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Abstract

In this paper we study the problem of parametric inference for multidimensional diffusions
based on observations at random stopping times. We work in the asymptotic framework of high
frequency data over a fixed horizon. Previous works on the subject (such as [Doh87, GJ93, Gob01,
AMO04] among others) consider only deterministic, strongly predictable or random, independent
of the process, observation times, and do not cover our setting. Under mild assumptions we
construct a consistent sequence of estimators, for a large class of stopping time observation grids
(studied in [GL14, GS18]). Further we carry out the asymptotic analysis of the estimation error
and establish a Central Limit Theorem (CLT) with a mixed Gaussian limit. In addition, in
the case of a 1-dimensional parameter, for any sequence of estimators verifying CLT conditions
without bias, we prove a uniform a.s. lower bound on the asymptotic variance, and show that
this bound is sharp.

Keywords: diffusion coefficient estimation, observation at stopping times, consistent se-
quence of estimators, local asymptotic mixed normality, asymptotic variance, optimal lower
bound.

MSC2010: 62Mxx, 62Fxx, 60F05, 60G40, 60Gxx, 62F12.

1 Introduction

Statement of the problem. In this work we study the problem of parametric inference for a
d-dimensional Brownian semimartingale (S;)o<t<7 of the form

t t
Sy =S +/ bsds +/ o(s,Ss,&)dBs, te[0,T], Spe R, (1.1)
0 0

based on a finite random number of observations of S at stopping times. The time horizon T > 0
and Sy are fixed. We assume that the observations are the values of a single trajectory of (S; :
0 <t <T) sampled from the model (1.1) with an unknown parameter £ = £* € E. Our goal is to
estimate £* using these discrete observations and study the asymptotic properties of the estimator
sequence as the number of observations goes to infinity; we work in the high-frequency fixed horizon
setting. Handling data at random observation times is important in practice (see the examples in
[GWO02, Fuk10] for instance) and it has a large impact on inference procedure, as it is argued in
[AMO3].

A large number of works (see the references below) are devoted to the inference of diffusion
models in the case of deterministic, random independent or strongly predictable observation time
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grids. In most cases they are based on the approximations of the transition probability density of
the diffusion process, resulting in so called approximate maximum likelihood estimators (AMLEs).
However, in practice, the observation times may be random and, moreover, the randomness may be
(at least partly) endogenous, i.e. depending on the sampled process itself: see [GWO02] for empirical
evidence about the connection of volatility and inter-transaction duration in finance, and [Fuk10] for
modeling bid or ask quotation data and tick time sampling. In other words, as motivated by those
examples, the observation grid may be given by a sequence of general stopping times with respect to
a general filtration; see the introduction of [GLS18] for additional motivation and discussion. To the
best of our knowledge this setting has not yet been studied in the literature, except in [LMR " 14]
where a Central Limit Theorem (CLT) for estimating the integrated volatility in dimension 1 is
established assuming the convergence in probability of renormalized quarticity and tricity (however,
the authors do not characterize the stopping times for which these convergences hold). One reason
for this lack of studies in the literature is essentially that the necessary tools for the analysis of the
stopping time discretization grids for multidimensional processes were not available until recently.
In particular, the study of the asymptotic normality for a sequence of estimators requires a general
central limit theorem for discretization errors based on such grids. Such a result has been very
recently obtained in [GLS18] in a concrete setting (i.e. for explicitly defined class of grids, and
not given by abstract assumptions, as a difference with [LMR"14]), in several dimensions (as a
difference with above references) and with a tractable limit characterization. Note that in [Fukl1],
the derivation of CLT is achieved in the context of general stopping times, but the limit depends on
implicit conditions that are hardly tractable except in certain situations (notably in dimension 1).
Another issue is that it is delicate to design an appropriate AMLE method in this stopping times
setting: in general, approximation of the increment distribution seems hardly possible in this case,
since the expression for the distribution of (S;,7), where 7 is a stopping time, is out of reach in
multiple dimension even in the simplest cases.

In this work we aim at constructing a consistent sequence of estimators ({")n>o of the true
parameter £* in the case of random observation grids given by general stopping times. We provide
an asymptotic analysis that allows to directly apply the existing results of [GLS18] on CLTs for
discretization errors and show the convergence in distribution of the renormalized error /N7 (" —£*)
(where N is the number of observation times) to an explicitly defined mixture of normal variables.

Literature background. A number of works study the problem of inference for diffusions. For
general references, see the books [Sor04, Fucl3] and the lecture notes [Jac07].

The nonparametric estimation of the diffusion coefficient o (.) is investigated in [FZ93] for equidis-
tant observations times on a fixed time interval. In [GJ93] the authors consider the problem of the
parametric estimation of a multidimensional diffusion under regular deterministic observation grids.
They construct consistent sequences of estimators of the unknown parameter based on the mini-
mization of certain contrasts and prove the weak convergence of the error renormalized at the
rate v/n to a mixed Gaussian variable, where n is the number of observations. The problem of
achieving minimal variance estimator is investigated using the local asymptotic mixed normality
(LAMN) property, see e.g. [CY90, Chapter 5] for the definition: this LAMN property is established
in [Doh87] for one-dimensional S, and in [Gob01] for higher dimensions using Malliavin calculus
techniques, when the n observation times are equidistant on a fixed interval. These latter results
show the optimality of Gaussian AMLEs that achieve consistency with minimal variance.

If the time step between the observations is not small, one can use more advanced techniques
based on the expansions of transition densities in order to approximate the likelihood of the obser-
vations. See, for instance, [Ait99, Ait02, Ait08, CC11]. Note that these works consider only the
case of deterministic observation grids.



In [GJ94] the authors study the case where each new observation time may be chosen by the
user depending on the previous observations (so that the times depend on the trajectory of S). The
authors exhibit a sequence of sampling schemes with an asymptotic conditional variance achieving
the optimal (over all such schemes with random times) bound for LAMN property for all the
parameter values simultaneously. We remark that though in [GJ94] the observation times are
random, they are not stopping times, and the perspective is quite different from ours: the authors
assume that observations at all times are, in principle, available, and aim at choosing adaptively
a finite number of them to optimize the asymptotic variance of the estimator. In our setting
observations are stopping times and are not chosen by the user in an anticipative way.

Several works are dedicated to the inference problem with observations at stopping times, but
under quite restrictive assumptions on those times as a difference with our general setting. More
precisely, in [AMO03, DG04] the authors assume that the time increment 7" — 7)* ; depends only
on the information up to 7;°; and on extra independent noise. A similar condition is considered
in [HJY11], and it can take the form of strongly predictable times (7;* is known at time 7> ;). In
[AMO4], the time increments are simply independent and identically distributed. In [Fuk10, FR12],
the authors consider the observation times as exit times of S from an interval in dimension 1:
because such one-dimensional exit time can be explicitly approximated, they are able to establish
some CLT results for the realized variance. For potentially more general stopping times, but still
in dimension 1, [LMR"14] provides CLT results under the extra condition of convergence of the
quarticity and tricity. To summarize, all the above results consider stopping times with significant
restrictions and, in any case, in one-dimensional setting for S. In the current study, we aim at
overcoming these restrictions.

Our contributions.

e To the best of our knowledge, this is the first work that analyzes the problem of parametric
inference for multidimensional diffusions based on observations at general stopping times.

e Under mild assumptions we construct a sequence of estimators and prove its consistency for
a large class of observations grids, which, following [GS18, Remark 1], contains most of the
examples, interesting in practice.

e Using our asymptotic analysis and applying the results of [GLS18] we prove the weak con-
vergence of the renormalized error to a mixture of normal variables, for a quite general class
of random observations, which includes exit times from general random domains, and allows
combination of endogenous and independent sources of randomness. In addition, we explicitly
compute the limit distribution. The asymptotic limit is, in general, biased, and we charac-
terize both asymptotic bias and variance. Such a bias has not been previously observed in
parametric inference problems due to centering property of Gaussian increments for strongly
predictable grids.

e We provide a uniform lower bound on the limit variance in the case of a 1-dimensional param-
eter £ € £, and for the set of observation grids for which the weak convergence to a mixture
of normal variables without bias holds. We also prove that this bound is sharp in this class
of grids. To the best our knowledge, this result for parametric inference for diffusions is new,
and it allows for discussing optimal sampling procedure for instance.

Last, for other applications and results of stopping times in high-frequency regime, see [Fukll,
GL14, GS13].



Outline of the paper. In Section 2 we present the model for the observed process S, the random
observation grids, and construct a sequence of estimators ({"),>0 based on the discretized version
of the integrated Kullback-Leibler divergence in the Gaussian case. Section 3 is devoted to the
statements of the main results of the paper. We continue with the proofs in Section 4. Several
technical points are postponed to Section A.

2 The model

Let (Bt)o<t<T be a d-dimensional Brownian motion on a probability space (2, F, (F¢)o<t<T, P)
with a filtration (F3)o<t<7 verifying the usual conditions of being right-continuous and complete.
By |- | we denote the Euclidean norm on matrix and tensor vector spaces. Let Mat,, ,, be the space
of real m x n matrices, denote by S/ (resp. S;;) the set of positive (resp. non-negative) definite
symmetric real m X m matrices.

Let =2 C R?,¢g > 1, be a convex compact set, with non-empty interior to avoid degenerate cases.
We fix a parameter {* € =\ 0= (where O= is the boundary of =). The process serving for the
observation is a d-dimensional Brownian semimartingale (S;)o<¢<7 of the form

t t
st:50+/ bsds+/ (s, S5, €)dB,,  te[0,T], S e RY (2.1)
0 0

verifying the following:
(Hs): 1. 0:[0,T] x RY x = — Matg 4 is a C1%? function;

2. the matrix o(t, S, &) is invertible for all £ € = and ¢ € [0,T] a.s.;

3. (bt)o<t<r is a continuous adapted R%-valued process such that for some 7, > 0, for some a.s.
finite C' and for any 0 < s <t < T we have |b; — bs| < C|t — s|™.

In what follows we denote for simplicity o;(¢) := o(t, S, £). Let ¢(-) := o¢(-)o¢(-)T. We suppose,
in addition, the following parameter identifiability assumption.

(H¢): For any ¢ € =\ {{*} we have a.s. that the continuous trajectories t — ¢;(£*) and ¢ — ¢(€)
are not almost everywhere (w.r.t. the Lebesgue measure) equal on [0, 7.

2.1 Random observation grids

We consider a sequence of random observation grids

{(75‘::0<T{‘<---<r”<---<T}3,¥::T):nzo}

(2

on the interval [0,T] and suppose that for each n, only the values (7", S7r)o<i<ny are available
for the parameter estimation: these are the observation data. For each n, (7' : 0 < i < N}) is a
sequence of F-stopping times and N} is a.s. a finite random variable. Here we do not assume further
information on the structure of these stopping times (e.g. they are hitting times for S of such or such
boundary and so on): we are aware that having this structural information would presumably be
beneficial for the inference problem, by making the estimation more accurate. Proving optimality
results (like in [Doh87, Gob01]) given the sequence of observations {(7, Srr)o<i<nz : n > 0} is
so far out of reach, and we leave these problems for further investigation. However we establish a
partial optimality result in Section 3.4.

Our statistics analysis is based on the asymptotic techniques, developed recently in [GL.14, GS18,
(GS17], for admissible random discretization grids in the setting of quadratic variation minimization.
In this work we adapt these techniques to the problem of parametric estimation.



We introduce the following assumptions that depend on the choice of a positive sequence (g5, )n>0
with £, — 0 and a parameter py > 1 (compare to [GS18, Definition 1]):

(AZ): The following non-negative random variable is a.s. finite:

sup (6;2 sup sup  |S¢ — S l|2) < 400. (2.2)
] "

n>0 1<i<Np te(r] 7]

(An): For some py € [1, (14 2m) A 4/3) the following non-negative random variable is a.s. finite:

sup(e2°N NI < +oo. (2.3)
n>0

Let us now fix (e5,)n>0 with €, — 0 and a sequence of discretization grids 7. We assume for
some py € [1, (1 + 2m) A 4/3) the following hypothesis:

(Hr): For any subsequence (&,(,))n>0 of (€n)n>0 there exists another subsequence (¢,/6,(5))n>0 for
which the assumptions (A%“)-(Ay) (with the given py) are verified.

Remark that the class of grids verifying (H7y) is very general and covers most of the settings
considered in the previous works on inference for diffusions. At the same time, it allows new types
of grids that were not studied before. In particular, it includes:

e The sequences of deterministic or strongly predictable discretization grids for which the time
steps are controlled from below and from above and for which the step size tends to zero.
Here py > 1, see [GS18, Remark 1].

e The sequences of grids based on exit times from general random domains and, possibly, extra
independent noise. Namely let {(D}")o<t<7 : n > 0} be a sequence of general random adapted
processes with values in the set of domains in R?, that are continuous and converging (in a
suitable sense, see the details in [GLS18, Section 2.2]) to an adapted continuous domain-valued
process (D¢)o<¢<7. Consider also an i.i.d. family of random variables (U; ,)n ien uniform on
[0,1] and an arbitrary P®B([0, 1])-measurable (P is the o-field of predictable sets of [0, 7] x £2)
mapping G : (t,w,u) € [0,T] x Q x [0,1] = RT U {400} (to simplify we write G¢(u)). Then
the discretization grids of the form 7 := {7™ : n > 0} with 7" = {7",i = 1,..., N}} given

T =0,
2.4
{T." = inf{t > T (Sy — STin_l) ¢ €nD?.71} A (TZLI + E?LGTin_l(Un,i) + Ami) AT, ( )

where (A, i)nicn represents some negligible contribution, verify the assumption (H7) with
pn = 1 (see [GLS18, Section 3.3]). This class of discretization grids allows a coupling of
endogenous noise generated by hitting times and extra independent noise given, for example,
by a Poisson process with stochastic intensity (see [GLS18, Section 2.2.3]). In addition, we
can rely on a CLT for a general discretization error term based on such grids (see [GLSIS,
Theorem 2.4]). The optimal observation grid in Section 3.4 is of the above form, taking some
ellipsoid for D™ and G(-) = +o00, A, ; = 0.

Subsequence formulation of the assumption (H7) is motivated by the following subsequence
principle:
Lemma 2.1 ([Bil95, Theorem 20.5]). Consider real-valued random variables. Then X, E}r X
n—-+0oo
if, and only if, for any subsequence (X,(n))n>0 of (Xn)n>0, we can extract another subsequence

(Xyor(n) )n>0 such that X,op () “s

n—-+o0o



It allows to first prove a.s. results for the sequences of observation grids verifying (A%)-(Ay)
and >, €2 < 400, and then pass to the equivalent results in probability in the general case.

2.2 Sequence of estimators

Suppose that 7 := {7™ : n > 0} is a sequence of random grids verifying (Hy) for some &,, — 0,
and py € [1, (14 2m) A 4/3). Denote for any process H (where we omit the dependence on n)

() =max{r € T": 7 <t}, AH;:=H;— Hy,p. (2.5)

Parametric inference for a discretely observed process typically requires a discrete approxima-
tion of some criterion, whose optimization yields the true parameter £*. A standard approach is to
approximate the likelihood of Srr, ..., Srn, or equivalently of the distribution of ASr» conditionally
on Sqxn, ..., S . Gaussian approximations are often used when the distance between observation
times is small, see, for instance [GJ93]. The optimality of the Gaussian based likelihood approxi-
mations in the case of regular observation times has been proved in [Doh87, Gob01]. Although the
distribution of S; as 7 is a stopping time may be quite different from Gaussian, we are inspired by
the same approach, because of the flexibility and tractability of the subsequent contrast estimator
with respect to the choice of observation times 7;*; however, below we present a slightly different
interpretation of the same minimization criteria, since in the stopping time case the distribution of
process increments is not necessarily close to Gaussian. We also generalize the criteria to account
for non-equidistant distribution of the discretization points over [0, 7).

Denote py(z) := (27)~%2(det )~/ 2 exp (—%mTE_lw) the density of a centered d-dimensional
Gaussian variable Ny(0,Y) with the covariance matrix % (assumed to be non-degenerate). Denote
the Kullback-Leibler (KL) divergence between the variables NVy(0, %) and Ny(0,35) by

Px (%)
Dk, (21,2 ::/ ps, () log —=1—~dx. 2.6
KL(X1, X2) e =, (@) P (@) (2.6)
For some continuous weight function w : [0,7] x R? —]0,+oo[ set w; = w(t,S;); the process

(wt)o<t<r is continuous adapted positive. Recall that Dgr, (21,32) is always non-negative and
equals 0 if and only if 1 = 5. Thus, in view of (Hg¢), the minimization of fOT Dxr, (et (€), e(&))wedt
naturally yields the true parameter £*. Our goal is to construct a discretized version of this criterion
based on the observations of S. We write

1
Dk1(21,%2) = 3 /d (log(det ¥o) —log(det Xy) + ' X5 e — xTEf1x> ps, (x)dz,
R
and thus - )
| Drafenl€),en€wndt = 5U7(€) + Con 27)
where Cj is independent of £ and

T
U= := /0 /Rd (log(det () +x'e; 1(§)a:) Pey(er) (T)widzdt 28

= /0 ! (1og(det c(§)) + TY(at(é’*)Tcgl(g)at(g*))) wydt.

Remark that fOT Tr(op(6%) e 1 (€) oy (€¥))widt represents a quadratic variation. Thus we define the
following discretized version of U*(+), that uses only (7%, S7» : 0 < i < N,

U"(&) = Y. wep log (deter (6)) (i —7Ly) + Y. wen ASTier! (§)AS. (2.9)

1 11—
T <T T <T



The random function U"(.) plays the role of a contrast function: it is asymptotically equal to U*(.),
which minimum is achieved at £*. In the case of regular grids and w; = 1 the contrast (2.9) coincides
with [GJ93, eq. (3)].

Define the sequence of estimators (£"),>¢ as follows:

§" := Argming.z U"(§) (2.10)

(if the minimizing set of U"(-) is not a single point we take any of its elements). We expect that the
minimizer of U"(-) will asymptotically attain the minimizer of fOT Dxr(ct(€), ce(§))wedt, ie. &
Note that the user is free to choose the form of the process w;. While the rigorous optimization
of the choice of w; given only the observations (7, S:»,0 < i < N7) is complicated, it seems
reasonable to increase w; on the time intervals where the observation frequency is higher. We have

not investigated furthermore in this direction.

3 Main results

For the subsequent convergences, we adopt the following natural notations. By O%%(1) (resp.
02%(1)) we denote any a.s. bounded (resp. a.s. converging to 0) sequence of random variables; in
addition, denote O%(z) = 20>%(1),0%%(x) = xo®%(1). Similarly we write ol (1) for sequences
converging to 0 in probability.

Besides, we introduce a convenient and short notation for denoting random vectors written as a
mixture of Gaussian random variables. Given a (possibly stochastic) matrix V' € S;, we denote by
N(0,V) a random variable which is equal in distribution to V/2G where G is a centered Gaussian
m-dimensional vector with covariance matrix Id,,, where V/2 is the principal square root of V,
and where G is independent from everything else.

3.1 Consistency

The following result states the convergence of the estimators ({"),>0 in probability to £* for any
sequence of random observation grids verifying (H7). Its proof is postponed to Section 4.1.

Theorem 3.1. Assume (Hg), (H¢) and (Hy). Then for the sequence estimators (§™)n>0 given by
(2.10) we have the following convergence in probability
P *

& —
n—-+o0o

3.2 Asymptotic error analysis

We now proceed with the asymptotic analysis of the error sequence (" — £*)p>0. Recall that
Dx1,(31,%2) given in (2.6) is always non-negative and equals to 0 if and only if ¥; = ¥9. Thus
for any ¢ € [0,7] the point £&* € =\ 0= is a minimum of Dxr (¢t (§%), ¢ (+)) which implies that
VgDKL(Ct(f*), ct(§)) |e=¢~ is positive semidefinite a.s. for all ¢ € [0,7]. We introduce the following
assumption:

(Hy): There exists a subset Z C [0, 7] of positive Lebesgue measure such that

VEDKL(Ct(g*), ct(§)) |¢=¢~ is positive definite for all ¢ € Z.



Note that in practice, since £* is not known, the verification of (Hy,) is typically required for
all possible values of * € 2\ 0=. Assumption (Hy) in particular implies that

T
Hr =2 /0 (VEDkL(cr(€),ei(9)) leme- ) wrdt = VEU*(€7) (3:1)

is positive definite, and where the second equality follows from (2.7) (note that we can interchange
differentiation and integration via the dominated convergence theorem).

In what follows we assume the following conventions. The gradient of an R-valued function
is assumed to be a column vector. For a Matg4-valued function ¢ = ¢(z), x € R™, the gradient
Vzc(-) is a element of R™ ® Matg 4. For an element  ® y € R™ ® Maty g we denote Tr(z ® y) :=
2 Tr(y), which extends linearly on the entire space R ® Matgy4. For A € R™ ® Matgq so that
A= AL AT and 2,y € R? we denote 2" Ay := [T Aly, - ,2TA™y]T € R™. By 2" A
we denote the linear operator in Mat,, 4 corresponding to y — zT Ay (similarly for = — 2T My).
Finally, partial derivatives of a Mat, 4-valued function are obtained by differentiating each matrix
component and take values in Matg 4.

For i = 1,...,d we denote Vy,0(§) := Vg,0(t, S &), where 0 = o(t,z,§) is given by (Hg)-1.
Define the processes (My)o<i<7 and (A¢)o<¢<r with values in Mat,, 4 and R™ ® Mat, 4 respectively
as follows:

M, = 2wib] Ve, HEF) + M, Ap = 2w Veer HEN) o (€Y), t€0,T] (3.2)
where for 1 <7 <m,1 < j < d we define
M = 20, Tr(01(6%) Ve, (€) Vay00(€9)). (3.3)

Here comes the main result of this section. This is a universal decomposition of the estimation
error, available for any stopping time grids, as in (H7), which will be the starting point for showing
a CLT Ilater.

Theorem 3.2. Assume (Hg), (H¢), (H7) and (Hy). Then, for pn as in (An), we have
en V(€ =€) = (Hp' + 0p(1))en"™ Zi + 0, (1), (3-4)

where s s
7n = / AST A dB, + / M ASidt := M? + A" (3.5)
0 0

for My and A; defined in (3.2).

The proof is done in Section 4.2.

3.3 CLT in the case of ellipoid exit times

We start with the following lemma, that plays an important role in the sequel:

Lemma 3.3 ([GL14, Lemma 3.1)). Let y be a d x d-matriz symmetric non-negative real matriz.
Then the equation
2Tr(z)x + 42 = o> (3.6)

admits ezactly one solution z(y) € S7 .



Theorem 3.2 shows that it is enough to study the convergence in distribution of \/Np:Z} to
obtain such a convergence for \/NZ(£" — £*). Indeed, from (3.4) we get

VNRE™ =€) = (Hp' + of (1) /NRZ3 + ([ Npet)

where ol (\/NFefN) = of (1) from (H7) and the subsequence principle (Lemma 2.1). This makes
possible the direct application of general results on CLT for discretization errors of the form (3.5);
we refer to [GLS18] for discussion and references on the subject.

Since we are particularly interesting in the case of stopping time discretization grids in the
multidimensional case, we use [GLS18, Theorem 2.4] where the CLT for discretization errors of the
form (3.5) with general M, and A; has been proved in a quite general setting. We state a particular
case of this setting, namely the exit times from random ellipsoids (as defined in (3.7)). This example
is, in particular, used in Section 3.4.

Let (3¢)o<t<7 and (37)o<t<r,n > 0, be adapted continuous S, *-valued processes, characteriz-
ing the ellipsoids. Assume the following:

(Hg): 1. For some n > 0 and a.s. finite C' we have that supy<;<7 |3 — 37| < Ce]] as,;

2. There exist positive continuous F-adapted processes (vi)o<t<r and (d;)o<t<r, such that we
have a.s. for all t € [0,7] that sup,< <y |bs| < v, where (t) := inf{s >t : [Ss — S| >
o0y AT, te€][0,T] (this condition is quite mild, see [GLS18, Example 1]).

3. The random variables by and Yy are bounded.

4. For some 7, > 0 we have |0y — 05| < Cy|t — s\"”/z for all 0 < s < t < T and the variable C,
verifies E(C2) < 4oc (this condition, in particular, holds for a diffusion process with bounded
coefficients b and o such that their derivatives are also bounded).

Define the sequence of discretization grids 7 = {7" : n > 0} by

=0, 7 =if{t>7": (S =S ) S (Si—Sm ) >ep} AT (3.7)
Such a sequence verifies (H7) with py = 1 (which follows from [GLS18, Theorem 2.4], see the proof
of Theorem 3.4).
To simplify we note oy := 04(£*) till the end of this section. We consider the setting of [GLS18,
Section 2.2] with Dy = {z :€ R? : 2"%x = 1} and D} = {z :€ R?: 2T¥7z = 1}. Define the
-1
process my = [Tr(a;r Ztat)} . Following [GLS18], define, for any ¢ € [0,7] and any measurable
function f: R? — R,

7(t) i=inf{s > 0: oW, ¢ D}, Bilf()] = Ei (f(oaWiy))) (3.8)

where W is an extra d-dimensional Brownian motion, independent from everything else. Denote
Al = [Al,, ... AL ]T and A? = %(Aztfqt + AZtAjyt?j Since A? is symmetric, by [GLSIS,
Lemma B.1] we may write AY = AY" — A7~ where AY" and AY~ are continuous symmetric
non-negative definite matrices. Define a Mat,, ,,-valued process (K¢)o<i<7 by

K o= m By (@) = (07 ') X7 (07 12)) = (07 '2) T X7 (07 10))?) (3.9)

for all 1 < 4,5 < m, where X7t (resp. X7 is the solution of the matrix equation (3.6) for
c= o] A? oy (vesp. of A7 01). Remark that the process (Q¢)o<i<r defined in [CLSIS8, eq. 2.18]



is equal to 0 in our case since the domains D; and D} are symmetric, see [GLS18, Section 2.4].
Also note that the matrix equation (3.6) may be easily solved numerically, see the details in [GL.14,
Section A.4]. However, analytic solution is only available in dimension 1. In general (especially
in multi-dimensional case), the computation of K is hardly explicit, and requires some numerical
methods, like Monte-Carlo schemes suitable for statistics of stopped processes, see e.g. [GMI10].
The following result is an application of [GLS18, Theorem 2.4 and its proof].

Theorem 3.4. The process (Ki)o<i<r is continuous and Ky € S}, a.s. for all t € [0,T]. Denote

IQ/Q the matriz principal square root of Ky. Then there exists an m-dimensional Brownian motion
W defined on an extended probability space (2, F,P) and independent of B such that for the sequence
estimators (§")n>0 given by (2.10) we have

L -1 T -1 T 1/2 11357
JNRE — ey L / m; dt/ K247, (3.10)
0 0

where Hrp is defined in (3.1). More specifically, for Z™ M™ A™ defined in (3.5), we have the
convergences

S
SR VADY % / K.dt, for all s € [0,T],
n (o) 0

e 12" B), —» 0, forall s € 0,7,
n—-+o0o

3.11
Usup A7 55 o, (8.11)
s€[0,7T n—r+00

€n

T
P _
2N — / my dt.
n—+oo Jo

Proof. Our goal is to check the assumptions of [GLS18, Theorem 2.4]. First note that all random
variables o9, o', Mo and Ag are bounded under our setting. Condition [GLS18, (Hg)] follows
from (Hg) and (Hy)-4. Further [GLS18, (Ha)] follows from (Hy)-2.

Conditions [GLS18, (H},), (H%)] are straightforward from the definition of D; and D}, and
(Hyx)-1. Namely, for By(0,1) the unit ball in R centered at 0, we write

Dy = {2,z 2 € By(0,1)} and DI = {(S7)2z:z € By(0,1)}

from which one may easily get (for the distance u(-,-) for domains, as defined in [GLS18, Section

2.2.1)) that u(Dy¢, DP) < 2[2;1/2 — (22)~1/2|. The latter bound can be controlled uniformly in ¢

and n in view of the continuity and the non-degeneracy of ¥;, ¥} and the condition (Hy)-1.
Finally [GLS18, (H¢)] is trivial in this case since the function G(-) equals +00 and A, ; = 0 (in

the notation of [GLS18]). Other assumptions of [GLS18, Theorem 2.4] follow from (Hy)-3. O

Note that the drift b does not enter in the parameters of the CLT, this is due to the symmetry
of the domain defining the observation times.
Because W is independent of everything else, we have the identity

1 T 1 r 1/2 1557 d 1 T 1 r 2
Hr / my ~dt / Ky “dWy = Hyp / m; dt / ICodt N(0,1d,,,)
0 0 0 0

with an extra independent m-dimensional Gaussian random variable N'(0,1d,,). In other words,
the (random) covariance limit of \/NJ(£" — &%) is

T T
Vi = (/ mgldt> Hi! (/ lCtdt> Mol
0 0

10



3.4 Optimal uniform lower bound on the limit variance

In this section we assume ¢ = 1, so that = C R. Our aim is to seek the optimal observation
times (among ellipsoid based stopping times) achieving the lowest possible limit variance.
Let X:(§) be the solution of the matrix equation (3.6) with

y* = 0u(&) Veer () oul€)or(§) Veer  (E)en(€)
(note that it is an element of Matg 4(R) for a scalar £). For Hp given in (3.1) define

2
VP = 52 ( /O " o Tr(Xt(f*))dt> : (3.12)

which is fixed from now on. In the case where the weak convergence of the renormalized error to
a mixture of normal variables holds without bias (e.g. the case of deterministic grids, see [GJ93];
or the hitting times of symmetric boundaries, see [GLS18, Section 2.4] and Theorem 3.4) we prove
that V7P " is a uniform lower bound on the asymptotic variance of the sequence of estimators (2.10).
In addition, this lower bound is tight in the sense that one can find a sequence of observation times
achieving as close as possible this lower bound. This is formalized in the following definition.

Definition 1. Let kg > 0. A parametric family of discretization grid sequences {Ty : k € (0, K]} is
k-optimal if there exists an a.s. finite random variable Cy independent of k such that \/NJ(§" — &%)
converges in distribution to a mizture of centered normal variables for all T,

n n * E K
VIVEE" =€) — N(0,VF),
and the limit variance Vi associated with T, verifies the condition
0 < VE — VP < Cor, Ve € (0, o).

The subsequent x-optimal observation times are related to some random ellipsoid hitting times,
which are built as follows. Let x(.) be a smooth function such that 1(_ 19 < x(.) < 1(_co,1]5 and
denote xx(x) := x(z/r). Let Ay(€) = 2wioy 1 (€)TX4(§)oy ' (€), define

AF(€) = At(§) + X (Amin(A(£))) Ida,

where Amin (M) stands for the smallest eigenvalue of M € S . Hence, AF(¢) € ST as soon as k > 0.
Recall that under the general assumptions of Theorem 3.2 we have the decomposition (3.4), with
Z™ given by (3.5). In view of (3.4), to study the weak convergence of \/NJ(£" — £*) we essentially
need to consider \/NT7:Z}:. The result below states that under standard conditions implying the
CLT for \/N}Z} (and hence for \/NJ(E™ — £*) ) there exists a uniform lower bound on the limit
variance. We also show the tightness of this bound in the sense of Definition 1.

Theorem 3.5. Assume (Hg), (H¢), (H7) and (Hy). Let (§")n>0 be defined by (2.10). For some
p € [1, pn] suppose that the semimartingale decomposition Z{* := M]* + A} in (3.5) verifies
S
e, 2P (M™) N / Kidt, for all s € [0,T],
n—+oo Jo

_ P
e, P(M", B)s o 0, for all s € [0,T], (3.13)

_ P
e,” sup |A}| — O

for some adapted non-negative continuous process (Kt)o<t<r. Assume also that N (Z™)r converges
in probability to an a.s. finite random variable. Then, the following holds:

11



(1) /NRE(E"—E) £, N(0,Vp) for some non-negative random variable Vip (asymptotic variance).
(ii) The asymptotic variance Vp satisfies the following uniform lower bound: Vp > prt' a.s. for
VEPE defined in (3.12).

(iii) Assuming, in addition, (Hx)-2,3,4, the lower bound Vj‘fpt' is tight in the following sense: the
parametric family of discretization grid sequences {7, : k € (0,1]} given for any e, — 0 by
Te ={T.1 :n >0} with T = (1]")o<i<ny written as

=0, 7/'=inf {t > 7y (St — S )TAfgil(é*)(St — S ) > E%} AT (3.14)

(3 —1
s k-optimal for kg = 1 in the sense of Definition 1.

We remark that the class of discretization grids over which the universal variance lower bound is
obtained in Theorem 3.5 includes most of the examples for which a CLT has been established, since
the conditions of the type (3.13) are quite commonly required (see [JS02, Chapter IX, Theorem 7.3]
for a classical result). Typically for deterministic or strongly predictable grids the conditions will
hold with p = pxy > 1, while in the setting of [GLS18, Section 2.2] we have p = py = 1. See also
the discussion in Section 2.1 and [GS18, Remark 1].

As we may notice the xk-optimal sequence of discretization grids in (3.14) depends on the un-
known parameter £*. Besides, concerning the optimal variance V7 in (3.12), it also involves &*,
as well as wy: we argue in Section 2.2 that the rigorous optimization of w; (to minimize V* ) is
out of reach because £* is unknown. However, for all these extra optimization steps, a heuristic
approach might be used. Namely in practice, one may pre-estimate £* on some initial interval [0, 7]
using any reasonable consistent estimator and then proceed with the estimation that achieves the
limit variance close to the optimum on [T7,7] using this pre-estimator instead of £*. A similar
methodology has been designed and analyzed in [GS17]. A thorough analysis of the limit variance
in our case would be possible, although quite technical; we naturally expect that such a method
would constitute a s-optimal family of strategies for T} = 2T in view of the robustness results for
the optimal sequence of discretization grids produced in [GS17, Section 3.1].

4 Proofs of the main results

The next lemma provides some important properties of the process oy(-).

Lemma 4.1. Assume (Hg)-1. Let T be any sequence of observation grids verifying (A%)-(An)
with Y2, €2 < +00. Then the following holds:

(i) For any n, € (0,1) we have that for some a.s. finite random variable Cy

00 (£%) — 05(€%)] < Colt — s["°/% Vs, t€[0,T] a.s.

(ii) For (Vzo:(€))o<i<r defined in Section 3.2 and any p > 0 we have

d
e, @) sup |oy(€%) — 0,1y (€) = D Voo (E)ASH =5 0.
=1

Proof. To prove (i) remark that (S;)o<:<7 is Holder continuous with any exponent smaller than 1/2

by [BY82, Theorem 5.1]. We conclude by using that o = o(t,z,&*) is locally Lipschitz in ¢ and z
due to the continuous differentiability, and that (S;)o<¢<7 is a.s. bounded on [0, 7).

12



To prove (ii) we use the differentiability of o (¢, x,&*) in ¢t and = by (Hg)-1. We write

Ut(g*) — Op(t) (f*) = o(t, St, & ) —a(e(t), Slp(t)’g*)
= 0 (p(t), 51, 67) = a((t), Spry, &) + 05 (1AL

d
=D Va,0(p(t), Sp(r), €)AS; + O3> (|At] + |AS?).

From (A%“)-(Ay) and [GS18, Lemma 3.2] we get sup;epo 7y |05 (|At| + |AS:[?)| < Cpep for any
p > 0 and some a.s. finite C'5, which finishes the proof. O

The next lemma states the a.s. convergence of U"(+) to U*(+), as well as the corresponding results
for the derivatives V U"(-) and VEU"(-).

Lemma 4.2. Assume (Hg)-1,2. Let T be any sequence of observation grids verifying (A% )-(An)
with ,,>0 € < +00. Then the following convergences hold

sup [U™(€) = U*(€)| == 0, (4.1)
ce= n—-+o0o
Sup|VeU™ () = VU™ (©)] 53, 0. IVEUM© - VEUI©)] 33,0 W e= (42

Proof. Using (2.8) and Lemma A.1 we deduce the following expressions for V¢, U*(§) and ng gU” )
(1<k/l<m):

T

Ve U () = | Tr(Vea@)a(€) ™ + o) Ve (©orle)) wadt, (4.3)
T
V3 ©) = [T (Ve (9 + Vaer(§) Ve () + o6 Vg6 (©)on(€)) wadt.
(4.4)
Recall that
Z wre log(detern (§))(7" —71y) + Z wrn ST i (f)ASTin. (4.5)
Ti—1<T T 1<T
Let us first prove that for any £ € =
une) == Ut (4.6)

n—-+0o0o

The convergence of the first term in the right-hand side of (4.5) follows from the standard Riemann
integral approximation, using that sup A7/ % 0 by [GS18, Lemma 3.2], so we get
n—-+0o0

S wen log(det e (€))(r — 1)) / log(det ¢, () )wrdt. (4.7)

n~>+oo
Ti1<T

For the second term we have by [GS18, Proposition 3.7]

T
> wi ASTet (©ASy 2% T (Ut(f*)Tc;l(f)at(g*)> wdt. (4.8)
T <T

13



Hence the convergence (4.6) follows now from taking the sum of (4.7) and (4.8). Further using
Lemma A.1 we obtain

Ve U&= Y we, T (Veer, (©ert () (7 —7iy) (4.9)

i <T

T > wn ASn(Veer! ()ASy,

T <T
ngglUn(f) = Z wrr Tr (vgkszT?A(g)c;fi
T <T

T2 1
+ Z W‘r{llASvafkflCTﬁl(g)ASTin.

T <T

(&) + Veyorn () Veert (©)) (' =) (4.10)

Using (4.3), (4.4) and applying the same reasoning as for the proof of (4.6) we also show the
following convergences for any £ € =

VUM (€) = VeUH(6),  VEUM(E) % VEUK(E). (4.11)

Further from (4.9) and (4.10), using (Hg)-1,2, the compactness of =, the continuity of w; and the
convergence Y. nop |ASn|? % Tr((S)r) by [GS18, Proposition 3.7], we have a.s.
T = g n—-4o0o

mmGMWW%OSCSW[wwaw@q%»@QWMﬂm><+m
(SIS

n>0 \ £€2 0<t<T ¢eE

am@@%W%wscsw[w@@w@@wﬁ@WH@Ww@F
n>0 \ EEE 0<t<T (€= 3=

+sup [VEe; (€)])] < +oo,
£e=

for some a.s. finite C' > 0. This implies that the sequences (U"(-))n>0, (VeU™(-))n>0 are equicon-
tinuous and hence the convergences in (4.6) and (4.11) are uniform in £ € =Z. We are done. O

4.1 Proof of Theorem 3.1

First suppose that 3°,,~0&2 < +oo and that the grid sequence T verifies (A%)-(A ).

Recall that Dgr,(ci(€%),¢:(€)) > 0 and the equality holds if and only if ¢;(6*) = ¢(€). From
(H¢) we have that for any £ # £* the processes ¢;(£*) and ¢;(§) are not almost everywhere equal on
[0,7]. Hence &* is the unique minimum of fOT Dxr(ct(€), ee(§))widt, and in view of (2.7) we have
that a.s.

§* = Argming.z U(§).
Further, Lemma 4.2 implies that U™ () n—é%}oo U*(€) uniformly in £ € 2, from which we deduce
a.s.

that &” —+> §* since " = Argming .z U™(§).

n—

Finally the convergence £" % & for T verifying (Hy) with general €, — 0 follows from the
n—-+0oo

subsequence principle in Lemma 2.1. O

4.2 Proof of Theorem 3.2

First suppose that Y, < +0o and the grid sequence T verifies (A4)-(Ay).
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Step 1. We start by showing the convergence

/O 1 VIUME u(€" — ))du 2S5 VIUK(E) = Hy (4.12)

n—-+o0o

Let 1 < k,l < m. In view of the convergence VgU”(f*) £> VéU*(f*) from Lemma 4.2 it is
enough verify that

1
[ RaUm € +ule - €)du - TEUME) 22 o (4.13)

n—-+o0o

Denote v (§) := Tr(ngflct(g)c;l(f) + Ve, ct(§) Ve 1(€)). Using the representation (4.10) for
ng& U"(-), we get that the left-hand side in (4.13) is equal to

1
> wi, (/0 Ve (7 w(€ = £))du — 7 | (8)) (7 —14)
T 1
+ Y wo ASh ( /0 Ve (€ +u(€ —&))du — vgk&c;;l(g*)> AS:n.

Now (4.13) follows from the convergence £" % &* for T verifying (A2“)-(Ay) (see the proof of
n—-+0o0

Theorem 3.1) and the dominated convergence theorem (in view of the differentiability and invert-
ibility properties of o from (Hg)-1,2 and the compactness of =).

Step 2: linearization. Our strategy is to analyse £ — £* using the second order Taylor decom-
position of Uf(-) near £* and invoking Theorem 3.1. From (Hj/) the matrix Hy = VEU *(&*) is
positive definite. Define the following sequence of events

1
Q"= {¢" € 2\ 9=} N {/ VEU™(§" +u(" — €))du € Sﬁ} '

From the convergences (4.12) and £ i &*, and since £* ¢ J= we obtain Ign % 1. On Q"
n—-+00
we have VU™ (") = 0, which 1mphes

1 —1
Lon(€" =€) = o ([ VEU"(E +u(€" ~ ¢)du) V()
by the Taylor formula. This implies, in view of (4.12) and since 1g\gn = 0 for n large enough, that
e (E =€) = (M + 0™ (1)) £, "N VeU™(€) + o™ (1). (4.14)

Step 3: expansion of V. U"(£*). Now let us analyze the term V U"(£*). Using the expression
(4.9) of VgU "(.) and applying the It6 formula, we obtain

VU™ (€ Z wrn Tr (VgcT (é*)c;nl (f*)) (' —7t) + Z wrn AST Vgcfl (§5)ASn
n L <T o " <T
S (vscfin,1<s*>c;{1<s*>+af,;gl<5*>Tvgc;é1<f*>aT;;1<s*>) (= 7)
T <T

+ / Wty Tr ((00(6) + 00y (€)) Ve 1 (E)(01(€) = 00 (€7))) dt

T
12 /0 Wa AST Ve (€)brdt + 2 /0 o ASTVec b (€)01(6)dBy. (4.15)
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Consider the four terms on the right-hand side of (4.15). The first term is equal to 0 since, using
that Veern (6%) = —c—1 (E)Veer (€)cr e (€), we have

Tr (0 (€)TVee! (€)oen (69) = —Tr (Veer (€ (€9))

z i—1

For the second term, using Lemma 4.1 and the properties (A%)-(A ) we deduce that
r * *\\ T -1 * *
| 0 T (00(€) + 000 (€T Vel (€)o1(6) = 7t (€Dl
T
= 2/0 Tr (U@(t) VEC vaz Tt A5t> ()dt + ep
T _
= /0 Mgo(t)AStdt + @%72,

where for any p > 0 and any 7, € (0,1), using [GS18, Lemma 3.2] Lemma 4.1-(i) we have
2] < Coleh ™ + ensup [t — p(t)]7/?) < Coept /2,

Here, C) is a notation standing for any a.s. finite random variable (independent on n), which values

may change throughout the computations. Note that e, 7V |el}.,| < C’OE;'ONHJF(?_’))""/z 25

p small enough, since py < 4/3 by (A ). Also remark that the process (Mt)ogtST is the same as
defined in (3.3), Section 3.2.
The third term of (4.15) may be written as

2/ ASt vfc t (5*) dt + 6T37
where, in view [GS18, Lemma 3.2] and Lemma 4.1-(i), we have
ler 5| < Coensup, [t — (1) < Coelt@=pim

Again (A ) implies that e, 7N |ef} | % 0 for p small enough.
’ n—-—+0o0
Finally, the last term of (4.15) equals

T
2 [ STV (€)00 (€ 1B +

where, (ef4)o<t<7 : n > 0) is a sequence of continuous local martingales verifying for some a.s. finite
007 Ol

()7 < Co sup (JASPlou(€") — 70 (€)) < il
0<t<T

a.s.
—
n—-+o0o

for any n, € (0, 1) using (A%*), Lemma 4.1-(i) and [GS18, Lemma 3.2]. This implies ¢,

0 via an application of [GL14, Corollary 2.1, p large enough]| to the sequence e, *~ e’y
Hence, we deduce that V U"(£*) is equal, up to some negligible contribution, to Z7 given in
(3.5). So finally this implies

e (€ — &) = (Hp' +0h* (1) en 23 + 0> (1),
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Step 4: convergence in probability. For a general T satisfying (H7) with €, — 0 the result
is obtained via the subsequence principle (Lemma 2.1). O

4.3 Proof of Theorem 3.5

Recall that A(§) = 2wt0t HOTX (6o (€), where Xy (€) is the solution of the matrix equation
(3.6) with 42 = 0,() Vee; (ou(E)ou(©) Veer (E)oule).

Central Limit Theorem. All the conditions for applying the Central Limit Theorem of [GLS18,
Theorem 4.7] are fulfilled, and we get

T —
e P Zn 5 / K/2am,
0

with an independent Brownian motion w. Moreover, the above convergence is F-stable (see [JP12,
Section 2.2.1] for related definition and properties). Therefore, together with the convergence of
e2P N2, we deduce the announced result in (i).

Lower bound. We have
T
NiZ")r = N [ 4wt ASTV e (€ (€)on(€) T Ve (€) AS
0

Take some subsequence ¢(n) such that 3, ~ ef(n) < 400 and such that the convergence of N:LF(") (Z: )y
—2 aArt(n) / 7u(n) a.s, . .. . T(en ¢\ s
holds a.s.. Then H "Ny '(Z""™)r s Vr where Vr is the limit variance of /NJ(£" — &), in

view of the above arguments for proving (i). From the proof of [GS18, Theorem 4.2] we obtain that
T 2
Vp = Hy2 lim, N, ( )<ZL("))T > Hr (/ 2wy Tr(Xt(g*))dt> = VP as.
0

This finishes the proof of (ii).

k-optimal sequence. We now prove (iii). Let Z™ be defined in Theorem 3.2 based on 7.,
and (£"),>0 be the corresponding estimator sequence. By Theorem 3.4 we get the convergence

L oy oy . P
VINE(E™ — &) = N(0,Vf). In addition, by Proposition B.1, since NJ:(Z")p e HAVE, we
obtain 0 < Vi — V¥ - < Cyk for some a.s. finite Cy independent of x and &,. O

Remark that taking x = 0 in the definition of 7" would lead to a grid verifying (H7) with
pN > 1 which is not covered by Theorem 3.4.

A Technical results
Let G € C2(Z,85] ). Define f: Maty4(R) x RY — R by
f(G,z) :=log(det G) + TG .

The following preliminary lemma provides the expressions for V¢ f(G(§), z) and Vg f(G(&),x).
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Lemma A.1. We have (for all1 < k,l <m)

Ve, log(det G(€)) = Tr(Ve, G(E)GT(€)), (A1)
Vi log(det G(6)) = Tr (VE o GG (&) + Ve, GV G(9)) . (A.2)

and, as a consequence,
Ve, [(G(),2) = Tr (Ve, GG () +2TVe, 671 (¢)a, (A.3)

ng&f(G(f), z)="Tr (V%@G({)G_l(@ + ngG(f)V&G_l(f)) + xTvgkg,G_l(f)% (A.4)
Proof. Using the Jacobi formula we get

_ ng det G(f)

Ve, log(det G(6) = = e = Tr (Ve GOGT ().

which gives (A.1), a second derivation now implies (A.2). The expressions (A.3) and (A.4) now
follow from the definition of f(G,z) and (A.1)-(A.2). O

B k-optimal discretization strategies

Let (St)o<t<t verify (Hg). Let (A¢)o<i<r be given by (3.2). Fixi € {1,...,m} and let 2w, H; =
Al with Hy = Vee; 1 (€9)04(€*). Consider the discretization error process of the form

no.__ s T
Zs —/0 2w<p(t)ASt Hgo(t)dBt'

In this section to simplify we write oy := 0¢(£*). Let X; be the solution of the matrix equation (3.6)
with y* = o] HyH] 0y = o] Ve, Yoyo] Veey 'o4. The next result essentially follows from [GL.14,
Theorem 3.2].

Proposition B.1. Assume (Hg), (H¢) and (Hy). Let k € (0,1], for t € [0,T] set Ay :=
2wi(oy DT Xot and AF == Ay + KXx(Amin(Ar)) Idg (recall the definition of x.(-) from Section
3.4). For a given n € N, define the discretization grid T, by

=0, 7 =inf {t >y (Se = Sep )TASn (S — Sep ) > s,%} AT. (B.1)

Then, the sequence of strategies T, = {T," : n > 0} verifies (Hy), and it is asymptotically k-optimal
in the following sense: we have N} Z™)p _% Vi with Vi verifying
n (o]

2
T
0< V- </ 20 Tr(Xt)dt> < Cor (B.2)
0

for some a.s. finite random variable Cy independent of k € (0, 1].

Proof. First note that from Theorem 3.4 (note that Af is obviously bounded, as needed in (Hy)-(3))
we get the convergence N7 Z™)r % V. Take a subsequence of ¢, for which }_ -, sf(n) <+
n—-+0o0 el

and the grid sequence 7 verifies (A%“)-(A ). Without loss of generality we assume that for this
subsequence the convergence to V holds a.s. Let A; := fg bsds be the finite variation part and M,
be the martingale part of S;. Then, using [GS18, Lemma 3.2], we get for any p > 0 and for some
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a.s. finite C' > 0 that supco ) |AAL| < [bloo Supepo, ) [AL] < Ce27P. Hence one may easily check
that for Z7 := I 2w¢(t)AMtTH¢(t)dBt we have

N Z™p — N Z™p 25 0. (B.3)

n—-+o0o

By (A%“)-(An) and [GS18, Theorem 3.4], the sequence of grids 7, is admissible for the process
M in the sense of [GL.14]. Thus, for the subsequence (g,())n>0, the statement follows from (B.3)
and [GL14, Theorem 3.2] applied to N2(Z")r, with

T
Co = ( sup Cﬁ) (/ X (Amin (Ae)) Tr (UtUtT) dt)
k€(0,1] 0

where C,, := f(;‘r (Swt Tr(Xy) + 36Xk (Amin(Ar)) Tr(ct))dt. For general case it is enough to note that
the limit V7 is the same for any subsequence due to the convergence in probability for the entire

sequence (gp)n>0- O
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