence (4.21). The proof of Theorem 3.1 is now complete. O

5 Proofs of domain exit time properties (Lemma 3.3, Proposi-
tions 3.4 and 3.5)

We assume the notation of Section 3.2. In particular Lp denotes the constant given by (3.7).

5.1 Proof of Lemma 3.3

We begin by justifying i) with p = 1. For this we assume without loss of generality that the
process S has its coefficients such that

A < mf )\mm(atat ) < sup HUtUt | < A%«

sup |b¢| < bmax. (5.1)
>0

max/d:
they satisfy to the above bounds, they coincide with those of S before 7, and therefore the
process with new coefficients has the same exit time 7. For the proof of the above lemma,
this is enough to consider such a modified process instead of the initial S, or equivalently to
assume (5.1) for S.

Now, we invoke the rough bound 7 < 7 = inf{t > 0 : |S14| > eL}'} which holds since D

is included in a ball centered at 0 with radius LBl. We now derive two bounds, one for any

g€ < egg < 1, the other for small e.

Indeed, we can still define new F-adapted coefficients Bt =bl,pand 6y = 0yl +1:5¢/AZ

1. Take X as the unique positive solution to —Abyax + 5 )\QA‘r’mn
apply the Itd formula in expectation to get

eALDl >E, (eASL‘F> — M1y +E, (/ M1 ()\b; + 2)\2|O'1;73|2)d8>
v

T —
>E, (/ e)‘Sl’Sds> > e*)‘LDIEV(% — V).
14
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= 1: clearly A € C(6); then

This holds for any ¢ < 1.



2. Now, for ¢ < min(1,A%. Lp/(4bmax)) = &0 € C(S) so that —25L51bmax + A% >

min min
s . o
AZ. /2, we have with similar arguments

L >E, (S7;) =57, +E, < / (281,5b1,5 + |01;,s|2)ds> >R, (7 —v) A%, /2.

To summarize, we have justified that for any stopping time v, a.s. on {v < 7} we have

E, (1 —v) <E, (7 —v) <Pl o + 262 /(LH A ) Le<s, < max (e2ME0 /23 2/(LEHAT;))e?

min min
=: RD€2

with Rp € C(G).

We now establish i) for p > 2 by induction. Assume that i) holds for some p > 1 and for
any stopping time v: then, on {v < 7},

Ey((T - V)PH) - /0 “p+ 1E, ((T - t)plT_VZt)dt
= /Ooo(p +1)E, (IE,,H((T —v— t)p) 17’—1/Zt) dt
< /Ooo(p + 1E, (p!(RD52)p17—V2t)dt

= (p+ DY(Rpe?PE, (1 —v) < (p + 1)!(Rpe®)P™!

using twice the induction assumption (first for the stopping time v+t on the event {v+t < 7},
second for v on the event {v < 7}).

Last we derive 7). On {v < 7}, use the exponential Markov inequality and the estimates
i) to get

D S S __c 1 — __c
P,(r —v>e%) <E, (eme? (r=v=e C)> <e 2?Rp Z;ﬁE” <(;D€’;)p> <2e 28D,
p=>0

We are done. O

5.2 Preparing the proof of Propositions 3.4 and 3.5

This section is devoted to some preliminary results. Only within this section we assume that

(we pass to the general case D € DZ in Section 5.3). For simplicity we write §(-) instead of
Sap(+) since D € D is fixed and no confusion is possible. For ¢ > 0 denote J.(z) := ed(e1z).

Lemma 5.1. Assume (Hgf) with D € D (J =1). Let 7o := inf{t > 0: S, ¢ D)}. There
exists Ly € C(&) such that Ly < Lp and for any t € [0, 79| we have a.s.

. 1 g
Ogéig)fgLa Tr(o] (V6TVE + 6V26)(2)oy) > gAmin'
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Proof. Remind of the convention on Vé as a row vector. By (3.7) on the set |§(z)| < Lp the
function §(-) is C? and info<s)<r,, [VO(x)|? > §. For any z € D such that [6(z)| < Lp we
have

Tr(o] (V6TVO)(x)oy) = V(z)T - 000 V()T > A" (5.2)

4 min*

Further using | Tr(M)|Vd|| M| for M € Matg 4(R) and the sub-multiplicative property of the
Frobenius norm, for any 0 < L < Lp and x € D with |0(z)| < L, we have

| Te(o7 (6V26) (2)o)| < Valloro] (5926) (2)]| < VadllowoT || x | (6V26) ()| < VALLE Ay

(5:3)
We set L, := Lp min( ,8}“/‘\2“), which is a continuous function of Lp, A7, and AJ ..,
so that $AJ. — VdL,L} AT > SA%., which together with (5.2) and (5.3) implies the
announced result. O

Lemma 5.2. Assume (cho) with D € D (J =1). There exists K € C(&) such that for any
e € (0,1] and the stopping time

T=inf{t >0:5; ¢eD}
and any stopping time v such that v < T a.s. we have
E(r —v) < Ke?E(6(e71S,)). (5.4)

Proof. Take € € (0,1]. Let L, € (0,Lp| be given by Lemma 5.1 (Lp is defined in (3.7)),
l € (0,L,]. We have

E(r —v) =E(T = v)L5-15,)>1) + E((T — V) Ls(c-15,)<1)- (5.5)
Using Lemma 3.3 we get
E((7 — 1)Ly 15,)51) = E(Lye15,Eu(7 — 1)) < Rpe?B(3(e7'S,) > 1), (5.6)

The rest of the proof consists in estimating 15.-1g,)</Ev(7 — v). For simplicity we omit the
indicator in the calculations, so that we are working on the event {§(¢~1S,) < I}. Denote
7 := inf{t > v : 6.(S;) > le}. Note that §(-) is C? on the set |§(z)| < I since | < L, < Lp.
Let us write the Ito formula for §2(S;) on [v, T A 77]:

TAT]
62(Sran) = 62(Sy) + 2/ (0:V0:)(Ss) dSs
T/\Tl Y (57)
+ / Tr(o] (V6IV6. + 5.V%6.)(Ss)0s)ds.

Note that by Lemma 5.1, s < 7 < 79, 0 < 6(e7'Ss) <1 < Ly, (V8IV6, + 6.V?5.)(x) =
(V6TV6 + 8V25)(e~x) we have for all s € [v,7 A 7] a.s.

Te(o (V8 V6. +6:V26.)(Ss)os) = Agm
So we obtain

TAT]
/ Tr(oT (VST V4. + 5.V26.)(S,)os)ds > 8Amm(7 A — D). (5.8)
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Further

E, ( / " 6.78)(S) dss)

Thus from (5.7), applying E,(-), using (5.8), (5.9) and simply that 62(S,) > 0 we get

_ &, < /,, " (6.96.)(5,) bsd5> ‘ (5.9)

<UL bmaxBy (T ATy — V).

CiE (Tt AT —v) < Ey(ég(ST/\Tl)),

where C; = A%, € C(&), for any [ satisfying

16**min
0<1<LyA(LpAZ; bt /16). (5.10)
We continue with [ satisfying (5.10). Now using that d.(S;) = 0 and from the definition of 7
we get E, (02(Sran)) = Eu(62(Sy,) Lrsr) = [2€*P, (T > 7;), and consequently
CiE, (1 A1 — v) < PP, (1 > 7). (5.11)

Further we write
By (7 A7 =) = By((7 = 1) Lren) + By (71— ) Lrs) = B (7 — ) By (7 = 1) Trr). (5.12)
Using Lemma 3.3 (with Rp € C(&)) we obtain
E,((T = )1rsr) = By (LrsnEr (1 — 1)) < Rpe®Py (1 > 7). (5.13)
Hence plugging (5.11) and (5.13) into (5.12) yields
E, (1 —v) < (Rp + C{HEP, (1 > 7). (5.14)

Now, we aim at upper bounding the above probability. By taking the conditional expectation
E,(-) of the It6 formula for 6.(S;) on [v, 7 A 7], we get

[Py (T >m) = E,,((SE(ST/\TZ)) =0:(S,) + E, </T/\Tl V5.(5.) b5d5>

TATY
+ %EV (/ Tr(a;,rv25a(5’s)as)d5> .

The first expectation in the right-hand side of (o 15) is bounded by L ;' bmaxEy (T AT —v), while
the second expectation, in view of (3.7) and (H lm’ 7), is bounded by e 'dL ' A%, B, (T AT —

v). Therefore, plugging the above into (5.15) and using then (5.11), we readily obtain

(5.15)

1
1e*P, (1 > 7) < €6-(S,) + (5\/;1L51A;ax + LBlbmaX)E,,(T AT — V)
< €0.(S)) + 2Col’P, (1 > 7)),
where Cy := (%\/&LBIA;'H&X + L5 bmax)Cy !, so that Oy € C(&). Note that all the previous

analysis is valid for any [ verifying (5.10) and the elements of C(6&) do not depend on I, so
we may now fix [ = lp := min(Cy ' /2, L, (LpAY,, byk,)/16) which implies C5 := I — CalZ >

min"“max

%0 > 0. Observe that ly, C3 € C(S&). Hence we obtain

P,(r > 7,) < C310(s71S,). (5.16)
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Combining (5.14) and (5.16) and setting K := (Rp + C; '12)C5 ! € C(&), we get
E, (1 —v) < Ke25(e71S,). (5.17)

Remember that this result is obtained on the event {§(¢71S,) < lp}. Going back to the
general notation we have I5.—1g, )<, By (T—v) < Ke?15-15,)<,6(¢7*S,), and then by taking
expectation and combining this with (5.6) and (5.5), we finally obtain

E(r —v) < Ke®E(5(e71S,)) + Rpe*P(6(e71Sy) > lo) < (K + Rply 1 )e*E(5(e71S,))
where we have applied the Markov inequality at the last inequality. We are done. O

Lemma 5.3. Assume (Hﬁ(’f) with D € D (J = 1), and let f € C*(R%, R) be an a-homogeneous
function with o € {2,3,4}. There exists K € C(&) such that for any e € (0, 1], for the stopping
times

r=inf{t >0:S, ¢eD}, T=inf{t>0:85, ¢eD}

and any stopping time v such that v < 7 AT a.s., we have

ePE(ISy — SuI?) + eV E(f(Sy) — f(S0))| < K. (5.18)

Proof. We start with a bound on E(|S, — S,|?):

—+oco
E(|S, —S.°) <E (Z L, /e2efh—1,k) SUp | St — St|2>
k=1 tSkJEQ

1/2

+oo
<Y P/ € [k—1,k)"? [IE (sup |S; — St\4>
1 t<ke?

a) Estimate for B (sup;<y.2 | St — S¢|*): Denote
- t
M, = / (05 — 00)dWs
0
so that S; — S; = fot bsds + M;. Using the BDG inequalities and (Hgf) we obtain

E | sup |S; — S* | <8 bk, (k) +E [ sup |My|*
t<ke2 t<ke?

< O (b (k) + E ((M)2.5))

where C' is some universal constant. For the quadratic variation part we get

ke?
() == ([ - o)

with Cy := (n:”f‘l)Q So we conclude, using that k > 1, <1,

2 2

ke?
0

: <tiip2 15, - 544) < Cukteeene), (5.19)
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where C := C(b2 . + Cp) € C(&).

b) Estimate for P(v/e? € [k —1,k))Y/2: Lemma 3.3-ii) directly yields
P(v/e? € [k —1,k)) <P(v > 2(k — 1)) < Rpe Fpk=1)

for some Rp € C(&) Hence combining this with (5.19) we get

E | sup |5, — S5*
t<ke2

Thus for K = RpC1 (3125 e Br-=1/2k2) (so0 that K € C(6)), we get

1/2

+oo
> P(v/e? € [k —1,k))"?
k=1

VR (ze e wkz)

k=1

E,(|S, — 5,|%) < Ke?T2m, (5.20)

Now we proceed with the proof of (5.18) regarding f. Recall that the function f verifies (3.9).
We have

_ _ 1 _
E(£(S,) = £(5.)) | <E (\sy -l [ V0, + (1 A>sy>\dx)

E ((/01 VFOS, + (1 — A)S‘V)]d/\>2>

Using that v < 7 AT we obtain |S,| < ELBl and |S,| < ELBl so that

1 2\ 71/2
E ((/0 IVF(AS, + (1 — /\)Su)ldA> )] < Cp Ly Vet (5.21)

Now combine (5.20) and (5.21) to get (up to changing K € C(&)) the announced estimate. [J

1/2
[E (15, — 5, %)] 2.

Corollary 5.4. Assume (H27) with D € D (J = 1). There exists K € C(S) such that for

loc

any € € (0,1], the stopping times
r=inf{t>0:5,¢eD}, T=inf{t>0:85,¢eD}

satisfy
E(jr —7[) < K&, (5.22)

Proof. Let v:=71 AT. Applying Lemma 5.2, we get for some K € C(&)
E(r—v) < KeE (5(e7'S))) . (5.23)
Using that 1,-,6(¢71S,) =0 and 1,—,6(¢71S,) = 0 we write
E(6(e7'S,)) =E (Ly<r(3(71S,) — 6(e71S,))) < Lp'e 'E(|S, — S,|H)Y2.

Using (5.18) from Lemma 5.3 we get e2E(6(e71S,)) < Lt K/2e279/2 Tn view of (5.23), we
have proved (up to redefining K € C(&))

E(Lys7(7 — 7)) = E(1 — v) < KT,

A similar bound holds for E(1;<#(7 — 7)): this is justified in the same way, applying Lemma
5.2 to S and Lemma 5.3. Consequently, the proof of the bound for E(|7 —7|) is complete. [
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Corollary 5.5. Assume (HZ) with D € D (J = 1). There exists K € C(& U {K'})

loc

such that for any e € (0,1], any strictly positive constants K',n' and for D' € D such that
w(D,D") < K'e", and for which (3.7) and (Hg’:) hold for D' instead of D with the same

constants Lp, A ., AJ .., bmax, we have

E(jr —7|) < Ke2t" (5.24)

where
r=inf{t>0:S, ¢eD}, T =inf{t>0:5,¢¢cD'}.

In particular, K is a multiple of K', so that K — 0 as K' — 0.

Proof. Let v := 7 A 7" and denote by 4(-) the distance dsp(-). Using Lemma 5.2, we obtain
for some K € C(6)
E(r — v)< Ke?E(6(¢71S,)).

Observe that d(¢~1S,) < u(D,D') < K'e"’, which gives
E(Lysp(r — 7)) = E(r —v) < KK+,

A similar bound on E(1,>,(7" — 7)) follows from the symmetry between D and D’. O

5.3 Proofs of Propositions 3.4 and 3.5

Now we pass to the general case of D € D%, i.e. of the form D = ﬂjlej. Note that the
results of Section 5.2 are valid for each Dj,j =1,...,J.

Proof of Proposition 3./. Let v:=7 AT. Denote for j =1,...,J
Tj:inf{t2015t¢€Dj}, ?j:inf{tZOZStQéEDj},

so that 7 = min(7y,...,77) and 7 = min(7y, ..., 7). Write

IE(f(Srar) — f(Sear))| < [E(f(Sunr) — F(Sunr))| + [E(f(Srar) — F(Suar))]

+|E(f(Szat) — f(SuaT))l-

By Lemma 5.3 (applied for any j to the domain D; and the stopping time v AT < 7;AT;) we
have for some K € C(G)

e [E(f(Suar) — f(Suar))| < Ke™. (5.25)

For the next term we have (using that ¢ <1)

/VTAT [VF(Se)by + ;Tr(a;rvgf(st)at)]dtD

AT

E(f(Sraz) — £(Sunt))| < E (

a1 a2\ o
< Cp(bmax L,V + iJ&AgaXLD( N 2E(|r AT — v AT)|)

J
(a— 1 —(a— a— _
< C’f(bmaXLD( Y + iﬁA;‘naxLD( 2))8 2 ZE(‘T] - Tj|)
=1
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(since the min function is Lipschitz)

—(— 1 —(a— —
< Oyl 4 SV Ly )e 2 K 2

where we have applied Corollary 5.4 at the last inequality. We can show a similar bound for
S and at the end, we obtain the advertised inequality (3.10). O

Proof of Proposition 3.5. The proof is quite similar to that of Proposition 3.4, at the end we
invoke Corollary 5.5 instead of Corollary 5.4. O

Appendix

A Technical proofs

A.1 Proof of Lemma 3.6

We start with some preliminary analysis. Let (U;,7 > 0) be i.i.d. random variables uniformly
distributed on [0,1] and independent of Fr. We keep the same notation for the extended
probability space supporting these extra random variables and we simply write Pp(-) (resp.
Er(+)) for the probability (resp. expectation) conditionally on Fr.

Set V; = G.(Uj), j > 0 where G.(+) is given by (H¢): conditionally on Fr, these random
variables are i.i.d. Let Y be the random variable given by

Y i=inf{m>1:» V;>T}
j=1

In view of (H) there exists an a.s. finite Fp-measurable random integer mg such that a.s. we
have
yi=Pr(Vi+ -+ V) <T) <1

Our goal is to show that Y has finite (conditional) moments. We write for all p > 0

k—1
Er([YP) <Y KPr [ D Vi <T | <3 KPPr((Vi+ -+ Viny) < T)LE7D/mo]
k>1 Jj=1 k>1 (A.1)

= S kel mo) < o
E>1

We now come back to the main point about proving (3.12). For any n > 0 the grid 7™ may
be represented as a union 7™! U 7™2 (possibly non-disjoint), where 7™! is the grid points
with 7 = 7" | + E%G‘rfil(Un,i) + A, and T™2 contains the points where exit times occur
first (see (2.6)). We have N™(I,,) < N™!(I,) + N™2(I,,) with respect to the decomposition
TN — Tn,l U Tn’2.

> Upper bound on N™1(I,). Note that from (A.1) we get Ep(Y) < 4o as. Set O :=
1+2E7(Y), let (Y;)i>0 be i.i.d. copies of Y conditionally on Fr, and put my, := [&,,%|1.|/T] —
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+00. Let < denote the relation of first-order stochastic domination (conditionally on Fr).
Then using (H¢)-1 and the subadditivity property of counting processes we obtain

m mn
NN L) 2inf{m > 0: Y V; > 2L} 2D Vi
j=1 i=1

Remark that the latter relation of domination turns into equality in distribution in the partic-
ular case of V; having an exponential distribution due to the additivity of Poisson variables.
Let p := 2/p > 2 for p in (3.11). Note that from (3.11) we have €2 /|I,| < Coe2 so that
> s0(€2/|1,])P/? < +o00. Applying the Markov inequality, the Burkholder inequality (see e.g.
[FIH80, Theorem 2.10]) and the Minkowsky inequality we obtain (for n large enough so that
My > 2)

Py (T]InrlaiN"J(In) > C)
<y (ZEY 5 o) cp, (ZEEO) )

my, — 1 m, — 1
/2
m (Y — Er(Y) [P . il g
<t (|ZE0ED) < G s > (%~ Br ()"

Mn P/2
< Courk.my,” (Z Er(Y; — ET(Y)\p)Q/p> = Ciurk.my, " B (|Y — Er(Y)[P)*/7
i=1

Te2 )17/2

< CBurk.ET(|Y - ET(Y)‘p)Z/p <|I|

So we get
> Pr(T|I| el N™ (I,) > C) < +00 aus.
n>0

and thus, by the Borel-Cantelli lemma, the event {T'|I,,|~'e2N™!(I,) > C} occurs finitely
many times conditionally on Fr a.s. This proves sup,,>qe3|l,| " *N™(I,) < C} a.s. for some
a.s. finite C1.

> Upper bound on N™2(I,). Denote r, := infoci<rsup{r > 0: By(0,7) C Ny>oDP}. Let us
show that 7, > 0 a.s. Indeed for any n > 0, we have info<;<psup{r > 0: Bg(0,7) C D'} >0
since each D? contains 0 and in view of the time-continuity of D} w.r.t. the distance p”(:,-).
The same holds for (D;)p<t<7. Now the positivity of r, follows from the convergence of D}
to Dy w.r.t. p?(+,+) uniformly in ¢ € [0, T] by (H}). For N*2(1,,), we write

NI <24t Y 2

T cTm2nI, T Eln

<&l >

TRET N, EIn

Sin — Spn

i i—1

2
Srp = Sy

We have

> |ASn|? — / Tr(owo])dt =2 | ASToudB; +2 [ ASbdt.
In

TrET Iy, 7 €l In In
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Further, using (Hp)-1, we obtain that there exists an a.s. finite random variable C' such that

< Cey /|l

ASJbtdt' < C€n’In| and '/ AS;I-O'tdBt
In

In
where for the last inequality we apply [GL14, Corollary 2.1| for the sequence of martingales

1
eb~ ¢

M =
t /—’I

for the parameter p := 2/p with p given by (3.11), in view of the quadratic variation bound

17, (s)ASTo,dB,,

2p—2
(M")r 7} | AStTUtUtTAStdt’ < Cellp, Z(M"V%/z <400 as.
In

n>0

Using that e, ”/+/|I,| — 0 by (3.11), this finally implies

N™(I,) <1+471.%,? (!Inl sup Tr(ovo]) + OZ'S‘(\In!)> :
0<t<T

which finishes the proof. O

A.2 Proof of Proposition 4.2

First let us prove the statement for f; = f, for any ¢t € [0, 7], where f : R?% — R is a continuous
a-homogeneous deterministic function. Let Cy := supj,—; | f(z)| and C32) be given by (Hp).
First note that from (Hpy) and the homogeneity of f we have for all n > 0 and for all ¢ € [0, T
a.s.

|[F(AS)] + [Be( F(ASp))| < CrC5en. (A-2)

Fix n > 0. Consider the adapted process

= 3 e (Bd(F(AS5)) = Een  ((AS;2)))

o<t

(note that the conditional expectations are well defined, see our conventions at the end of the
introduction). Define the process

2
V= Ct(g.z) + sup |Hs|+ (QC’fCt(g‘Q) sup |Hs| + 1> 1+ ZeﬁNt”
0<s<t

0<s<t n>0

Note that V; takes finite values due to (Hg)-2 and is adapted cadlag and non-decreasing.
Define
=inf{t >0:V; >k} (A.3)

with the convention v, = 400 a.s. if & > V). Due to boundedness of Hy and 0(3'2) we have
( 0
that

Vo = O +|H0\+(2Cfc |H0|+1) < Cy,
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for some deterministic constant Cy,. Now observe that (since the jumps of N;* are of size 1)

V, < |1+ Z e | (kv oy, = q(k). (A.4)
n>0

In order to justify the manipulations with the conditional expectations below we remark the
following properties

Lo DSl < CGPed <q(k)ed, Lo oilHen [ <q(k) s (A.5)

It implies that for any stopping time 6 and any continuous function ® we have the equality

ﬂffilguk/\OEuk/\G<]]-T{L71§1/k/\9(I)(ASTf)) = ]]-Tfilglxk/\HEuk/\B (q)(ASTZn)) (AG)

Owing to (A.5), the random variable inside the conditional expectation on the left-hand side is
bounded, and therefore its conditional expectation is well-defined (and in any LP). The random
variable inside the conditional expectation on the right-hand side is not necessarily integrable
(essentially controlled thanks to (Hg)), but actually, in the next computations, it will be still
localised on a set of the form {77* ; < v¥ A8}, on which we have the equality (A.6). Therefore,
in what follows, writing Lon <,krgE,kng (CD(ASTin)> or Lon <, kpngEpkng (]].T;ngyk/\gé(ASTin))
is the same and gives random variables that are bounded: for the sake of brevity, we use the
notation on the left-hand side of (A.6).

For 7* | <t A v, we obtain

[Ho | (1Bnu (F(AS7 )| + [Erp (F(AS)]) < ( sup |Hsr> 20,0y e < Valk)er

0<s<vk
(A.7)
Using in addition that ef N74, < q(k), we obtain a.s.

Ziw <D [Hep | (IBinn (FASz))| + [Brp (FAS))]) < Ny, Va(R)es
T <tAvg (AS)

< q(k)*2ea",

Hence, we get that E(|Z}},,, |P) < +oco a.s. for all p > 1 with an LP-norm bound independent
of t € [0,T]. Using (A.5)-(A.6) to deal with the conditional expectations and (A.8) to be
able to interchange the sum and the conditional expectation below, we verify that for any
0<s<t<T we have a.s.

Eo(Zp) = > Hop, (Bt (F(AS) = Erp, (f(AS))

n k
T <SAV

+E, Z ]llTin_1 (Et/\yk (f(ASTln)) - ET{I_I (f(AST[‘))> = g/\z/’“'
SAVF ST | <tAUk

Hence the process (Z}, .

Using that v* = +o00 for k > Vp we deduce that the process (Z")o<t<r is cadlag.

Jo<t<T is a martingale, and, in particular, it has a cadlag modification.
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In view of (A.2), the final result will follow from the convergence e2~“Zp uc—:‘_)s 0. We
n—-+oo

prove it by leveraging Lemma B.2. Define

2
Ur =222 sup | 272, V=t NP <2CfCt(3'2) sup |Hs|> .

0<s<t 0<s<t

Since N™ and Z" are cadlag, it readily follows that U™ and V™ are cadlag adapted processes,
non-decreasing, vanishing at 0. Note that

ZVt” < <QC’fCt( sup |H ) Zs N < V. (A.9)

n>0 n>0

Let us check the hypotheses (i)-(ii)-(iii) of Lemma B.2. The assumptions (i)-(ii) follow
from (A.9). We have already proved (iv) in (A.4). Now, we check the relation of domination
(iii). We need to show that for some (deterministic) constant Cy > 0 we have, uniformly in &
and n,

E(Uths,,) < CoE(Vir,,)- (A.10)

We proceed with the following estimate of E(|Z},,, |*) using Fubini’s theorem

B2 ) =E( Y H2 (B, (F(ASp) ~ B (£(28))

T <tAvg

+2 Z E<1T;L_1<t/\VkHT,ZL_1 (Et/\uk (f(ASTZ")) - ETZ’_I(f(ASTZ")))

1<i<j<400

X HT]'(L_lET}q’_l <Et/\uk (f(AST]")) - ET;L_I (f(ASTJ"))>>

2

0<s<tAVk

where we used (A.8) to interchange the sum and the expectation, and (A.6)-(A.7) to justify
that the expectations of the cross-products are well defined and equal 0. In particular, since
the process in the right-hand side of the last inequality is non-decreasing, we obtain

42«
n

Os<up E(| s/\uk| )S E(V;Srll\uk) (All)

Applying Doob’s L?-inequality ([RY99, Theorem I1.1.7]) to the cadlag martingale (Z, .,k )o<t<T,
we obtain

2
E<OS<1?<)t’ S/\l/k’ ) <4 Sup E(| S/\l/k| )

Combining this estimate with (A.11) and from the deﬁnltlon of Uj* we get
B(UT) = 4727 (s 120017 ) < 4BOVE,)
s<

2_O‘Zn ucas

The convergence ¢, + 0 now follows from Lemma B.2.
n—-+oo

To complete the proof in the general case f; = Zﬁnitely many k fEP, simply apply the
above result to Hy ftk and P, for each k. O
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B Supplementary material

B.1 Decomposition of symmetric matrix into non-negative and non-positive
parts

Lemma B.1. Let (M;)o<i<t be an Sg-valued continuous adapted process on some filtered
probability space. Then we can decompose My = M;" — M, where M;" and M, are S; -valued
continuous adapted processes; this decomposition, however, is not unique.

Proof. Let A¢ := max (Amax(M),0). By Hoffman and Wielandt’s theorem [HJ90, p. 368],
(At)o<t<T is continuous and we may take Mt+ =M1d, M; = \I1d—M,. O

B.2 Fundamental lemma on the almost sure convergence of processes

The following lemma is inspired from [GL14, Lemma 2.1|, but its assumptions better fit our
setting.

Lemma B.2. Let (U"),>0 and (V™)p>0 be two sequences of non-negative measurable pro-
cesses. Assume that:

(i) the series Y, o V{" converges for allt € [0,T] a.s.;
(ii) the above limit is upper bounded by a non-decreasing adapted cadlag process V ;
(ii) there is a constant ¢y > 0 such that, for everyn € N, k € N and t € [0,T], we have

EUgnx] < ey ElVip] (B.1)
with the stopping time v* = inf{s € [0,T] : Vy > k} (with the usual convention that
inf ) = +00);

(iv) there is a deterministic function q : N — RY such that q(k) >k and V. < q(k) for any
k a.s.

Then for any t € [0,T], the series ) ,~oUj* converges almost surely. As a consequence,
a.s.

ur = 0.

Proof. Lett € [0,T] be fixed. Denote by Ny the subset of  on which the series (3, <o Vi )o<t<T
do not converge, on which V and then (v*) k>0 are not defined and on which the inequalities
of (iv) are not fulfilled; note that Ny is built as a countable union of negligible sets, thus it is
P-negligible.

For w ¢ Ny, we have V,, (w) < g(k) for any k € N. Set VP :=>P_ V"™ we have VP <V
on N¢; thus, the localization of V entails that of V? and we have thj\uk < q(k) for any k,p
(on N{). Furthermore the relation of domination (iii) writes

p p
> U > Vi
tAvk tAvk
n=0 n=0

for any k,p (on Ny;). From Fatou’s lemma we get E[Y, -, U/} ] < +oo for any k, therefore

the series ), - U} . (w) converges for all w outside of a P-negligible set N ;. The set N; :=

E <cms1 E =ci.) E[VP ] < cmay a(k) (B.2)
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Uken Nkt UNy is P-negligible, and it follows that for w ¢ N, the series Zn>0 Ul

converges for all k € N. For w ¢ A}, we have v¥(w) = 400 as soon as k > Vp(w); thus by
taking such &, we complete the convergence of »_ -, UJ" on NE. O

w)

B.3 Almost sure uniform convergence of stochastic integrals w.r.t. a Brow-
nian semimartingale

Lemma B.3. Assume that a process S and a sequence of discretization grids T verify (Hgsen‘)and
(Hg)-1 with a sequence (e, : n > 0) such that Y., ~,€2 < +o0o. Let (Hy)o<i<T be an adapted
continuous scalar process and let f : R — R be a a-homogeneous function with o > 0. Then
forany k=1,...,d we have

TIAL

—a+1 k ucas
e, Y Hﬁll/ f(AS,)ds* 0.

T *>+OO
T{Ll<t i—1

Proof. Using the decomposition S = A + M, we write

Ti”/\t
> He, / / Ho o f(AS)dAY + / H () f(ASs)dME.

n

T <t Ti—1

First, the assumption (Hp)-1 and the inequality |f(z)| < Cflx|* yield

t
/0 Hga(s)f(ASs)dA

Second, the quadratic variation of the Brownian stochastic integral is

—a+1
En

t
<Cy sup [m] [ (e 1AS)"alab, 25 0
t<T 0 n—-+oo

. T
<5n0‘+1/ H@(s)f(ASS)dMSk> < C]% sup \Ht\ sup ](atat kk|€, 2‘”2/ ]ASS\Qads SCE?L
0 T 0<t<T 0<t<

for some a.s. finite random variable C' > 0 (using again (Hpg)-1). Thus using that 3 -, e2 <

+oo and applying [GL14, Corollary 2.1| we get

t
e, /0 Ho5) f(AS)dME "% 0,

’fl*)OO

which implies the result. ]
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