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Item non-response in surveys is usually handled by single imputation, whose main objective is to reduce the non-response bias. Imputation methods need to be adapted to the study variable. For instance, in business surveys, the interest variables often contain a large number of zeros. Motivated by a mixture regression model, we propose two imputation procedures for such data and study their statistical properties.

We show that these procedures preserve the distribution function if the imputation model is well specified. The results of a simulation study illustrate the good performance of the proposed methods in terms of bias and mean square error.

Introduction

Item non-response may affect the quality of the estimates when the respondents and the non-respondents exhibit different characteristics with respect to the variables of interest. Item non-response in surveys is usually handled by single imputation, whose main objective is to reduce the non-response bias. Two approaches are commonly used in sample surveys to motivate imputation. Under the non-response model approach (NM), the response mechanism is explicitly modeled, whereas under the imputation model approach (IM), the variable under study is explicitly modeled.

Single imputation consists of replacing a missing value with an artificial one.

It leads to a single imputed data set, constructed so that it is possible to apply complete data estimation procedures for obtaining point estimates. The response indicators are therefore not required. On the other hand, multiple imputation methods [START_REF] Rubin | Multiple imputation for survey non response[END_REF][START_REF] Little | Statistical analysis with missing data[END_REF] consist in building M > 1 imputed datasets, and in estimating the parameters under study for each of them. The M analyses are then combined for inference. Multiple imputation has been extensively studied in the literature, some recent references include [START_REF] Iacus | Missing data imputation, matching and other applications of random recursive partitioning[END_REF], [START_REF] White | Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values[END_REF] and [START_REF] Templ | Iterative stepwise regression imputation using standard and robust methods[END_REF]. However, multiple imputation is not commonly used in sample surveys. Under the NM approach, multiple imputation needs to be proper for valid inference. Some sufficient conditions are given in [START_REF] Rubin | Multiple imputation for survey non response[END_REF], pp.

118-119, but they are usually difficult to check for complex sampling designs, see [START_REF] Binder | Frequency valid multiple imputation for surveys with a complex design[END_REF], [START_REF] Fay | When Are Inferences from Multiple Imputation Valid?[END_REF], [START_REF] Fay | Alternative paradigms for the analysis of imputed survey data[END_REF] and [START_REF] Nielsen | Proper and improper multiple imputation[END_REF]. Also, under the IM approach, the multiple imputation variance estimator does not track the variance correctly, and can be considerably biased, see [START_REF] Kott | A paradox of multiple imputation[END_REF], Kim et al. (2006a), [START_REF] Kim | On the bias of the multiple-imputation variance estimator in survey sampling[END_REF] and [START_REF] Beaumont | On variance estimation under auxiliary value imputation in sample surveys[END_REF]. Therefore, we focus in this paper on single imputation methods.

The Imputation Model (IM) approach is of common use to treat item nonresponse in surveys. The imputation methods are then motivated by a modeling of the relationship between the variable of interest and the available auxiliary variables. Both the imputation model and the imputation methods need to be adapted to the study variable. For instance, in business surveys, the interest variables often contain a large number of zeros. In the Capital Expenditure Survey conducted at Statistics Canada, approximately 70% of businesses reported a value of zero to Capital Machinery and 50% reported a value of zero to Capital Construction [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF]. In case of some interest variable containing a large amount of zeroes, [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF] propose imputation methods based on a mixture regression model. They prove that these methods lead to doubly robust estimators of the population mean, i.e. the imputed estimator of the mean is consistent whether the interest variable or the non-response mechanism is adequately modeled.

However, these methods are not appropriate when estimating more complex parameters such as the population distribution function.

In this work, we propose an imputation which enables to preserve the distribution function for zero inflated data. This is an important practical property if the data users are not only interested in estimating means or to-tals, but also parameters related to the distribution of the imputed variable, e.g. the Gini coefficient. We use the IM approach, without explicit assumptions on the non-response mechanism for the interest variable. We propose a random imputation method which leads to a √ n-consistent estimator of the total, and to a mean-square consistent estimator of the distribution function.

As recalled in [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF], random imputation methods suffer from an additional variability due to the imputation variance. Three approaches have been proposed in survey sampling to reduce this variance. Fractional imputation is somewhat similar to multiple imputation, and consists in replacing some missing value with M imputed values to which some weights are given (Kalton andKish, 1981, 1984;[START_REF] Fay | Alternative paradigms for the analysis of imputed survey data[END_REF][START_REF] Kim | Fractional hot deck imputation[END_REF][START_REF] Fuller | Hot deck imputation for the response model[END_REF]. The imputation variance decreases as M increases. The second approach consists in using some standard imputation mechanism, and in modifying the imputed values in order to suppress the imputation variance [START_REF] Chen | Efficient random imputation for missing data in complex surveys[END_REF]. Finally, the third approach consists of directly imputing artificial values in such a way that the imputation variance is eliminated (Kalton andKish, 1981, 1984;[START_REF] Deville | Random imputation using balanced sampling[END_REF][START_REF] Chauvet | On balanced random imputation in surveys[END_REF][START_REF] Chauvet | Fully efficient estimation of coefficients of correlation in the presence of imputed survey data[END_REF][START_REF] Hasler | Fast balanced sampling for highly stratified population[END_REF][START_REF] Chaput | Joint imputation procedures for categorical variables[END_REF]. This last approach is of particular interest because it leads to a single imputed dataset, which is attractive from a data user's perspective, and it does not require any modification of the imputed values.

In this paper, we propose a balanced version of our imputation method, which enables to greatly reduce the imputation variance. It consists of ran-domly generating the imputed values while satisfying appropriate balancing constraints, by using an adaptation of the Cube algorithm [START_REF] Deville | Efficient balanced sampling: the cube method[END_REF][START_REF] Chauvet | On balanced random imputation in surveys[END_REF]. Our simulation results prove that the balanced imputation method succeeds in preserving the distribution function of the imputed variable, with large variance reductions as compared to the proposed non-balanced imputation method. In order to produce confidence intervals for the estimated parameters with appropriate coverage, we also propose variance estimators adapted from the linearization variance estimators proposed by [START_REF] Kim | A unified approach to linearization variance estimation from survey data after imputation for item nonresponse[END_REF]. Our simulation results indicate that these estimators perform well, both in terms of relative bias and of coverage rate.

The paper is organized as follows. In Section 2, we describe the theoretical set-up and the notation used in the paper. In Section 3, we briefly recall the two imputation procedures proposed by [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF], and introduce our two proposed imputation methods. In Section 4, we prove that the proposed random imputation procedure yields a consistent estimator of the total and of the distribution function. Variance estimation for the imputed estimator of the total is discussed in Section 5. The results of a simulation study comparing the four procedures and evaluating the proposed variance estimator are presented in Section 6. An application of the proposed methodology on data modelled in the Monthly Retail Trade Survey is presented in Section 7. We conclude in Section 8. All the proofs are given in the Appendix. Some additional simulation results are available in the Supplementary Material.

Theoretical set-up

We are interested in some finite population U of size N, with some quantitative variable of interest y taking the value y i for unit i ∈ U. We note y U = (y 1 , . . . , y N ) ⊤ for the vector of values for the variable y. We are interested in estimating the total t y = i∈U y i , and the finite population distribution function

F N (t) = 1 N i∈U 1(y i ≤ t) (2.1)
where 1(•) is the indicator function.

A sample s of size n is selected according to a sampling design p(.), with π i the first-order inclusion probability in the sample for unit i. We suppose that π i > 0 for any unit i ∈ U, and we note d i = π -1 i the design weight. We note δ U = (δ 1 , . . . , δ N ) ⊤ for the vector of sample membership indicators. In case of full response, a complete data estimator of t y is the expansion estimator or [START_REF] Horvitz | A generalization of sampling without replacement from a finite universe[END_REF] 

estimator tyπ = i∈s d i y i . (2.2)
This estimator is design-unbiased for t y , in the sense that E p ( tyπ ) = t y with E p the expectation under the sampling design p(.), conditionally on y U . We note V p the variance under the sampling design p(.). Concerning the population distribution function F N , plugging into (2.1) the expansion estimators of the involved totals yields the plug-in estimator

FN (t) = 1 Nπ i∈s d i 1(y i ≤ t) with Nπ = i∈s d i . (2.3)
Under some mild assumptions on the variable of interest and the sampling design (see [START_REF] Deville | Variance estimation for complex statistics and estimators: linearization and residual techniques[END_REF][START_REF] Cardot | Properties of design-based functional principal components analysis[END_REF], FN (t) is approximately unbiased and mean-square consistent for F N (t).

We now turn to the case when the variable of interest y is subject to missingness. Let r i be the response indicator, such that r i = 1 if unit i responded to item y, and r i = 0 otherwise. Let p i be the response probability of some unit i. We note r U = (r 1 , . . . , r N ) ⊤ for the vector of response indicators. We assume that each unit responds independently of one another. Let E q and V q denote the expectation and variance under the non-response mechanism, conditionally on the vector y U of population values and on the vector δ U of sample membership indicators. An imputation mechanism is used to replace some missing value y i by an artificial value y * i . An imputed estimator for t y based on observed and imputed values is tyI =

i∈s d i r i y i + i∈s d i (1 -r i )y * i .
(2.4)

Similarly, an imputed estimator of the distribution function based on observed and imputed values is 

FI (t) = 1 Nπ i∈s d i r i 1(y i ≤ t) + i∈s d i (1 -r i )1(y * i ≤ t) . (2.
y i = η i z ⊤ i β + √ v i ǫ i , (2.6) 
where the η i 's are independent Bernoulli random variables equal to 1 with probability φ i , and equal to 0 otherwise; the ǫ i 's are independent and identically distributed random variables of mean 0, variance σ 2 , and with a common distribution function F ǫ ; the parameters β and σ are unknown, and v i is a known constant. The vector of auxiliary variables z i is assumed to be known on the whole sample including non-respondents. To sum up, according to the imputation model (2.6) the variable y i follows a regression model with a probability φ i , and is equal to 0 otherwise.

Note that no assumptions are made on some specific distribution for the residuals ǫ i . We only suppose that they share a common distribution function F ǫ .

Let E m et V m denote respectively the expectation and variance under the imputation model. We suppose that the sampling design is non-informative, in the sample that the vector δ U of sample membership indicators is independent of ǫ U = (ǫ 1 , . . . , ǫ N ) ⊤ and η U = (η 1 , . . . , η N ) ⊤ , conditionally on a set of design variables.

In practice, the φ i 's are unknown and need to be estimated. We assume that they may be parametrically modeled as

φ i = f (u i , γ) (2.7)
where f is a known function, u i is a vector of variables recorded for all sampled units, and γ is an unknown parameter. An estimator of

φ i is φi = f (u i , γr ) (2.8)
with γr an estimator of γ computed on the responding units. We assume that η i and ǫ i are independent, conditionally on the vectors z i and u i .

In this paper, we use the Imputation Model (IM) approach where the infer-ence is made with respect to the imputation model, the sampling design, the response mechanism and the imputation mechanism. This does not require an explicit modeling of the non-response mechanism unlike the Non-response Model approach [START_REF] Haziza | Imputation and inference in the presence of missing data[END_REF], but we assume that the data are missing at random, which means that model (2.6) holds for both the respondents and the non-respondents. We note E I and V I the expectation and variance under the imputation mechanism, conditionally on the vectors y U , δ U and r U .

Imputation methods

In this Section, we first briefly recall in Sections 3.1 and 3.2 the random imputation methods proposed by [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF] for zero-inflated data.

We then introduce the new methods that we propose in Sections 3.3 and 3.4.

Haziza-Nambeu-Chauvet random imputation

A first proposal of [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF] is to use the imputation mechanism

y * i = η * i z ⊤ i Br , (3.1)
where the unknown regression parameter β is estimated by

Br = Ĝ-1 r 1 N i∈s ω i r i v -1 i z i y i with Ĝr = 1 N i∈s ω i r i φi v -1 i z i z ⊤ i ,(3.2)
where ω i denotes a so called imputation weight, and φi is given in (2.8). The η * i 's are independently generated, and η * i is equal to 1 with the probability φi , and is equal to 0 otherwise.

There are several possible choices for the imputation weights ω i . Using a modeling of the response mechanism for the variable y i , [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF] propose to choose the imputation weights so that tyI is a doubly robust estimator for t y . This means that the imputed estimator is approximately unbiased for t y whether the imputation model or the non-response model is adequately specified. [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF] also prove that the resulting imputed estimator is consistent for t y under either approach.

The random imputation mechanism in (3.1) has three drawbacks. 

Haziza-Nambeu-Chauvet balanced imputation

The balanced random imputation procedure of [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF] consists in replacing a missing value with

y * i = η * i z ⊤ i Br , (3.3)
where the η * i 's are not independently generated, but so that the imputation variance of tyI is approximately equal to zero. Indeed, the imputation variance of tyI is eliminated if the η * i 's are generated so that

i∈s d i (1 -r i )(η * i -φi )(z ⊤ i Br ) = 0.
(3.4) [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF] propose a procedure adapted from the Cube method [START_REF] Deville | Efficient balanced sampling: the cube method[END_REF][START_REF] Chauvet | A fast algorithm for balanced sampling[END_REF] which enables to generate the η * i 's so that (3.4) is satisfied, at least approximately. As a result, the imputation variance is eliminated or at least significantly reduced.

This imputation procedure is called balanced random φ-regression (BRR φ ) imputation by [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF]. They prove that under the BRR φ imputation, an appropriate choice for the imputation weights ω i leads to a doubly robust estimator for t y . Also, their empirical results indicate that it performs well in reducing the imputation variance. A drawback of the BRR φ imputation mechanism is that it does not preserve the distribution function of the imputed variable, because it does not take into account the error terms ǫ i in the imputation model (2.6). This is empirically illustrated in section 6.

To overcome this problem, two new imputation procedures are proposed in Sections 3.3 and 3.4.

Proposed random imputation

The random imputation procedure that we propose consists in mimicking as closely as possible the imputation model (2.6), by replacing some missing y i with the imputed value

y * i = η * i z ⊤ i Bar + √ v i ǫ * i , (3.5)
where Bar is a regularized version of Br , and η * i is a Bernoulli random variable as defined in (3.1). The ǫ * i 's are selected independently and with replacement in the set of observed residuals E r = {e j ; r j = 1 and η j = 1} where e j = y j -z ⊤ j Bar √ v j , (3.6) with P r(ǫ * i = e j ) = ωj for any j ∈ s such that r j = 1 and η j = 1, where 

ωj = ω j k∈s ω j r k η k . ( 3 
ar 1 N i∈s ω i r i v -1 i z i y i . (3.10)
The regularization leads to a matrix Ĝar which is always invertible, and such that Ĝ-1 ar ≤ a -1 with • the spectral norm.

We prove in Section 4 that Bar is a mean-square consistent estimator of β, and that under the proposed imputation procedure the imputed estimator of the total is mean-square consistent for t y . Also, we prove that the imputed estimator FI (t) is L 1 -consistent for the population distribution function. However, this imputation procedure leads to an additional variability for tyI due to the imputation variance. Therefore, a balanced version is proposed in Section 3.4.

Proposed balanced imputation

The balanced procedure consists in replacing a missing value with (3.11) where the η * i 's and the ǫ * i 's are not independently generated, but so as to eliminate the imputation variance of tyI . A sufficient condition for this consists in generating the residuals η * i and ǫ * i so that

y * i = η * i z ⊤ i Bar + √ v i ǫ * i ,
i∈s d i (1 -r i )(η * i -φi )(z ⊤ i B * r ) = 0, (3.12) i∈s d i (1 -r i )η * i √ v i ǫ * i = 0. (3.13)
This is done in a two-step procedure: first, the η * i 's are generated by means of Algorithm 1 in [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF], so that (3.12) is approximately respected; then, the ǫ * i 's are generated by using Algorithm 1 described in Chauvet et al.

(2011), so that (3.13) is approximately respected.

Since the balancing equations (3.12) and (3.13) are usually only approximately respected, the imputation variance is not completely eliminated, but it may be significantly reduced: see the simulation study in Section 6. Though the balanced imputation procedure is expected to provide estimators with smaller variance, the asymptotic properties of these estimators are difficult to study due to intricate dependencies introduced in the imputation process. Extending the results in Section 4 is a challenging problem for further theoretical research.

Properties of the proposed methods

To study the asymptotic properties of the sampling designs and estimators, we use the asymptotic framework of [START_REF] Isaki | Survey design under the regression superpopulation model[END_REF]. We suppose that the population U belongs to a nested sequence {U τ } of finite populations with increasing sizes N τ , and that the vector of values for the variable of interest y U τ = (y 1τ , . . . , y N τ ) ⊤ belongs to a nested sequence {y U τ } with increasing sizes N τ . For simplicity, the index τ is omitted in what follows and all limits are computed when τ → ∞.

We consider the following regularity assumptions:

H1: Some constants C 1 , C 2 > 0 exist, s.t. C 1 ≤ Nn -1 π i ≤ C 2 for any i ∈ U.
H2: Some constant C 3 exists, s.t. sup i =j∈U n 1 -

π ij π i π j ≤ C 3 . H3: Some constants C 4 , C ′ 4 > 0 exist, s.t. C 4 ≤ min i∈U p i and C ′ 4 ≤ min i∈U φ i . H4: Some constants C 5 , C 6 > 0 exist, s.t. C 5 ≤ N -1 nω i ≤ C 6 for any i ∈ U. H5: Some constants C 7 , C 8 , C 9 > 0 exist, s.t. C 7 ≤ v i ≤ C 8 and z i ≤ C 9
for any i ∈ U. Also, the matrix

G = 1 N i∈U ω i π i p i φ i v -1 i z i z ⊤ i (4.1)
is invertible, and the constant a chosen is s.t. G -1 ≤ a -1 .

H6:

We have E ( γr -γ 2 ) = O(n -1 ).

H7: Some constant C 11 exists, s.t. for any vector γ

|f (u i , γ) -f (u i , γ)| ≤ C 11 γ -γ for all i ∈ U.
It is assumed in (H1) that the inclusion probabilities do not differ much from that obtained under simple random sampling, so that no design weight dominates the other. It is assumed in (H2) that the units in the population are not far from being independently selected: this assumption is verified for stratified simple random sampling and rejective sampling [START_REF] Hájek | Asymptotic theory of rejective sampling with varying probabilities from a finite population[END_REF], for example. It is assumed in (H3) that the response probabilities are bounded away from 0, i.e. there is no hard-core non-respondents, and that the probabilities of observing a null value are also bounded away from 0, i. (4.4)

Variance estimation

We now consider variance estimation for the imputed estimator of the total tyI , under the proposed imputation procedures. The variance estimators are adapted from a linearized variance estimator proposed by Kim and Rao (2009, Section 2) for deterministic/random regression imputation. They are obtained under a variance decomposition which makes use of the reverse approach [START_REF] Fay | Alternative paradigms for the analysis of imputed survey data[END_REF][START_REF] Shao | Variance estimation for survey data with composite imputation and nonnegligible sampling fractions[END_REF]. For simplicity, we suppose that the φ i 's are modeled according to a logistic regression model and that the unknown parameter β is the solution of the weighted estimated equation

i∈s ω i r i u i {η i -f (u i , γ)} = 0, (5.1)
with logitf (u i , γ) = u ⊤ i γ.

Balanced imputation procedure

We first consider the balanced imputation procedure proposed in Section 3.4. We do not need to account for the imputation variance, since it is approximately eliminated for the estimation of the total with the proposed imputation procedure. By following the approach of [START_REF] Kim | A unified approach to linearization variance estimation from survey data after imputation for item nonresponse[END_REF], we obtain after some algebra the two-term variance estimator VBMRR ( tyI ) = V1 ( tyI ) + V2 ( tyI ), (5.2) see equations ( 10) and ( 13) in [START_REF] Kim | A unified approach to linearization variance estimation from survey data after imputation for item nonresponse[END_REF]. The first term in the right-hand side of (5.2) is

V1 ( tyI ) = i,j∈s π ij -π i π j π ij ξi ξj , with ξi = d i ( φi z ⊤ i Bar ) + r i d i + ω i φi v -1 i â⊤ z i y i -φi z ⊤ i Bar + r i ω i ( b -ĉ) ⊤ u i η i -φi , (5.3) with â = i∈s r i ω i φi v -1 i z i z ⊤ i -1 i∈s d i (1 -r i ) φi z i , b = i∈s r i ω i φi (1 -φi )u i u ⊤ i -1 i∈s d i (1 -r i ) φi (1 -φi )(z ⊤ i Bar )u i , (5.4) ĉ = i∈s r i ω i φi (1 -φi )u i u ⊤ i -1 i∈s ω i r i v -1 i φi (1 -φi )(z ⊤ i â)(z ⊤ i Bar )u i ,
and with π ij the probability that units i and j are selected together in the sample. The second term in the right-hand side of (5.2) is

V2 ( tyI ) = i∈s r i d i (1 + ω i π i v -1 i â⊤ z i )(y i -φi z ⊤ i Bar ) + ω i π i ( b -ĉ) ⊤ u i (η i -φi ) 2 .
(5.5)

As underlined by [START_REF] Kim | A unified approach to linearization variance estimation from survey data after imputation for item nonresponse[END_REF], V2 ( tyI ) is not sensitive to a misspecification of the covariance structure in model (2.6).

Random imputation procedure

We now consider the random imputation procedure proposed in Section 3.3.

We need to account for the additional variance due to the imputation process.

By following once again the approach in Kim and Rao (2009, Section 4.1), we obtain the variance estimator VMRR ( tyI ) = VBMRR ( tyI ) + V3 ( tyI ), (5.6)

where VBMRR ( tyI ) is given in equation (5.2), and with

V3 ( tyI ) = i∈s d 2 i (1 -r i )(y * i -φi z ⊤ i Bar ) 2 , (5.7)
with y * i the imputed value given in equation (3.5).

Simulation study

To evaluate the performance of the proposed imputation methods, we implement a simulation study inspired by [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF]. We generate nine 20 finite populations of size N = 10, 000 with an interest variable y and four auxiliary variable z 1 , . . . , z 4 . The values of z i , i = 1, . . . , 4, are generated according to a Gamma distribution with shift parameter 2 and scale parameter 5. The values of y are generated according to the following mixture model:

y i = η i (a 0 + a 1 z 1i + a 2 z 2i + a 3 z 3i + a 4 z 4i + ǫ i ), (6.1)
where the ǫ i 's are generated according to a standard normal distribution with variance σ 2 . We use a 0 = 30 and a 1 = a 2 = a 3 = a 4 = 0.7. Also, we choose three different values of σ 2 so that the coefficient of determination R 2 equals 0.4, 0.5 or 0.6 for the units i such that η i = 1.

The η i 's are generated according to a Bernoulli distribution with parameter φ i , and In each population, we select R = 1, 000 samples by means of rejective sampling [START_REF] Hájek | Asymptotic theory of rejective sampling with varying probabilities from a finite population[END_REF] of size n = 500, with inclusion probabilities proportional to the variable z 1i . In each sample, we generate a response indicator r i for unit i according to a Bernoulli distribution with parameter p i such that

log φ i 1 -φ i = b 0 + b 1 z 1i + b 2 z 2i + b 3 z 3i + b 4 z 4i , ( 6 
log p i 1 -p i = c 0 + c 1 z 1i + c 2 z 2i + c 3 z 3i + c 4 z 4i . (6.3)
We use different values for the parameters c 0 , . . . , c 4 , chosen so that the proportion of respondents is approximately equal to 0.30, 0.50 or 0.70.

Properties of point estimators

In this Section, we are interested in estimating the total t y , and the distribu- As a measure of bias of an estimator θI of a finite population parameter θ, we compute the Monte Carlo percent relative bias

RB M C ( θI ) = 100 R R k=1 ( θI(k) -θ) θ , (6.4)
where θI(k) denotes the imputed estimator computed in the k-th sample. As a measure of relative efficiency for each imputation method, using BMRR φ as a benchmark, we computed

RE M C ( θI ) = MSE M C ( θI ) MSE M C ( θBMRR φ ) with MSE M C ( θI ) = 1 R R k=1 ( θI(k) -θ) 2 ,
the Mean Square Error of θI approximated by means of the R simulations.

We observed no qualitative difference according to the different response rates. For brevity, we therefore only present the simulation results with an average proportion of respondents of 0.50. The simulation results for the two other response rates are given in the Supplementary Material.

We first consider the estimation of the total t y , for which the simulation results are given in Table 1. The four imputation methods lead to approximately unbiased estimators of the total, as expected. Turning to the relative efficiency (RE), we note that in all studied cases the balanced version of an imputation method outperforms its unbalanced version. Also, the two balanced imputation procedures exhibit similar efficiency, with BRR φ performing slightly better. This is likely due to fact that the balancing equations (3.12) and (3.13) are not exactly respected due to the landing phase of the cube method (see [START_REF] Deville | Efficient balanced sampling: the cube method[END_REF].

RR φ BRR φ MRR φ BMRR φ R 2 φ
RB % RE RB % RE RB % RE RB % RE 0.4 0.6 0.23 1.16 0.25 0.99 0.16 1.21 0.28 1.00 0.4 0.7 0.11 1.07 0.26 0.96 0.09 1.14 0.32 1.00 0.4 0.8 0.35 1.06 0.41 0.98 0.34 1.14 0.42 1.00 0.5 0.6 0.33 1.09 0.27 0.99 0.31 1.12 0.24 1.00 0.5 0.7 0.26 1.16 0.35 0.99 0.23 1.23 0.31 1.00 0.5 0.8 0.44 1.13 0.44 0.99 0.43 1.21 0.45 1.00 0.6 0.6 0.33 1.17 0.37 0.99 0.32 1.21 0.33 1.00 0.6 0.7 0.18 1.13 0.35 0.99 0.15 1.18 0.35 1.00 0.6 0.8 0.46 1.09 0.50 0.98 0.43 1.16 0.49 1.00 Table 1: Relative bias (RB %) and Relative efficiency (RE) of four imputed estimators of the total with an average response probability of 50%

We now consider the estimation of the population distribution function, for which the simulation results are presented in Table 2. In all cases, the two proposed imputation methods MRR φ and BMRR φ lead to approximately unbiased estimators of the distribution function, with absolute relative biases no greater than 2 % . On the contrary, the RR φ and the BRR φ imputation methods lead to biased estimators, and the absolute relative bias can be as large as 14 % . We note that the bias is larger for the lower quantiles.

Turning to the relative efficiency, we note that MRR φ and BMRR φ always outperform RR φ and BRR φ , which is partly due to the bias under these latter imputation methods. Comparing the two proposed imputation methods, we note that BMRR φ is systematically better than MRR φ in terms of efficiency, with values of RE ranging from 1.08 to 1.32 for MRR φ .

We also conducted additional simulations to evaluate the influence of the

RR φ BRR φ MRR φ BMRR φ RB % RE RB % RE RB % RE RB % RE R 2 φ
50% quartile 0.4 0.6 -6.58 2.29 -6.62 2.12 0.07 1.27 -0.03 1.00 0.4 0.7 -12.03 4.37 -12.23 4.36 0.90 1.24 0.76 1.00 0.4 0.8 -14.07 6.40 -14.17 6.47 0.39 1.20 0.48 1.00 0.5 0.6 -6.78 2.22 -6.71 2.11 -0.07 1.17 0.00 1.00 0.5 0.7 -12.14 4.35 -12.26 4.26 1.01 1.26 0.95 1.00 0.5 0.8 -12.97 6.38 -12.94 6.24 0.64 1.32 0.79 1.00 0.6 0.6 -6.71 2.40 -6.75 2.20 0.15 1.26 0.26 1.00 0.6 0.7 -12.06 4.58 -12.26 4.59 0.98 1.23 0.66 1.00 0.6 0.8 -11.37 5.37 -11.33 5.27 1.05 1.24 1.08 1.00 R 2 φ 75% quartile 0.4 0.6 6.80 4.13 6.83 4.15 1.45 1.18 1.31 1.00 0.4 0.7 8.12 5.17 8.10 5.16 1.39 1.18 1.34 1.00 0.4 0.8 8.07 5.64 8.06 5.63 0.60 1.23 0.72 1.00 0.5 0.6 6.46 3.93 6.47 3.91 1.28 1.21 1.42 1.00 0.5 0.7 7.61 4.81 7.61 4.81 1.27 1.18 1.34 1.00 0.5 0.8 7.63 4.95 7.64 4.95 0.77 1.21 0.79 1.00 0.6 0.6 6.12 3.68 6.12 3.64 1.39 1.21 1.52 1.00 0.6 0.7 7.38 4.52 7.36 4.50 1.51 1.22 1.53 1.00 0.6 0.8 7.14 4.49 7.15 4.48 0.80 1.17 0.86 1.00 R 2 φ 90% quartile 0.4 0.6 3.27 2.86 3.27 2.85 0.80 1.19 0.72 1.00 0.4 0.7 3.55 2.89 3.55 2.89 0.98 1.08 0.91 1.00 0.4 0.8 3.46 3.37 3.46 3.37 0.60 1.15 0.55 1.00 0.5 0.6 3.10 2.64 3.10 2.63 0.74 1.21 0.79 1.00 0.5 0.7 3.54 2.93 3.53 2.92 1.04 1.08 1.08 1.00 0.5 0.8 3.43 3.43 3.43 3.43 0.69 1.18 0.64 1.00 0.6 0.6 3.19 2.47 3.19 2.46 1.02 1.14 1.03 1.00 0.6 0.7 3.39 2.87 3.39 2.86 1.08 1.16 1.06 1.00 0.6 0.8 3.26 3.16 3.26 3.16 0.61 1.14 0.66 1.00 Table 2: Relative bias (RB %) and Relative efficiency (RE) of four imputed estimators of the distribution function evaluated at the 50%, 75% and 90% quartiles with an average response probability of 50% specific distribution used to simulate the random residuals in the imputation model. More precisely, we generated the variable of interest according to the mixture model presented in (6.1), but with the residuals ǫ i 's generated either (a) from a gamma distribution or (b) from a log-normal distribution with variance σ 2 . The simulation results are presented in the Supplementary Material. We observed no qualitative difference as compared to normally distributed residuals.

Properties of variance estimators

We now consider the properties of the variance estimators proposed in Section 5. Under the rejective sampling design used in the simulation study, we replace the component V1 ( tyI ) given in (5.3) with the Hajek-Rosen variance estimator VHR,1 ( tyI

) = n n -1 i∈s (1 -π i )( ξi -R) 2 with R = i∈s (1 -π i ) ξi i∈s (1 -π i )
, (6.5) see also [START_REF] Chauvet | Exact balanced random imputation for sample survey data[END_REF]. This leads to the simplified variance estimator ṼBMRR ( tyI ) = VHR,1 ( tyI ) + V2 ( tyI ), (6.6)

for the proposed balanced imputation procedure BMRR φ , and to the simplified variance estimator ṼMRR ( tyI ) = ṼBMRR ( tyI ) + V3 ( tyI ), (6.7)

for the proposed random imputation procedure MRR φ .

We computed the Monte-Carlo percent relative bias of these two variance estimators, using an independent simulation-based approximation of the true mean square error of tyI based on 10, 000 simulations. We also computed the coverage rates of the associated normality-based confidence intervals, with nominal error rate of 2.5% in each tail. We only consider the two cases when the average proportion of respondents is 0.50 and 0.70. We first consider the results for BMRR φ , which are presented in Table 3. In all cases, the variance estimator ṼBMRR ( tyI ) has a small bias, no greater than 6 % . The variance estimator is slightly negatively biased with p = 0.50. This is likely due to the fact that the imputation variance is not completely eliminated with the proposed balanced imputation procedure, due to the landing phase of the cube method. The coverage rates are approximately respected in any case.

We now turn to MRR φ , for which the simulation results are presented in 

Application

We apply the proposed imputation methods on data modelled from the Monthly Retail Trade Survey [START_REF] Mulry | Detecting and treating verified influential values in a monthly retail trade survey[END_REF][START_REF] Boistard | Doubly robust inference for the distribution function in the presence of missing survey data[END_REF][START_REF] Chauvet | Exact balanced random imputation for sample survey data[END_REF], which have been created to reproduce as closely as possible the original survey data. We consider the variable giving the sales Population 1 φ = 0.6 φ = 0.7 φ = 0.8 p = 0.5 p = 0.7 p = 0.5 p = 0.7 p = 0.5 p = 0.7 RB (% ) -5.6 Population 1 φ = 0.6 φ = 0.7 φ = 0.8 p = 0.5 p = 0.7 p = 0.5 p = 0.7 p = 0.5 p = 0.7 RB (% ) -2.1 6. 

i = y 0i 1(i ∈ d),
and we are interested in estimating the total and the distribution function of this variable. This case occurs when we are interested in domain estimation, and when the domain itself is not known for all sampled units due to nonresponse. For imputation purpose, we use as auxiliary variables a measure of size (z 1i ), the prior month sales (z 2i ) and the prior month inventories (z 3i ).

The survey data arise from a stratified simple random sampling design with 6 strata U h , h = 1, . . . , 6. In this application, we leave apart the take-all stratum, which leads to five strata with sizes N h ranging from 463 to 9 993, and with sample sizes n h ranging from 57 to 145. The number of responding units per stratum n rh varies from 44 to 75. We suppose that the response mechanism is Missing At Random (MAR), and is explained by the strata indicators. In other words, we suppose that the response mechanism is uniform within each stratum.

The variable y i suffers from item non-response. We use an imputation model similar to that in [START_REF] Boistard | Doubly robust inference for the distribution function in the presence of missing survey data[END_REF], but adapted to cover zero-inflated variables. More precisely, we suppose that each stratum U h is partitioned into G h imputation cells, obtained by ranking the units with respect to z 1i .

The imputation model is

y i = η i {β hg + ǫ i } (7.1)
The results are shown in 

Conclusion

In this paper, we considered imputation for zero-inflated data. We proposed two imputation methods which enable to respect the nature of the data, and which preserve the finite population distribution function. In particular, we proposed a balanced imputation method which enables to preserve the distribution of the imputed variable while being fully efficient for the estimation of a total.

Our imputation methods rely upon the mixture regression imputation model proposed by [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF]. As mentioned by these authors, the proposed methods could be extended to more general mixture regression models, for example to handle count data.

In practice, we may not be interested in the distribution function in itself, but

A Proof of Proposition 1

Lemma 1. We have E Ĝr -G 2 = O(n -1 ).

Proof. We can write Ĝr -G = Ĝr -Gr + Gr -G , where

Gr = 1 N i∈s ω i r i φ i v -1 i z i z ⊤ i . (A.1)
With a proof similar to that of Lemma 2 in [START_REF] Chauvet | Exact balanced random imputation for sample survey data[END_REF],

we obtain E Gr -G 2 = O(n -1 ). Also, we obtain from the assumptions:

Ĝr

-Gr ≤ C 6 (C 9 ) 2 C 11 C 7 γr -γ , (A.2)
so that the result follows from Assumption (H6).

We can write Bar -β = T 1 -T 2 + T 3 , where

T 1 = Ĝ-1 ar 1 N i∈s ω i r i v -1 i z i (y i -φ i z ⊤ i β) , T 2 = Ĝ-1 ar 1 N i∈s ω i r i v -1 i ( φi -φ i )z i z ⊤ i β, (A.3) T 3 = Ĝ-1 ar ( Ĝr -Ĝar )1( Ĝar = Ĝr ) β.
We have

T 1 2 ≤ a -2 N 2 i,j∈S r i r j ω i ω j v -1 i v -1 j z ⊤ i z j (y i -φ i z ⊤ i β)(y j -z ⊤ j β). (A.4)
Since the sampling design is non-informative and the response mechanism is

N -1 ( tyI -t y ) = T 6 + T 7 + T 8 + T 9 , with T 6 = N -1 i∈s d i (1 -r i )(y * i -φi z ⊤ i Bar ), T 7 = N -1 i∈s d i (1 -r i ) φi z ⊤ i ( Bar -β), T 8 = N -1 i∈s d i (1 -r i )( φi -φ i )z ⊤ i β, T 9 = N -1 i∈s d i (1 -r i )(φ i z ⊤ i β -y i ).
It readily follows from the assumptions, equation (??) and Proposition 1, that E(T 2 7 ) = o(1) and E(T 2 8 ) = o(1). Also, since E m (T 9 ) = 0, we obtain

E(T 2 9 ) = EV m (T 9 ) = E N -2 i∈s d 2 i (1 -r i ) σ 2 φ i v i + φ i (1 -φ i )(z ⊤ i β) 2 ,
which is O(n -1 ). Therefore, we only need to focus on T 6 , for which we have

E I (T 2 6 ) = N -1 i∈s d i (1 -r i ) φi √ v i 2 (ē r ) 2 + N -2 i∈s d 2 i (1 -r i ) φi (1 -φi )(z ⊤ i Bar + √ v i ēr ) 2 + φi v i σ 2 er .
From Proposition 1 and Lemma 2, we obtain E(T 2 6 ) = O(n -1 ).

C Proof of Proposition 3

From the assumptions, we have E FN 

(t) -F N (t) 2 = O(n -1 )
T 10 = N -1 i∈s d i (1 -r i ) {1(y * i ≤ t) -1(y * * i ≤ t)} , (C.1) T 11 = N -1 i∈s d i (1 -r i ) {1(y * * i ≤ t) -1(ŷ i ≤ t)} , (C.2) T 12 = N -1 i∈s d i (1 -r i ) {1(ŷ i ≤ t) -1(y i ≤ t)} . (C.3)
The values y * * i and ŷi are obtained as follows. We take

ŷi = η i z ⊤ i β + √ v i ǫi , (C.4)
where ǫi is selected with-replacement from the set E ′ r = {ǫ j ; r j = 1 and η j = 1}.

We note j(i) the donor selected for unit i, so that ǫi = ǫ j(i) . Also, we take

y * * i = η i z ⊤ i Bar + √ v i e g(i) = η i z ⊤ i Bar + √ v i ǫ * i . (C.5)
We consider the term T 10 first. We can write 1(y * i ≤ t) -1(y * * i ≤ t) = (η * i -η i ){1(ε * i ≤ ti ) -1(t ≥ 0)}, (C.6) with ti = v -1/2 i (t -z ⊤ i Bar . This leads to (T 10 ) 2 = T 10,1 + T 10,2 , with

T 10,1 = N -2 i∈s d 2 i (1 -r i )(η * i -η i ) 2 {1(ε * i ≤ ti ) -1(t ≥ 0)} 2 , T 10,2 = N -2 i =j∈s d i (1 -r i )d j (1 -r j )(η * i -η i )(η * j -η j ) × {1(ε * i ≤ ti ) -1(t ≥ 0)}{1(ε * j ≤ tj ) -1(t ≥ 0)}.
From the assumptions, T 10,1 = O(n -1 ). Also, since η * i , η * j , ε * i and ε * j are independent with respect to the imputation mechanism, we obtain successively

E I (T 10,2 ) = N -2 i =j∈s d i (1 -r i )d j (1 -r j )( φi -η i )( φj -η j ) ×
{ Fεr ( ti ) -1(t ≥ 0)}{ Fεr ( tj ) -1(t ≥ 0) E m {E I (T 10,2 )|ε j , j ∈ s; η g , g ∈ S r } = N -2 i =j∈s

d i (1 -r i )d j (1 -r j )( φi -φ i )( φj -φ j ) × { Fεr ( ti ) -1(t ≥ 0)}{ Fεr ( tj ) -1(t ≥ 0)},
where Fεr (t) = j∈s ωj r j η j 1(e j ≤ t). This leads to

E(T 10,2 ) ≤ C 11 C 1 2 E γr -γ 2 = o(1).
Consequently, E(T 2 10 ) = o(1).

We now consider T 11 , that we can write as

T 11 = N -1 i∈s d i (1 -r i )η i {1(ε * i ≤ ti ) -1(ε i ≤ t i )} with t i = v -1/2 i (t -z ⊤ i β, which leads to E I (|T 11 |) ≤ N -1 i∈s d i (1 -r i )η i j∈s ωj r j η j | 1(e j ≤ ti ) -1(ε j ≤ t i ) | ≤ N -1 i∈s d i (1 -r i )η i j∈s ωj r j η j | 1(ε j ≤ t ij ) -1(ε j ≤ t i ) |≡ T ′ 11 , with t ij = t i + z j √ v j - z i √ v i ⊤ ( Bar -β).
Let us take some constant ν > 0. Since the distribution function F ε is absolutely continuous, there exists some τ ν such that

|t -u| ≤ τ ν ⇒ |F ε (t) -F ε (u)| ≤ ν
We note 1 A = 1 Bar -β ≥ 0.25τ ν √ C 7 /C 9 , and 1 B = 1 -1 A . We have Finally, we now consider T 12 that we can write as

T 12 = N -1 i∈s d i (1 -r i )η i {1(ε i ≤ t i ) -1(ε i ≤ t i )} .
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This successively leads to

T 12 = N -1 i∈s d i (1 -r i )η i {1(ε i ≤ t i ) -1(ε i ≤ t i )} , (C.7) E I (T 12 ) = N -1 i∈s d i (1 -r i )η i j∈s ωj r j η j {1(ε j ≤ t i ) -1(ε i ≤ t i )} , E m {E I (T 12 )|η i , i ∈ s} = N -1 i∈s d i (1 -r i )η i j∈s ωj r j η j {F ε (t i ) -1(F ε (t i )} = 0,
and E(T 12 ) = 0, gives E{(T 12 ) 2 } = E p E q E m V I (T 12 ) + E p E q V m E I (T 12 ). (C.8)

We have V I (T 12 ) ≤ C -1 1 n -1 , so that the first term in the r.h.s. of (C. 

d i (1 -r i )η i 1(ε j ≤ t i ) -N -1 i∈s d i (1 -r i )η i 1(ε i ≤ t i ),
we obtain

V m {E I (T 12 )|η i , i ∈ s} = N -2 j∈s ω2 j r j η j V m { i∈s d i (1 -r i )η i 1(ε j ≤ t i )|η i , i ∈ s} + N -2 i∈s d 2 i (1 -r i )η i F ε (t i ){1 -F ε (t i )} = N -2 ( i∈s d i ) 2 j∈s ω2 j r j η j V m i∈s d i (1 -r i )η i 1(ε j ≤ t i ) i∈s d i η i , i ∈ s + N -2 i∈s d 2 i (1 -r i )η i F ε (t i ){1 -F ε (t i )} ≤ N -2 ( i∈s d i ) 2 j∈s ω2 j η j r j + N -2 i∈s d 2 i . ≤ j∈s ω2 j η j r j + n -1 C 2 1 . (C.10)
From the proof of Lemma 2, we have E( j∈s ω2 j η j r j ) = O(n -1 ). From (C.9) and (C.10), we obtain that the second term in the r.h.s. of (C.8) is O(n -1 ).

Consequently, E(T 2 12 ) = O(n -1 ). This completes the proof.

  Firstly, it leads to an additional imputation variance due to the η * i 's. To overcome this problem, Haziza et al. (2014) proposed a balanced version of their imputation mechanism that is presented in Section 3.2. Secondly, the imputation mechanism in (3.1) does not lead to an approximately unbiased estimator of the distribution function, as will be illustrated in the simulation study conducted in Section 5. Finally, the consistency of the imputed estimator tyI relies on an assumption of mean square consistency for Br , which may be difficult to prove since the matrix Ĝr can be close to similarity for some samples. Following Cardot et al. (2013) and Chauvet and Do Paco (2018), we introduce in Sections 3.3 and 3.4 a regularized version of Br .

  ωj r j η j e j and σ 2 er = j∈s ωj r j η j (e j -ēr ) 2 . (3.8) The regularized version of Br is obtained by following the approach in Cardot et al. (2013) and Chauvet and Do Paco (2018). We first write Ĝr = p j=1 α jr v jr v ⊤ jr , (3.9) with α jr ≥ . . . ≥ α pr the non-negative eigenvalues of Ĝr , and where v 1r , . . . , v pr are the associated orthonormal vectors. For some given a > 0, the regularized versions of Ĝr and Br are Ĝar = p j=1 max(α jr , a)v jr v ⊤ jr and Bar = Ĝ-1

  e. the variable of interest is not degenerate. The assumption (H4) is related to the imputation weights, and is similar to assumption (H1). The assumption (H5) is related to the imputation model, and is necessary to control the behaviour of the regularized estimator Bar ; see[START_REF] Cardot | Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data[END_REF] and[START_REF] Chauvet | Exact balanced random imputation for sample survey data[END_REF]. It is assumed in (H6) that the estimator γr is √ n meansquare consistent for the parameter γ. This assumption is somewhat strong, but is needed to obtain the standard rate of convergence for the imputed estimator of the total. It is assumed in (H7) that f (•, •) is Lipschitz-Continuous in its second component. The assumptions (H5) and (H6) are also considered in[START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF].Proposition 1. Suppose that the imputation model in (2.6) holds and that the assumptions (H1)-(H7) are satisfied. Then we haveE Bar -β 2 = O(n -1). (4.2) Proposition 2. Suppose that the imputation model in (2.6) holds and that the assumptions (H1)-(H7) are satisfied. Then under the random imputation mechanism proposed in Section 3.3, we have E N -1 ( tyI -t y ) Suppose that the imputation model in (2.6) holds and that the assumptions (H1)-(H7) are satisfied. Also, suppose that the distribution function F ǫ is absolutely continuous. Then under the random imputation mechanism proposed in Section 3.3, we have for any t ∈ R E FI (t) -F N (t) 2 = o(1).

  .2) and different values for the parameters b 0 , . . . , b 4 , chosen so that the proportion of non-null values is approximately equal to 0.60, 0.70, or 0.80. The three different proportion of non-null values, crossed with the three different levels for the R 2 , lead to the nine finite populations.

  tion function F N (t) with t = t α , the α-th quantile. In this simulation study, we consider the values α = 0.50, 0.75 and 0.90. We compare four imputation methods to handle non-response: (i) random imputation (RR φ ) proposed by[START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF], and presented in Section 3.1; (ii) balanced random imputation (BRR φ ) proposed by[START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF], and presented in Section 3.2; (iii) proposed random imputation method (MRR φ ), presented in Section 3.3; (iv) proposed balanced random imputation method (BMRR φ ), presented in Section 3.4. For each of the four methods, we use imputation weights ω i = 1, and the φ i 's and p i 's are estimated by means of logistic regression modeling. In each sample, missing values are replaced by imputed values according to imputation methods (i) to (iv), and the imputed estimators tyI and FI (t α ) are computed.

  A)} ≤ (C 1 ) -1 E{1(A)}, which is o(1) from Proposition 1 and the Chebyshev inequality. Also, we haveT ′ 11 1(B) ≤ N -1 i∈s d i (1 -r i )η i j∈s ωj r j η j 1 t i -τ ν 2 ≤ ε j ≤ t i + τ ν 2 .This leads to E m {T ′ 11 1(B)} ≤ (C 1 ) -1 ν, and since ν is arbitrary small, E{T ′ 11 1(B)} = o(1). Consequently, E(|T 11 |) = o(1).

  8) isO(n -1 ). From the third line in equation (C.7), we obtainV m {E I (T 12 )} = E m V m {E I (T 12 )|η i , i ∈ s}, (C.9)and from the rewritingE I (T 12 ) = N -1 j∈s ωj r j η j i∈s

Table 4

 4 

	. The variance estimator ṼMRR ( tyI ) is approximately unbiased with
	p = 0.50, but is slightly positively biased with p = 0.70. The coverage rates
	are approximately respected in all cases.

Table 3 :

 3 Monte-Carlo percent relative bias of the variance estimator and coverage rate for the proposed balanced imputation procedure BMRR φ

			5.1	-5.4	2.1	-4.7	3.2
	Cov. Rate	93.4	95.3	93.8	95.3	93.5	95.7
		φ = 0.6	Population 2 φ = 0.7	φ = 0.8
		p = 0.5 p = 0.7 p = 0.5 p = 0.7 p = 0.5 p = 0.7
	RB (% )	-4.5	5.3	-3.7	3.2	-3.6	2.7
	Cov. Rate	93.4	95.8	93.0	95.3	93.6	95.9
		φ = 0.6	Population 3 φ = 0.7	φ = 0.8
		p = 0.5 p = 0.7 p = 0.5 p = 0.7 p = 0.5 p = 0.7
	RB (% )	-4.7	4.8	-4.0	2.2	-4.3	2.8
	Cov. Rate	93.6	95.5	93.5	95.3	93.1	95.9

Table 4 :

 4 Monte-Carlo percent relative bias of the variance estimator and coverage rate for the proposed random imputation procedure MRR φ (y 0i ). We create in the dataset a domain indicator, equal to 1 if the unit is in the domain and to 0 otherwise. The variable of interest is y

			5	-2.2	4.6	-1.2	5.0
	Cov. Rate	93.5	95.1	94.3	96.2	93.7	96.2
		φ = 0.6	Population 2 φ = 0.7	φ = 0.8
		p = 0.5 p = 0.7 p = 0.5 p = 0.7 p = 0.5 p = 0.7
	RB (% )	-1.6	7.2	-3.6	4.4	-0.3	4.0
	Cov. Rate	94.2	94.8	93.6	95.9	92.7	96.2
		φ = 0.6	Population 3 φ = 0.7	φ = 0.8
		p = 0.5 p = 0.7 p = 0.5 p = 0.7 p = 0.5 p = 0.7
	RB (% )	-1.5	7.0	-1.3	5.5	0.1	3.5
	Cov. Rate	94.1	95.8	94.6	95.2	93.7	95.8

Table 5 .

 5 From the imputed data set, both impu-

	tation methods give similar results in terms of point estimation. Turning to
	relative efficiency, we note that the proposed exact balanced random impu-
	tation procedure yields more efficient estimations, with values of re ranging
	from 0.87 to 0.94.		
		tyI	FyI (t) with t(×1, 000)	
		(×10 9 )	300 700 1,000 2,000 5,000 8,000 10,000
	EBRI	29.94	0.38 0.51 0.60 0.75 0.94 0.98	0.99
	BRI	30.44	0.37 0.50 0.60 0.74 0.94 0.98	0.99
	re	0.91	0.88 0.88 0.89 0.87 0.94 0.92	0.92

Table 5 :

 5 Imputed estimator of the total and of the distribution function, and estimated related efficiency with two imputation methods

  T 10 + T 11 + T 12 , where

	FN (t) =			
				, so that it
	is sufficient to prove that E	FI (t) -FN (t)	2	= o(1). We have hatF I (t) -
		40		

for any unit i belonging to the cell g in stratum U h . This is a particular case of the imputation model given in (7.1), using for each stratum U h as auxiliary information z i the set of cell indicators.

We perform the imputation methods presented in Sections 3.3 and 3.4, using equal imputation weights ω i . For any non-responding unit i, we obtain the estimated probability φi through a logistic regression on the set

auxiliary variables. Inside each stratum U h , the estimator Barh of β h is obtained from equation (3.10), with z i the vector of cell indicators. We used a = 0.05, and in this case no regularization was needed.

The imputed values are then obtained from equation (3.5) for the proposed random imputation procedure, and from equation (3.11) for the proposed balanced random imputation procedure.

For each of the two imputation methods, we computed the imputed estimator of the total tyI and the imputed estimator of the distribution function FI (t) for several values of t. We also computed a with-replacement bootstrap variance estimator for the imputed estimators, see [START_REF] Boistard | Doubly robust inference for the distribution function in the presence of missing survey data[END_REF] and [START_REF] Chauvet | Exact balanced random imputation for sample survey data[END_REF]. The bootstrap is performed as if the samples were selected with replacement, which is reasonable in view of the small sampling rates inside strata. To compare the efficiency of the imputed estimators, we compute

rather in complex parameters such as quantiles. Establishing the theoretical properties of estimators of such parameters under the proposed imputation procedures is a challenging task, and is currently under investigation.

unconfounded, we can write

) and

and from the assumptions we obtain E( T 1 2 ) = O(n -1 ). Also, we have

and from Assumption (H6) we obtain E( T 2 2 ) = O(n -1 ). Finally, since Ĝr -Ĝar 2 ≤ a 2 , we have From Lemma 1, we have E( T 3 2 ) = O(n -1 ), which completes the proof.

B Proof of Proposition 2

Lemma 2. We have

Proof. We consider equation (B.1) only. The proof of equation (B.2) is similar. We can rewrite ēr = T 4 -T 5 , with

3)

It follows from the assumptions and from Proposition 1 that E(T 2 5 ) = O(n -1 ).

We can rewrite E(T 2 4 ) = σ 2 E(T ′ 4 ), with T ′ 4 = j∈s ω2 j η j r j . We note X = j∈s ω j r j η j , and m X = j∈s ω j p j φ j . We can write T ′ 4 = T ′ 41 + T ′ 42 , where

From the assumptions, we have

which leads to E(T ′ 41 ) = o(n -1 ). Also, since T ′ 4 ≤ 1, we have T ′ 42 ≤ 1(X ≤ m X /2) and by using the Chebyshev inequality we obtain

which leads to E(T ′ 42 ) = o(n -1 ).

From the assumptions, we have E N -1 ( tyπ -t y ) 2 = O(n -1 ), so that it is sufficient to prove that E N -1 ( tyItyπ )

2

= O(n -1 ). We have