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Spline Filters For End-to-End Deep Learning

Randall Balestriero * 1 Romain Cosentino * 1 Hervé Glotin 2 Richard Baraniuk 1

Abstract

We propose to tackle the problem of end-to-end
learning for raw waveform signals by introduc-
ing learnable continuous time-frequency atoms.
The derivation of these filters is achieved by
defining a functional space with a given smooth-
ness order and boundary conditions. From this
space, we derive the parametric analytical filters.
Their differentiability property allows gradient-
based optimization. As such, one can utilize any
Deep Neural Network (DNN) with these filters.
This enables us to tackle in a front-end fashion
a large scale bird detection task based on the
freefield1010 dataset known to contain key chal-
lenges, such as the dimensionality of the inputs
data (> 100, 000) and the presence of additional
noises: multiple sources and soundscapes.

1. Introduction
Numerous learning tasks can be formed in a pattern recog-
nition framework. Some of these applications are in speech,
bioacoustic, and healthcare where the data have been ex-
posed to different types of nuisances. For example, colored
noises, multiple sources, measurements errors are a few to
name. Recently, DNNs have provided an end-to-end learn-
able pipeline (from raw input data to the final prediction).
In particular, convolutional-based DNNs are state-of-the-art
in computer vision and other areas (LeCun et al., 2015; He
et al., 2016; Leung et al., 2014). This approach reduces the
need of designing hand-crafted features which involves an
expert knowledge and a tedious search over the set of all
possible features. Such paradigm shift opens the door to
novel algorithms that encapsulate the learning of both, the
features and the decision.
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While providing a fully automated approach, DNNs’ per-
formances depend on the number of perturbations such as
noise and inherent nuisances contained in the dataset. This
is mainly due to the use of greedy optimization schemes
applied on a very high-dimensional parametric model as
well as the lack of explicit perturbation modeling in DNNs
(Cohen & Welling, 2016). This effect is amplified with the
dimensionality of the input and the dimensionality of the
filters.

Thus, it is particularly detrimental for time-series data, es-
pecially for bio-accoustic signals. In fact, those signals
can be sampled at a high-frequency rate (up to 2,000 kHz
()). To add, the signals are recorded for long durations and
exhibited non-stationary nuisances including sensor noise,
background noise, and variant sources (Ramli & Jaafar,
2016; Glotin et al., 2017; Trone et al., 2015). In addition,
features of interest can lie at many different frequencies and
in small time windows, adding complexity to the learning
task.

Overall, current solutions to tackle bio-acoustic signals still
rely on hand-crafted features providing representations that
are input to the DNNs. Considered representations are often
based on a time-frequency framework as they stretch and
reveal crucial information embedded in the time-amplitude
domain (Jaffard et al., 2001). Moreover, decomposing sig-
nals in the time-frequency plane leverage the capability of
Convolutional Neural Networks (CNNs). In fact, this fea-
ture is now considered as an image where CNNs are known
to perform (Krizhevsky et al., 2012). In addition, the design
and selection of the filter enabling the time-frequency repre-
sentation of the signal is directed by the prior knowledge on
the feature of interest.

For instance, in the case of wavelet transform, one selects
the most suitable wavelet family (i.e: Seismic data: Morlet
wavelet, Speech: Gammatone wavelet (Lostanlen, 2017;
Serizel et al., 2018)). Since the generalization capability
of handcrafted features is only proportional to the amount
of data witnessed by the designer. In (Cosentino et al.,
2016; Megahed et al., 2008), they developed algorithms
that were able to automate the search for the optimal filter.
However, these pre-processing techniques were derived for
goals not necessarily aligned with the current tasks at hand
(reconstruction, compression, classification) and thus do not
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provide a universal solution. In this work, we propose to
alleviate the limitation of DNNs by proposing a universal,
learnable time-frequency representation that can be trained
with respect to the application.

Related Work: To provide flexible time-frequency rep-
resentations and avoid the selection of hand-crafted filters,
(Cakir et al., 2016) proposed to learn the Mel-scale filters
leading to Mel-Frequency Spectral Coefficients (MFSC).
This approach concludes to learning the linear combination
of the spectrogram frequency filters instead of using triangu-
lar windows. In this case, the underlying representation still
relies on Fourier basis and thus inherits the problem of a pre-
imposed basis. On the other hand, (Zeghidour et al., 2017)
proposed the use of a complex 1D convolutional layer fol-
lowed by complex modulus and local averaging. This was
motivated by stating that a Gabor scalogram followed by
complex modulus and local averaging approximates MFSC
coefficients (Andén & Mallat, 2014). Finally, with DNNs
using the raw waveforms as input, (Sainath et al., 2015;
Dai et al., 2017; Trigeorgis et al., 2016) demonstrated that,
with careful model design, one could reach results on parity
with MFSC. Yet, the previously described work was applied
onto datasets that are obtained from controlled experiments
containing negligible noise and low-frequency sampling
(leading to small length signals). As such, their results do
not reflect the reliability and robustness of their methods for
general real world-tasks.

Our Contributions: Our solution learns the optimal time-
frequency representation for the task and data at hand. This
is done by learning time-frequency atoms with respect to
the loss function (which can be of reconstruction, compres-
sion, anomaly detection, classification). The expression of
these atoms corresponds to continuous filters analytically
derived by spline functions. The filters can be constrained
to inherit some pre-imposed properties such as smoothness
and boundary conditions. Since the unique analytical ex-
pressions of the filters are differentiable with respect to their
parameters, they can be optimized via first-order derivative
methods such as gradient descent. As such, they can be cast
in a DNN layer and learned by using backpropagation. In
summary, our contributions are as follows:

1. Leverage spline interpolation methods to provide
explicit expression of learnable continuous filters
(Sec. 2).

2. Derivation of learnable time-frequency representations
removing the need for a priori knowledge (Sec. 2).

3. Provide a novel, robust, and interpretable CNN embed-
ding (Sec. 3).

4. Application of the spline filters in a challenging bird
detection task (Sec. 3).

Notice that the construction of the filters is detailed in Ap-
pendix A.

2. Continuous Filter Learning via Subspace
Restriction

In this work, we propose to build continuous filters that can
be extended to render time-frequency representation and
specifically constant-Q transform (Brown, 1991). This trans-
formation renders the signal into a time-frequency plane
where the frequency resolution decreases as the frequency
increases. This transformation is directly related to the map-
ping performed by the human cochlea (Shera et al., 2002).
Our approach is general enough to produce any continuous
filter as soon as a functional space to which they belong
exist. For sake of clarity, we will present the development of
smooth locally supported oscillating filters, namely wavelet
filters. As such, we provide the theoretical building blocks
enabling one to build its own continuous filters depending
on the application.

2.1. Overall Approach: Deriving Filter Analytical
Formula from Functional Spaces

As we will show for the specific case of wavelet filters,
our method is based on the definition of a functional space
highlighting the properties of the wished filters. Given the
latter, first, we will perform its discretization in the same
manner as finite element methods for the variational prob-
lem of partial differential equations (Clough, 1990). We
build a discretization of the functional space such that as
the number of knots grows, any continuous filter from the
original functional space can be approximated arbitrarily
closely. The filters are based on the linear combination of
atoms that are basis elements of the discrete space, Hermite
cubic splines in our case. It results in a filter that approxi-
mates a particular function in the infinite dimensional space.
This filter, learned with respect to the data and the task,
will describe a physical process underlying the signal while
holding the properties of the functional space that it approx-
imates. Thus, we create a framework enabling one to have
theoretical guarantees based on the original functional space
while being data and task driven.

2.2. Wavelets

Wavelets are square integrable localized wave functions
(Mallat, 1999). Their ability to extract subtle patterns within
non-stationary signals is inherited from their compact sup-
port (Xu et al., 2016). In fact, wavelets are known to provide
a robust time-frequency representation for non-stationary
signals as it is localized both in time and frequency, and
close to optimal from an uncertainty principle perspective
with constant bandwidth to center frequency ratio (Meyer,
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1993). In fact, the higher the frequency is, the higher the
wavelet is precise in time (per contra, for low-frequency con-
tents, wavelets are highly localized in frequency but wide in
time). Besides, given the nature of the time-series data (e.g.
non-stationary biological time-series), this embedding will
encode the signal with only a few activated wavelet atoms
resulting in a sparse representation (Cosentino et al., 2017).

While we will leverage spline interpolation techniques to
sample the filters from the functional space, our approach is
independent of the spline wavelets setting. As a matter of
fact, spline wavelets, well developed by (Unser, 1997) are
constructed upon multiresolution analysis. These wavelets
have an explicit expression in both the time and frequency
domain hence facilitating their computation. Besides, they
span a wide range of filter’s smoothness order (Unser, 1997).
Despite the detachment between our framework and the
one of spline wavelet, we can make an analogy between
them. The ability of spline wavelets to provide an analytical
formula for discrete wavelets is analogous to our proposal
to provide the analytical continuous formula for the discrete
filter-banks of convolutional networks.

2.3. Wavelet Ambient Space Definition

In our case, we provide a theoretical framework enabling
one to build through a data-driven process a continuous
filter-bank spanning wavelet filters. Let define the space of
wavelets be

VL2
c

=

{
ψ ∈ L2

c(R),

∫
ψ(t)dt = 0

}
, (1)

where L2
c(R) defines the space of square integrable func-

tions with compact support.

2.4. Discretization of the Ambient Space

We direct the reader to a complete review of spline operators
in (Schoenberg, 1964). In order to control the smoothness
of the wavelets and thus of the sampled filters, we propose
to restrict our study to the space of zero-mean functions
with compact support belonging to Cnc (R)

VCnc =

{
ψ ∈ Cnc (R),

∫
ψ(t)dt = 0

}
. (2)

Since continuous and differentiable functions with compact
support are square integrable, and a fortiori they belong to
L∞c , it is clear that VCnc ⊂ VL2

c
. Therefore, VCnc is a space

of function with compact support where the smoothness is
described by the order n. In this work, we will restrain our
study to the space VC1

c
which will provide an efficient trade-

off between smoothness characterization and tractability.
In order to build the discrete space denoted by V , we first
proceed with the partition of the support of the function,
denoted by the segment [a, b], in N + 1 intervals of length

h = b−a
N+1 , we thus defined as ti = a+ ih, ∀i ∈ {0, ..., N +

1} the N + 2 points on the mesh, where in particular t0 = a
and tN+1 = b. We define the discretization of the functional
space VC1

c
as

V =

{
ψh ∈ V̄ ,

∫
ψh(t)dt = 0

}
, (3)

where

V̄ =

{
ψh ∈ SC1

c
, ψh(a) = ψh(b) =

dψh

dt
(a) =

dψh

dt
(b) = 0

}
,

(4)
and

SC1
c

=
{
ψh ∈ C1

c ([a, b]), ψh|[ti,ti+1]
∈ P

3, i = 1, . . . , N
}
,

(5)
where P3 defines the space of order 3 polynomials and SC1

c

the space of cubic and smooth splines.

2.5. Analytical Filter Formula via Spline interpolation

We now derive a basis of the space V̄ such that we can
provide explicit formulation of the functions belonging to
such space.
Lemma 1. Any function in SC1

c
is entirely and uniquely

defined by its values and its first order derivative values on
each point of the mesh ti,∀i ∈ {0, ..., N + 1}.

Proof. Let ψh ∈ SC1
c
, without loss of generality we focus

on ψh|[ti,ti+1]
. It is clear that given the fact that it is a

polynomial of degree 3 on the interval [ti, ti+1] it can be
expressed as

ψh|[ti,ti+1]
= a(t− ti)3 + b(t− ti)2 + c(t− ti) + d. (6)

Let show that the coefficients a, b, c, d of the polynom are
uniquely determined by θti , θti+1

, θ
′

ti , θ
′

ti+1
. Naturally, d =

θti and θ
′

ti = c, then, the coefficient a, b are defined by the
solution of the following problem(

h3 h2

3h2 2h

)(
a
b

)
=

(
θti+1

− θ′tih− θti
θ
′

ti+1
− θ′ti

)
, (7)

since det

(
h3 h2

3h2 2h

)
= −h4, the system has a unique

solution.

Theorem 1. Let define u(i) and v(i) as functions belonging
to SC1

c
such as ∀i ∈ {0, ..., N + 1}

u(i)(tj) = δij , u
(i)
′

(tj) = 0, (8)

v(i)(tj) = 0, v(i)
′

(tj) = δij . (9)

These functions form a basis of SC1
c
, and for all ψh ∈ SC1

c
,

we have,

ψh =

N+1∑
i=0

(θtiu
(i) + θ

′

tiv
(i)). (10)
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Proof. We first show that the space SC1
c

is spanned by such
functions. Let ψh any function belonging to SC1

c
, et let z

defined such as

z =

N+1∑
i=0

(θtiu
(i) + θ

′

tiv
(i)), (11)

it is clear that z belongs to SC1
c

as a linear combination of
functions belonging to SC1

c
. Then, for all j ∈ {0, ...N + 1},

we have z(tj) = θtj and dz
dt (tj) = θ

′

tj . Thus z coincides
with the function ψh on all the points of the mesh. From
Lemma 1, we know that z = ψh, thus u(i) and v(i) span
the space SC1

c
. Let’s now prove that this family is linearly

independent. Let’s assume ψh =
∑N+1
i=0 (λiu

(i)+µiv
(i)) =

0, where λi, µi are scalar coefficients. Then, for all j ∈
{0, ...N +1} we have θtj = λj = 0 and θ

′

tj = µj = 0.

Notice that the parameters θti , θ
′

ti , correspond respectively
to the value of the function ψh and the derivative of the
function ψh at the knot ti.

Corollary 1. The dimension of the space SC1
c

is 2(N + 2).

The proof is immediate given that its basis forms a 2(N +2)
functions as defined in the previous theorem. We have built a
basis for the space SC1

c
, it is simple to analyze the basis of its

subspaces, namely V̄ and V , where we have V ⊂ V̄ ⊂ SC1
c
.

From the space SC1
c

to V̄ we add Dirichlet and Neumann
boundary conditions. These conditions imply directly that
any function in V̄ is C1(R) as the function in SC1

c
has a

compact support, it is null out of its support, then imposing
that both the derivative and the value on the boundary of the
support is zeros implies the continuity and differentiability
on R.

Corollary 2. The dimension of the space V̄ is 2N .

Proof. Imposing the boundaries conditions remove 4 de-
grees of freedom from the space SC1

c
as we only consider

the internal part of the mesh.

Then, ∀ψh ∈ V̄ , we have

ψh =

N∑
i=1

θtiu
(i) +

N∑
i=1

θ
′

tiv
(i). (12)

One can easily explicitly derived this basis via the following
reference functions

u0(t) = (1 + 2t)(1− t)2, u1(t) = (2− 2t)t2, (13)

v0(t) = t(1− t)2, v1(t) = −(1− t)t2, (14)

then ∀i ∈ {1, ..., N} we have the following functions de-
fined on their supports

u(i)(t) = u0(
t− ti−1

h
), ∀t ∈ [ti−1, ti] (15)

= u1(
t− ti
h

), ∀t ∈ [ti, ti+1], (16)

and

v(i)(t) = v0(
t− ti−1

h
)h, ∀t ∈ [ti−1, ti] (17)

= v1(
t− ti
h

)h, ∀t ∈ [ti, ti+1]. (18)

Finally, from V̄ to V , we require that the integral of the
polynomial is null over the whole domain, which implies
the following corollary
Corollary 3.

V =

{
ψh ∈ V̄ , ∃j, θtj = −

∑
i6=j

θti

}
, (19)

and the dimension of V is 2N − 1.

Proof. While integrating ψh ∈ V̄ and using Chasles’ rela-
tion to split the integral over the mesh’s segments, the C1

property implies that the coefficients θ
′

ti cancel each other.
Then the equality of the integral to zeros is equivalent to
the condition following condition ∃j ∈ {1, ..., N}, θtj =
−
∑
i6=j θti , which proves the first part of the corollary. The

dimension of the space is the dimension of V̄ minus one
degree of freedom, which completes the proof.

Furthermore, the error of the approximation involved by the
discretization of the space by mean of cubic Hermite splines
is of the order O(h4)(Hall & Meyer, 1976). As a matter
of fact, the smaller the segment of the mesh is, the closer
the approximant will be to the associated function in the
functional space.

2.6. From Primitive Filter to Overcomplete Dictionary

Another advantage of analytical filters resides in the pos-
sibility to apply standard continuous operators such as
time-dilation and frequency-shift. Applying such opera-
tors to the primitive filter yields the creation of the filter-
bank. From Lemma 1, it is clear that the set of parame-
ters θ = {(θti , θ

′

ti),∀i ∈ {1, ..., N}} defines uniquely the
spline filter. We now denote our discretized filter ψh by
ψθ. For our experiments, we will consider the use of our
filter formulation to derive a filter-bank. This is done by
only learning a mother filter which is then dilated to build
the collection of filters. Hence they all rely upon the same
analytical form but are dilated versions of each other. Let’s
suppose we have a mother wavelet, ψθ ∈ VL2

c
, we pro-

pose an operation, a dilation, that will provide the analytic
expression of our redundant frame.
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Dilation Operator Let Dλ, a dilation operator defined by

Dλ[ψθ](t) :=
1√
λ
ψθ

( t
λ

)
. (20)

The scale parameter λ ∈ R+ allows for time dilation and
frequency-shift and follows a geometric progression for the
case of wavelets. It is defined as λi = 2

i−1
Q , i = 1, . . . , JQ

where J ∈ N, Q ∈ N define respectively the number of
octave and the number of wavelets per octave. Taking
Q > 1 yields a redundant frame, which can be more power-
ful for representation analysis (Olshausen & Field, 1996).
We now denote this collection of scales as Λ := {λi, i =
1, . . . , JQ}. Note that, in this work, this parameter will not
be learned but will be specified given a priori knowledge on
the data.

2.7. Gradient based Learning Rule

Note that since our filters can be used as part of a DNN
or as a stand-alone for representation learning, we remind
below the generic gradient-based learning rule leveraging
the chain rule. In order to learn the collection of filters, since
we know that the filters are entirely and uniquely defined
by their parameters θ, we propose to learn the internal pa-
rameters θ with the iterative first order optimization method
such as gradient descent. Therefore, given a differentiable
loss function L for the task at hand, such as classification,
regression, detection, one can learn the filters that will pro-
duce the representation that is the most suitable. We have
the chain rule as provided

∂L

∂θ
=
∑
λ,t

∂L

∂Wψθ [x](λ, t)

∂Wψθ [x](λ, t)

∂θ
, (21)

where Wψθ [x](λ, t) defines the wavelet transform

Wψθ [x](λ, t) = (x ?Dλ[ψθ])(t),∀λ ∈ Λ. (22)

2.8. Implementation

In order to implement such filters, we leverage the Hermite
cubic spline interpolation formula (12) between each of
the knots of a specified domain to obtain the sampled fil-
ter’s chunk per region (between two knots). This takes the
following form for a set of given filters

ψi(t) = (2t3 − 3t2 + 1)θti + (t3 − 2t2 + t)θ
′

ti

+ (−2t3 + 3t2)θti+1
+ (t3 − t2)θ

′

ti+1
(23)

ψθ(t) =

N∑
i=0

ψi

(
t− ti

ti+1 − ti

)
1{t∈[ti,ti+1]}. (24)

Then, one derives the filter bank by using the above equa-
tion with different time sampling according to the dilation

from Λ. For each scale λi the time sample is refined as
t = {t0, t0 + h

λi
, . . . , tN}. This process can be done in-

dependently for the calculation of the real and imaginary
coefficients. For the time-dilation operation, it suffices to
repeat this process with a finer or larger sampling grid where
the Hermite cubic spline interpolation occurs. The code is
provided as an open-source implementation 1. This code
is embedded as a special convolutional layer class of the
Lasagne library for ease of use for any interested parties
looking to integrate this Spline convolutional layer as part
of their DNN pipeline. Also, we provide a step-by-step
construction of the filters in Appendix A.

3. Validation with a Bird Detection Problem
In order to validate the proposed method in a supervised
task, we provide experiments on a large scale bird detec-
tion application. The data set is composed of 7, 000 field
recording signals of 10 sec. sampled at 44 kHz from the
Freesound (Stowell & Plumbley, 2013) audio archive rep-
resenting slightly less than 20 hours of audio signals. The
audio waveforms are extracted from diverse scenes such
as city, nature, train, voice, water, etc., some of which in-
clude bird songs. In this paper, we will focus on the super-
vised bird detection task consisting of assigning the label
1 if the sound contains a bird song and 0 otherwise. The
labels regarding the bird detection task can be found in
freefield10102. Due to the unbalanced distribution of the
classes (3 for 1), the metric to evaluate these methods is the
Area Under Curve (AUC) applied on a test set consisting of
33% of the overall dataset.

3.1. Architecture Comparison

To compare our method we propose different training set-
tings. For all the trained methods, the signals are subsam-
pled by 2, leading to a sampling rate of ≈ 22 kHz. The
learning was set for 120 epochs with the batch size being
10 samples. The learning rate for each method has been
cross-validated with respect to the following learning rate
grid: [0.0001, 0.005, 0.01, 0.05]. We did not perform data
augmentation. We provide average and standard deviation
for the AUC evaluation score over 10 independent runs.

For each run, all the topologies are trained and tested on
the same training and testing set leading to a comparison of
the different algorithms using the same data. The different
methods we will apply correspond to variants of the state-
of-the-art method proposed in (Grill & Schlüter, 2017). The
difference will lie in the first layer of the topology which
corresponds to either an MFSC transform, an unconstrained

1https://github.com/RandallBalestriero/SplineWavelet
2http://machine-listening.eecs.qmul.ac.uk/bird-audio-

detection-challenge/
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MFSC Representation

Convolutional Representation with random initialization

Convolutional Representation with Gabor initialization

Spline Convolutional Representation with random initialization

Spline Convolutional Representation with Gabor initialization

Figure 1. First layer representations (time-frequency plane). Signals of class 1 (a bird is present). Each column depicts a different signal.
Firstly, the amount of sparsity (the L1-norm of the representation) often considered as a quality criterion can be seen to be conserved with
the spline convolutional. In addition, the events are well localized in frequency as opposed to the convolutional representations depicting
events covering the whole axis and/or time dimension. The detected events seem to be in accordance with all representations.

complex 1D convolutional layer and finally the complex
spline filters cast into the complex 1D convolutional layer.
For all cases, the number and sizes of the filters are identical.
Everything else in the DNN is kept identical between the
methods. Also, both the Spline convolutional layer and the
convolutional layer were tested with two filter initialization
settings: random and Gabor.

Finally, due to the induced extra representation to store
on GPU (namely Wψθ [x](λ, t)) prior applying the mean-
pooling, the required memory for the Spline convolutional
and convolutional topologies is higher than the baseline
which computes the MFSC on CPU a priori. As a result, the
mean-pooling applied to these cases is chosen twice bigger
for those topologies as opposed to the MFSC baseline, lead-
ing to a first layer representation twice smaller. We briefly
describe the different methods and choice of parameters.

State-of-the-art method MFSC + ConvNet: The baseline
and state-of-the-art method (Grill & Schlüter, 2017) is based

on MFSC: spectrogram with window size of 1024 and 30%
overlap, then mapped to the mel-scale by mean of 80 trian-
gular filters from 50 Hz to 11 kHz. The MFSC are computed
by applying a logarithm. This time-frequency representa-
tion is then fed to the following network: Conv2D. layer
(16 filters 3× 3), Pooling (3× 3), Conv2D. layer (16 filters
3 × 3), Pooling (3 × 3), Conv2D. layer (16 filters 3 × 1),
Pooling (3× 1), Conv2D. layer (16 filters 3× 1), Pooling
(3× 1), Dense layer (256), Dense layer (32), Dense layer (1
sigmoid). At each layer a leaky ReLU is applied following a
batch-normalization. For the last three layers a 50% dropout
is applied.

ConvNet: In this method, we keep the architecture of state-
of-the-art solution, while replacing the deterministic MFSC
by a regular complex convolutional layer, followed by a
complex modulus, a logarithm operation, and an average
pooling, providing as stated in (Zeghidour et al., 2017) a
learnable MFSC representation. The number of complex
filters for the first layer is 80 leading to a representation
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Figure 2. Final Results on FreeField data set. Initializing the CNN filters with a Gabor filter-bank leads to increased performances
as opposed to random initialization. Yet, the final performances remain around 10 percentage point below the other methods. The
spline-based convolutional layer with random initialization is able to reach similar performances with the MFSC features after only 20
epochs. Finally, the Gabor initialized spline filter-bank starts on pair with the MFSC features as can be seen for the first couple of epochs
and is then able to overcome the MFSC feature to rapidly obtain about 2 point of percentage increased performances. Hence we can see
the MFSC representation to be a satisfactory initializer yet not optimal.

Convolutional Filter with random initialization

Convolutional Filter with Gabor initialization

Spline Convolutional Filter with random initialization

Spline Convolutional Filter with Gabor initialization

Figure 3. Filters extracted from the convolutional Layer and spline convolutional Layer. The red and blue lines correspond to the complex
and real part respectively. Filters are presented in the left, middle, and right column respectively corresponding to the initialization,
during learning, and after learning. As can be witnessed in the third row, even with random initialization, the smoothness and boundary
conditions are able to prevent too erratic filters. Our Spline configuration initialized Gabor (the bottom row) through learning tends to a
modified Gabor. In fact, while a Gabor is roughly a complex sine localized via a Gaussian window, the learned filter seems closer to a
complex sine localized with a Welch window (Harris, 1978). For the discrete convolutional filters, even with Gabor initialization (second
row), the nuisances (noise, and other nonstationary class independent perturbations) are absorbed during learning even at early stages
(middle column).
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at the first layer equivalent to the MFSC. We propose two
initialization settings for the first layer of discrete filters:
random and Gabor. The complex convolution is simply
implemented as a two channel convolution corresponding
to the real and imaginary part.

Spline Continuous Filter ConvNet: As for the Conv. Net
model, we keep the same architecture but replace the first
layer with the proposed method. In particular, the first layer
is a complex convolutional Layer with filters computed from
our method. Given the dataset context, we naturally impose
the functional space for the filters as the wavelet space. We
use 80 filters based on the dilation operator developed in 2.6
with J = 5, Q = 16. This layer is followed by a complex
modulus, a logarithm operation, and an average pooling.
We propose two initializations as for the previous method:
random, and Gabor. For each filter, the number of cubic
Hermite polynomials respective the boundary condition is
15 as 16 knots are used. Since the set of filters are derived by
the dilation of one mother filter, the number of parameters
for this layer is 56 (14× 4).

Speed of Computation and Number of Parameters: The
number of parameters for the spline convolutional DNN
is of 145, 073. The computation time for one batch of 10
examples is 0.44± 0.009 sec. For the convolutional DNN,
the number of parameters is 227, 089 and the computation
time for one batch is 0.42 ± 0.01 sec. In fact, given our
current implementation, the Spline convolutional layer first
has to interpolate and generate the filter-bank based on the
parameters of the Hermite cubic spline and this filter-bank
(for real and complex parts) is then used in a convolutional
layer.

This extra computation time of interpolation and filter-bank
derivation thus takes an additional 0.02 sec. per batch on
average. Finally, for the state-of-the-art method, the number
of parameters is 374, 385 and the computation time for one
batch is 0.01±0.0004 sec. This comes from the input being
directly the MFSC representation as opposed to the raw
waveform. The increased number of degrees of freedom
comes from having a time-frequency representation longer
in time as opposed to the other two topologies having larger
time-pooling for memory constraints.

3.2. Results

Table 1 displays the average over the last 20 epochs of the
10 runs for each method as shown in 2. We see that using
classical discrete filters on the raw waveforms fail to gen-
eralize and is seen to overfit starting at epoch 50. However,
performing MFSC representation drastically increases the
accuracy. Finally, we see that our approach is capable of
performing equivalent results than the state-of-the-art in the
case of random initialization and increases score by nearly
2 points when initialized with Gabor filters.

Table 1. Classification Results - Bird Detection - Area Under Curve
metric (AUC)

Model (learning rate) AUC (mean±std)
Conv. MFSC (0.01) 77.83 ± 1.34
Conv. init. random (0.01) 66.77 ± 1.04
Conv. init. Gabor (0.01) 67.67 ± 0.98
Spline Conv. init. random (0.005) 78.17 ± 1.48
Spline Conv. init. Gabor (0.01) 79.32 ± 1.53

4. Conclusions and Future Work
In this work, we proposed a novel technique to tackle end-
to-end deep learning for waveform analysis. To do so, we
proposed to highlight the need for designing new filters
that can be learned with any differentiable loss function
and architecture. This approach showed its potential and
robustness on a challenging audio detection dataset reaching
significantly better results as opposed to using pre-imposed
MFSC representation or unconstrained DNNs. For future
work, one can extend the filter learning to jointly learn the
dilation operator. In fact, as we have shown in 2.6 this op-
erator leverages the parameter pre-imposed parameters λ
to follow a geometric progression. We can instead learn it
as it is differentiable. This would include not only learning
the correct geometric progression but also learning arbitrary
dilation with different types of relationships between them-
selves. Other future work will consider to merge the recent
multiscale deep neural network inversion (Balestriero et al.,
2018) with spline filters.
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