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Zipf's law is observed in every language over one century and is considered to be the biggest mystery in both natural language and computational language. In this paper, we establish a maximal entropy model subject to a non-random lower bound and reliable mean and demonstrate that Zipf's law is a discretized and logarithmly transformed maixmal entropy distribution. Furthermore, we explain the meaning of Zipf's exponent α and present a comparison of the most widely used maximal entropy distributions.

Introduction

One of the mysterious puzzles in natural language and computational language is Zipf's law. Zipf-s law states that the probability of an observation is inversely proportional to its rank. Generally speaking, Zipf's law is a mathematical model which refers to the fact that many data studies in the physical and social sciences can be approximated with a Zipfian distribution. In linguistics, it describes the relation between frequency of an element f (r) and its frequency rank r

f (r) ∝ 1 r α (1) 
In this relation, r is called the frequency rank of a word, and f (r) is its frequency in a natural corpus and α is called exponent. Word frequency and ranking on a log log graph follow a nice straight line [START_REF] Ullah | Handbook of Empirical Economics and Finance[END_REF] and this relation can be reformulated in the equation

log f (r) = -α log r + c (2) 
A generalized Zipf's law proposed by Mandelbrot fits more closely the frequency distribution in language by shifting the rank

f (r) ∝ 1 (β + r) α
for α ≈ 1 and β ≈ 2.7. These α, β are called Mandelbrot parameters [START_REF] Piantadosi | Zipfs word frequency law in natural language: a critical review and future directions[END_REF].

In English language, for example, "the" is the most used word. Around one out of sixteen words we use in our daily life is "the". The word "the" constitutes almost 6% and is the most frequent word. On the second place is the word "of" which is precisely 3%. The word "and" which ranks third forms about 1.5%. The relation holds on. Seriously, the frequency of the highest occurring word will be twice as much as that of the second highest occurring word [START_REF] Piantadosi | Zipfs word frequency law in natural language: a critical review and future directions[END_REF][START_REF] Smith | Investigation of the zipf-plot of the extinct meroitic language[END_REF]. These laws were observed not only in English, but also in other languages, even in those untranslated ancient languages. More interesting, these inverse power-law statistical distributions were found in embarrassingly different situations, such as urban population [START_REF] Gabaix | Zipfs law for cities: An explanation[END_REF], solar flare intensities [START_REF] Vindel | Markov processes and zipf's law in daily solar irradiation at earth's surface[END_REF], protein sequence [START_REF] Naryzhny | Zipfs law in proteomics[END_REF], amount of website traffic [START_REF] Adamic | Zipfs law and the internet[END_REF], number of citations of academic papers [START_REF] Brzezinski | Power laws in citation distributions: evidence from scopus[END_REF], even the forgotten rate. Unlike the more familiar Gaussian distribution, a power law is scale free and distribution has no typical scale. Such kind of objects share the following features:

1. taking values as positive numbers, 2. ranging over many different orders of magnitude, 3. arising from a complicated combination largely independent factors, 4. not having been artificially round, truncated, or otherwise constrained in size.

In this paper we present a mathematical explanation of Zipf's law and demonstrate that Zipf's law of maximal entropy subject to a certain lower bound and a reliable mean.

2 Maximal entropy with reliable parameters Central limit theorem

The central limit theorem (CLT) is the most important theorem in probability theory. It states that the computed values of the average will be distributed according to a normal distribution. However, central limit theorem ignores bound [START_REF] Li | A mean bound financial and options pricing[END_REF]. To see this, we consider a sequence of independent and identically independently random variables {X k } k which are lower bounded, X t ≥ b, ∀k. Then due to Central limit theorem the random variable

n k=1 X k √ n
is asymptotically normal distributed and unbounded from below even if all its components X k are bounded from below X k ≥ b.

Nevertheless, lower bound lies still in the system and can not be completely erased even for arbitrarily large

n n k=1 X k n ≥ b ∀n
Therefore, we must study lower bound of random variables.

Lower bound

We consider lower bound of random variables. Here lower boundedness refers to the those random variables with a non-random lower bound but a random upper bound. The lower bound of city ranking, for example, is 1 while the upper bound of city ranking is random, depending on the country. The most frequently used English word that ranks at the first position is the word "the" while the least frequently used English word is random, depending on the chosen text. Therefore, lower bound can be treated as a reliable parameter. More generally, there is a positive number β which serves as a shift such that the shifted value, for example, rank is positive r + β > 0.

Logarithm mean

Our goal is to model those objects ranging over many different orders of magnitude. In this situation, the mean value E[X] can be extremely huge.

Mathematically speaking, E[X] ≈ +∞

For this reason, sample mean does not provide reliable information and cannot serve as an effective parameter that characterizes the given population in this context. However, we notice that ln X < X, ∀X > 1 and the logarithm mean E[ln r] is more stable

E[ln X] < E[X]
in comparison to raw mean E[X], logarithm mean can be treated as a reliable parameter.

Maximal entropy

Maximum entropy principle arose in statistical mechanics and it states that probability distribution best representing the current state of knowledge is the one with largest entropy in the context of reliable information.

We consider a random variable X bounded from below +∞ ≥ X ≥ b with probability density f (x). This means that the probability that the random variable is smaller than b is 0

X ≥ b (non-random lower bound constraint) (3) 
The differential entropy of X is defined as

H(f ) = - R f (x) ln f (x)dx
The following optimization solves for a maximum entropy distribution that satisfies some constraints:

min f -H(f ) (4) s.t.f (x) ≥ 0 f (x)dx = 1 (normalization constraint) xf (x)dx = m 1 (reliable mean constraint)
We define the Lagragian functional

L(f, λ) = -H(f ) + λ 0 f (x)dx -1 + λ 1 xf (x)dx -m 1
take functional derivative and set ∂L ∂f = 0,

∂L ∂f = 1 + ln f + λ 0 + λ 1 x = 0 (5) 
The solution of the optimization problem (4) is the shifted exponential distribution

P [X < x] = 1 -e -λ(x-b) (6) 
with mean and standard derivation

µ = 1 λ + b σ = 1 λ ( 7 
)
where b is the largest lower bound of X.

Zipf 's law as discritized Pareto law

Zipf's law is first studied by George Zipf and it provides a distributional foundation for language modeling and a basis for evaluation of models of linguistic and cognitive access and storage models [START_REF] Powers | Applications and explanations of zipf's law[END_REF]. Mathematically speaking, it is a discrete form of the continuous Pareto law. In this section we derive Pareto distribution from maximal entropy law subject to a certain lower logarithm bound and (relatively) reliable logarithm mean.

Non-random lower logarithm bound

In ranking problems, only positive integer are considered, so the ranks are (shifted) lower bounded, and then the lower logarithm rank ln r is also lower bounded. This lower bound is denoted by b ln r ≥ b

Relatively reliable logarithm mean

In natural languages, the number of words is enormous, so E[r] ≈ +∞ can not serve as an effective statistical parameter. For this reason, we turn to logarithm rank ln r. We assume E[ln r] is reliable

E[ln r] +∞

Note that logarithm rank ln r has a fixed lower bound and posses a (relatively) reliable mean, then due to the formula (6) logarithm ln r is exponentially distributed

P [ln r < x] = 1 -e -λ(x-b)
For the exponentially distributed logarithm rank, we have the following proposition.

Proposition 3.1. The random variable r has a Pareto tail

P [r > x] = e λb x λ
with density

f r (x) = λe λb x λ+1 (8) 
The mean and standard deviation of ln r are Proof. The logarithm rank ln r is exponentially distributed and from the equation ( 6)

E[ln r] = 1 λ + b σ[ln r] = 1 λ (9) 10 1 10 2 10 -2 10 -1 x f r (x) f r (x) = 1 x α
P [r < x] = P [ln r < ln x] = 1 -e -λ(ln x-b)
and therefore r has a Pareto tail

P [r > x] = e λb x λ
The mean and standard deviation can be obtained from [START_REF] Vindel | Markov processes and zipf's law in daily solar irradiation at earth's surface[END_REF].

Corollary. The Zipf 's exponent α can be expressed

α = 1 σ[ln r] + 1 
Proof. Logarithm rank ln r is exponentially distributed and Zipf's exponent α coincides with λ + 1, by comparing formulas (1) and [START_REF] Li | A mean bound financial and options pricing[END_REF]. Then

α = λ + 1
Combining with equation ( 9) yields

α = 1 σ[ln r] + 1
If the standard deviation of logarithm rank σ[ln r] is large, then λ ≈ 0, then the density function f r (8) can be approximated as

f r (x) ∝ 1 x λ+1 ≈ 1 x
So far we have derived the Zipf's law with exponent α ≈ 1.

Universal explanation

So far we present a maximal entropy model for explaining Zipf's law in linguistics. Zipfs law in language arises from a universal principle that more generally explains its prevalence throughout the sciences, analogously to the Central Limit Theorem and the normal distribution. It is reasonable to believe that power laws simply arise naturally in many domains according to maximal entropy principle subject to boundary constraints.

There are a variaty of studies in derivations and explanations of Zipfs law from very fundamental principles. Richardson discovered that random growth processes could generate power laws [START_REF] Richardson | Theory of the distribution of city sizes: Review and prospects[END_REF]. Corominas-Murtra and Sole show that Zipf's law can be derived in the framework of algorithmic information theory [START_REF] Corominas-Murtra | Universality of zipfs law[END_REF]. Y. I. Manin provides a derivation of Zipfs law from basic facts about Kolmogorov complexity and Levins probability distribution [START_REF] Manin | Mandelbrots model for zipfs law: Can mandelbrots model explain zipfs law for language[END_REF][START_REF] Manin | Zipfs law and l. levins probability distributions[END_REF]. S. A. Frank studies entropy maximizing processes, relating power laws to normal distributions and other common laws in the sciences [START_REF] Cancho | Two regimes in the frequency of words and the origins of complex lexicons: Zipfs law revisited[END_REF]. Belevitch showed how a Zipfian distribution could arise from a first-order approximation to most common distributions and how the Zipf-Mandelbrot law arose from a second-order approximation [START_REF] Belevitch | On the statistical laws of linguistic distributions. a[END_REF].

All of these explanation would explain Zipfs law across a variety of domains without requirements of domain-specific assumptions. However, one problem of those theories is the absence of novel predictions and we are curious to know what type of data can falsify them.

In this paper, we present an answer to this question. Zipf's law is the maximal entropy distribution subject to non-random lower bound and reliable logarithm mean. In other words, in order that Zipf's law applies, two requirements must be fulfilled:

1. E[X] ≈ +∞ 2. X ≥ b
In practice, Zipf's law, exponential law and normal law are three most widely used maximal entropy distributions. In the following tabular we present the comparison of the most commonly used distributions.

Zipf's law Exponential law

E[X] ≈ +∞, X ≥ b E[X] ∞, X ≥ b Normal law Log normal law E[X] +∞, σ[X] +∞ E[ln X] +∞, σ[ln X] +∞

Conclusion

In this paper we establish a mathematical model to explain the mechanism of Zipf's law and demonstrate that the Zipf's law can be treated as maximal entropy principle subject to certain lower bound and reliable mean constraints with distribution

P [r > x] = e λb x λ
In order that Zipf's law applies, two requirements must be fulfilled:

1. E[X] ≈ +∞ 2. X ≥ b
Furthermore, we explain the meaning of Zipf's exponent α α = 1 σ[ln r] + 1

Finally we present a comparison among Zipf's law, exponential law and normal law.

A Exponential distribution

Exponential distribution is a maximal entropy distribution. A random variable X is call exponential distributed if

P [X < x] = 1 -e -λx
The density function of of an exponential distribution is f X (x) = λe -λx x ≥ 0

The mean and variance are

E[X] = 1 λ , σ[X] = 1 λ
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 1 Figure 1: log-log plot of Zipf's law with α = 1.01: a straight line