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Abstract

Item non-response in surveys is usually handled by single imputation,

whose main objective is to reduce the non-response bias. Imputation

methods need to be adapted to the study variable. For instance, in

business surveys, the interest variables often contain a large number of

zeros. Motivated by a mixture regression model, we propose two impu-

tation procedures for such data and study their statistical properties.

We show that these procedures preserve the distribution function if the

imputation model is well specified. The results of a simulation study

illustrate the good performance of the proposed methods in terms of

bias and mean square error.
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1 Introduction

Item non-response may affect the quality of the estimates when the respon-

dents and the non-respondents exhibit different characteristics with respect

to the variables of interest. Item non-response in surveys is usually handled

by single imputation, whose main objective is to reduce the non-response

bias. The imputation model approach (IM) is commonly used to treat item

non-response. It consists in modeling the relationship between the variable

of interest and the available auxiliary variables. Single imputation consists

of replacing a missing value with an artificial one, obtained by mimicking

the imputation model. It leads to a single imputed data set, constructed so

that it is possible to apply complete data estimation procedures for obtaining

point estimates. The response indicators are therefore not required.

Imputation methods need to be adapted to the study variable. For instance,

in business surveys, the interest variables often contain a large number of

zeros. In the Capital Expenditure Survey conducted at Statistics Canada,

approximately 70% of businesses reported a value of zero to Capital Machin-

ery and 50% reported a value of zero to Capital Construction (Haziza et al.,

2014). In case of some interest variable containing a large amount of zeroes,

Haziza et al. (2014) propose imputation methods based on a mixture regres-

sion model. They prove that these methods lead to doubly robust estimators

of the population mean, i.e. the imputed estimator of the mean is consistent

whether the interest variable or the non-response mechanism is adequately

modeled. However, these methods are not appropriate when estimating more
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complex parameters such as the population distribution function.

In this work, we consider estimating the population distribution function in

case of imputation for zero inflated data. We use the IM approach, without

explicit assumptions on the non-response mechanism for the interest vari-

able. We propose a random imputation method which leads to a consistent

estimator of the total and of the distribution function. As recalled in Haziza

et al. (2014), random imputation methods usually suffer from an additional

variability due to the imputation variance. Therefore, we also propose a

balanced version of our method, which enables to reduce the imputation

variance. Roughly speaking, it consists of randomly generating the imputed

values while satisfying appropriate balancing constraints, by using an adap-

tation of the Cube algorithm (Deville and Tillé, 2004; Chauvet et al., 2011).

The paper is organized as follows. In Section 2, we describe the theoretical

set-up and the notation used in the paper. In Section 3, we briefly recall the

two imputation procedures proposed by Haziza et al. (2014), and introduce

our two proposed imputation methods. In Section 4, we prove that the

proposed random imputation procedure yields a consistent estimator of the

total and of the distribution function. Variance estimation for the imputed

estimator of the total is discussed in Section 5. The results of a simulation

study comparing the four procedures and evaluating the proposed variance

estimator are presented in Section 6. We conclude in Section 7. All the

proofs are given in the Appendix. Some additional simulation results are

available in the Supplementary Material.
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2 Theoretical set-up

We are interested in some finite population U of size N , with some variable

of interest y taking the value yi for unit i ∈ U . We note yU = (y1, . . . , yN)
⊤

for the vector of values for the variable y. We are interested in estimating

the total ty =
∑

i∈U yi, and the finite population distribution function

FN(t) =
1

N

∑

i∈U

1(yi ≤ t) (2.1)

where 1(·) is the indicator function.

A sample s of size n is selected according to a sampling design p(.), with πi

the first-order inclusion probability in the sample for unit i. We suppose that

πi > 0 for any unit i ∈ U , and we note di = π−1
i the design weight. We note

δU = (δ1, . . . , δN)
⊤ for the vector of sample membership indicators. In case

of full response, a complete data estimator of ty is the expansion estimator

or Horvitz-Thompson (1952) estimator

t̂yπ =
∑

i∈s

diyi. (2.2)

This estimator is design-unbiased for ty, in the sense that Ep(t̂yπ) = ty with

Ep the expectation under the sampling design p(.), conditionally on yU . We

note Vp the expectation under the sampling design p(.). Concerning the pop-

ulation distribution function FN , plugging into (2.1) the expansion estimators
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of the involved totals yields the plug-in estimator

F̂N (t) =
1

N̂π

∑

i∈s

di1(yi ≤ t) with N̂π =
∑

i∈s

di. (2.3)

Under some mild assumptions on the variable of interest and the sampling

design (see Deville, 1999; Cardot et al., 2010), F̂N(t) is approximately unbi-

ased and mean-square consistent for FN(t).

We now turn to the case when the variable of interest y is subject to miss-

ingness. Let ri be the response indicator, such that ri = 1 if unit i responded

to item y, and ri = 0 otherwise. Let pi be the response probability of some

unit i. We note rU = (r1, . . . , rN)
⊤ for the vector of response indicators. We

assume that each unit responds independently of one another. Let Eq and

Vq denote the expectation and variance under the non-response mechanism,

conditionally on the vector yU of population values and on the vector δU of

sample membership indicators. An imputation mechanism is used to replace

some missing value yi by an artificial value y∗i . An imputed estimator for ty

based on observed and imputed values is

t̂yI =
∑

i∈s

diriyi +
∑

i∈s

di(1− ri)y
∗
i . (2.4)

Similarly, an imputed estimator of the distribution function based on ob-

served and imputed values is

F̂I(t) =
1

N̂π

{

∑

i∈s

diri1(yi ≤ t) +
∑

i∈s

di(1− ri)1(y
∗
i ≤ t)

}

. (2.5)
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In comparison with the estimators obtained in (2.2) and (2.3) with complete

data, there are two additional random mechanisms involved in the estimators

given in (2.4) and (2.5). First, the non-response mechanism leads to observe

the values of y for a part of s only. Then, the imputation mechanism is used

to replace missing yi’s with artificial values.

The imputation mechanism is motivated by an imputation model, which is a

set of assumptions on the variable y subject to missingness. In the context of

a zero-inflated variable of interest, we consider the mixture regression model

introduced in Haziza et al. (2014). Namely, we assume that

yi = ηi
{

z⊤i β +
√
viǫi
}

, (2.6)

where the ηi’s are independent Bernoulli random variables equal to 1 with

probability φi, and equal to 0 otherwise; the ǫi’s are independent and identi-

cally distributed random variables of mean 0, variance σ2, and with a common

distribution function Fǫ; the parameters β and σ are unknown, and vi is a

known constant. The vector of auxiliary variables zi is assumed to be known

on the whole sample including non-respondents. To sum up, according to

the imputation model (2.6) the variable yi follows a regression model with a

probability φi, and is equal to 0 otherwise. Let Em et Vm denote respectively

the expectation and variance under the imputation model. We suppose that

the sampling design is non-informative, in the sample that the vector δU

of sample membership indicators is independent of ǫU = (ǫ1, . . . , ǫN)
⊤ and

ηU = (ǫ1, . . . , ǫN )
⊤, conditionally on a set of design variables.
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In practice, the φi’s are unknown and need to be estimated. We assume that

they may be parametrically modeled as

φi = f(ui, γ) (2.7)

where f is a known function, ui is a vector of variables recorded for all

sampled units, and γ is an unknown parameter. An estimator of φi is

φ̂i = f(ui, γ̂r) (2.8)

with γ̂r an estimator of γ computed on the responding units. We assume

that ηi and ǫi are independent, conditionally on the vectors zi and ui.

In this paper, we use the Imputation Model (IM) approach where the infer-

ence is made with respect to the imputation model, the sampling design, the

response mechanism and the imputation mechanism. This does not require

an explicit modeling of the non-response mechanism unlike the Non-response

Model approach (Haziza, 1999), but we assume that the data are missing at

random, which means that model (2.6) holds for both the respondents and

the non-respondents. We note EI and VI the expectation and variance under

the imputation mechanism, conditionally on the vectors yU , δU and rU .
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3 Imputation methods

In this Section, we first briefly recall in Sections 3.1 and 3.2 the random

imputation methods proposed by Haziza et al. (2014) for zero-inflated data.

We then introduce the new methods that we propose in Sections 3.3 and 3.4.

3.1 Haziza-Nambeu-Chauvet random imputation

A first proposal of Haziza et al. (2014) is to use the imputation mechanism

y∗i = η∗i

{

z⊤i B̂r

}

, (3.1)

where the unknown regression parameter β is estimated by

B̂r = Ĝ−1
r

(

1

N

∑

i∈s

ωiriv
−1
i ziyi

)

with Ĝr =
1

N

∑

i∈s

ωiriφ̂iv
−1
i ziz

⊤
i ,(3.2)

where ωi denotes a so called imputation weight, and φ̂i is given in (2.8). The

η∗i ’s are independently generated, and η∗i is equal to 1 with the probability

φ̂i, and is equal to 0 otherwise.

There are several possible choices for the imputation weights ωi. Using a

modeling of the response mechanism for the variable yi, Haziza et al. (2014)

propose to choose the imputation weights so that t̂yI is a doubly robust es-

timator for ty. This means that the imputed estimator is approximately

unbiased for ty whether the imputation model or the non-response model is

adequately specified. Haziza et al. (2014) also prove that the resulting im-
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puted estimator is consistent for ty under either approach.

The random imputation mechanism in (3.1) has three drawbacks. Firstly, it

leads to an additional imputation variance due to the η∗i ’s. To overcome this

problem, Haziza et al. (2014) proposed a balanced version of their imputa-

tion mechanism that is presented in Section 3.2. Secondly, the imputation

mechanism in (3.1) does not lead to an approximately unbiased estimator

of the distribution function, as will be illustrated in the simulation study

conducted in Section 5. Finally, the consistency of the imputed estimator

t̂yI relies on an assumption of mean square consistency for B̂r, which may

be difficult to prove since the matrix Ĝr can be close to similarity for some

samples. Following Cardot et al. (2013) and Chauvet and Do Paco (2018),

we introduce in Sections 3.3 and 3.4 a regularized version of B̂r.

3.2 Haziza-Nambeu-Chauvet balanced imputation

The balanced random imputation procedure of Haziza et al. (2014) consists

in replacing a missing value with

y∗i = η̃∗i

{

z⊤i B̂r

}

, (3.3)

where the η̃∗i ’s are not independently generated, but so that the imputa-

tion variance of t̂yI is approximately equal to zero. Indeed, the imputation

variance of t̂yI is eliminated if the η̃∗i ’s are generated so that

∑

i∈s

di(1− ri)(η̃
∗
i − φ̂i)(z

⊤
i B̂r) = 0. (3.4)
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Haziza et al. (2014) propose a procedure adapted from the Cube method

(Deville and Tillé, 2004; Chauvet and Tillé, 2006) which enables to generate

the η̃∗i ’s so that (3.4) is satisfied, at least approximately. As a result, the

imputation variance is eliminated or at least significantly reduced.

This imputation procedure is called balanced random φ-regression (BRRφ)

imputation by Haziza et al. (2014). They prove that under the BRRφ impu-

tation, an appropriate choice for the imputation weights ωi leads to a doubly

robust estimator for ty. Also, their empirical results indicate that it performs

well in reducing the imputation variance. A drawback of the BRRφ imputa-

tion mechanism is that it does not preserve the distribution function of the

imputed variable, because it does not take into account the error terms ǫi

in the imputation model (2.6). This is empirically illustrated in section 5.

To overcome this problem, two new imputation procedures are proposed in

Sections 3.3 and 3.4.

3.3 Proposed random imputation

The random imputation procedure that we propose consists in mimicking as

closely as possible the imputation model (2.6), by replacing some missing yi

with the imputed value

y∗i = η∗i

{

z⊤i B̂ar +
√
viǫ

∗
i

}

, (3.5)

where B̂ar is a regularized version of B̂r, and η∗i is a Bernoulli random variable

as defined in (3.1). The ǫ∗i ’s are selected independently and with replacement
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in the set of observed residuals

Er = {ej ; rj = 1 and ηj = 1} where ej =
yj − z⊤j B̂ar√

vj
, (3.6)

with Pr(ǫ∗i = ej) = ω̃j for any j ∈ s such that rj = 1 and ηj = 1, where

ω̃j =
ωj

∑

k∈s ωjrkηk
. (3.7)

We note

ēr =
∑

j∈s

ω̃jrjηjej and σ2
er =

∑

j∈s

ω̃jrjηj(ej − ēr)
2. (3.8)

The regularized version of B̂r is obtained by following the approach in Cardot

et al. (2013) and Chauvet and Do Paco (2018). We first write

Ĝr =

p
∑

j=1

αjrvjrv
⊤
jr, (3.9)

with αjr ≥ . . . ≥ αpr the non-negative eigenvalues of Ĝr, and where v1r, . . . , vpr

are the associated orthonormal vectors. For some given a > 0, the regularized

versions of Ĝr and B̂r are

Ĝar =

p
∑

j=1

max(αjr, a)vjrv
⊤
jr and B̂ar = Ĝ−1

ar

(

1

N

∑

i∈s

ωiriv
−1
i ziyi

)

.(3.10)

The regularization leads to a matrix Ĝar which is always invertible, and such

that ‖Ĝ−1
ar ‖ ≤ a−1 with ‖ · ‖ the spectral norm.
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We prove in Section 4 that B̂ar is a mean-square consistent estimator of β,

and that under the proposed imputation procedure the imputed estimator

of the total is mean-square consistent for ty. Also, we prove that the im-

puted estimator F̂I(t) is L1-consistent for the population distribution func-

tion. However, this imputation procedure leads to an additional variability

for t̂yI due to the imputation variance. Therefore, a balanced version of this

imputation procedure is proposed in Section 3.4.

3.4 Proposed balanced imputation

The balanced procedure consists in replacing a missing value with

y∗i = η̃∗i

{

z⊤i B̂ar +
√
viǫ̃

∗
i

}

, (3.11)

where the η̃∗i ’s and the ǫ̃∗i ’s are not independently generated, but so as to elim-

inate the imputation variance of t̂yI . A sufficient condition for this consists

in generating the residuals η̃∗i and ǫ̃∗i so that

∑

i∈s

di(1− ri)(η̃
∗
i − φ̂i)(z

⊤
i B̂

∗
r ) = 0, (3.12)

∑

i∈s

di(1− ri)η̃
∗
i

√
viǫ̃

∗
i = 0. (3.13)

This is done in a two-step procedure: first, the η̃∗i ’s are generated by means of

Algorithm 1 in Haziza et al. (2014), so that (3.12) is approximately respected;

then, the ǫ̃∗i ’s are generated by using Algorithm 1 described in Chauvet et al.

(2011), so that (3.13) is approximately respected.
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Since the balancing equations (3.12) and (3.13) are usually only approx-

imately respected, the imputation variance is not completely eliminated,

but it may be significantly reduced: see the simulation study in Section

5. Though the balanced imputation procedure is expected to provide esti-

mators with smaller variance, the asymptotic properties of these estimators

are difficult to study due to intricate dependencies introduced in the impu-

tation process. Extending the results in Section 4 is a challenging problem

for further theoretical research.

4 Properties of the proposed methods

To study the asymptotic properties of the sampling designs and estimators,

we use the asymptotic framework of Isaki and Fuller (1982). We suppose

that the population U belongs to a nested sequence {Uτ} of finite popula-

tions with increasing sizes Nτ , and that the vector of values for the variable

of interest yUτ = (y1τ , . . . , yNτ )
⊤ belongs to a nested sequence {yUτ} with

increasing sizes Nτ . For simplicity, the index τ is omitted in what follows

and all limits are computed when τ → ∞.

We consider the following regularity assumptions:

H1: Some constants C1, C2 > 0 exist, s.t. C1 ≤ Nn−1πi ≤ C2 for any i ∈ U .

H2: Some constant C3 exists, s.t. supi 6=j∈U

(

n
∣

∣

∣
1− πij

πiπj

∣

∣

∣

)

≤ C3.

H3: Some constants C4, C
′
4 > 0 exist, s.t. C4 ≤ mini∈U pi and C ′

4 ≤

mini∈U φi.
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H4: Some constants C5, C6 > 0 exist, s.t. C5 ≤ N−1nωi ≤ C6 for any i ∈ U .

H5: Some constants C7, C8, C9 > 0 exist, s.t. C7 ≤ vi ≤ C8 and ‖zi‖ ≤ C9

for any i ∈ U . Also, the matrix

G =
1

N

∑

i∈U

ωiπipiφiv
−1
i ziz

⊤
i (4.1)

is invertible, and the constant a chosen is s.t. ‖G−1‖ ≤ a−1.

H6: We have E (‖γ̂r − γ‖2) = O(n−1).

H7: Some constant C11 exists, s.t. for any vector γ̃

|f(ui, γ̃)− f(ui, γ)| ≤ C11‖γ̃ − γ‖ for all i ∈ U.

It is assumed in (H1) that the inclusion probabilities do not differ much

from that obtained under simple random sampling, so that no design weight

dominates the other. It is assumed in (H2) that the units in the population

are not far from being independently selected: this assumption is verified for

stratified simple random sampling and rejective sampling (Hájek, 1964), for

example. It is assumed in (H3) that the response probabilities are bounded

away from 0, i.e. there is no hard-core non-respondents, and that the prob-

abilities of observing a null value are also bounded away from 0, i.e. the

variable of interest is not degenerate. The assumption (H4) is related to the

imputation weights, and is similar to assumption (H1). The assumption (H5)

is related to the imputation model, and is necessary to control the behaviour

of the regularized estimator B̂ar; see Cardot et al. (2013) and Chauvet and
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Do Paco (2018). It is assumed in (H6) that the estimator γ̂r is
√
n mean-

square consistent for the parameter γ. This assumption is somewhat strong,

but is needed to obtain the standard rate of convergence for the imputed es-

timator of the total. It is assumed in (H7) that f(·, ·) is Lipschitz-Continuous

in its second component. The assumptions (H5) and (H6) are also considered

in Haziza et al. (2014).

Proposition 1. Suppose that the imputation model in (2.6) holds and that

the assumptions (H1)-(H7) are satisfied. Then we have

E
{

‖B̂ar − β‖2
}

= O(n−1). (4.2)

Proposition 2. Suppose that the imputation model in (2.6) holds and that

the assumptions (H1)-(H7) are satisfied. Then under the random imputation

mechanism proposed in Section 3.3, we have

E
[

{

N−1(t̂yI − ty)
}2
]

= O(n−1). (4.3)

Proposition 3. Suppose that the imputation model in (2.6) holds and that

the assumptions (H1)-(H7) are satisfied. Also, suppose that the distribution

function Fǫ is absolutely continuous. Then under the random imputation

mechanism proposed in Section 3.3, we have for any t ∈ R

E

[

{

F̂I(t)− FN(t)
}2
]

= o(1). (4.4)
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5 Variance estimation

We now consider variance estimation for the imputed estimator of the total

t̂yI , under the proposed imputation procedures. The variance estimators

are adapted from a linearized variance estimator proposed by Kim and Rao

(2009, Section 2) for deterministic/random regression imputation. They are

obtained under a variance decomposition which makes use of the reverse

approach (Fay, 1996; Shao and Steel, 1999). For simplicity, we suppose that

the φi’s are modeled according to a logistic regression model and that the

unknown parameter β is the solution of the weighted estimated equation

∑

i∈s

ωiriui {ηi − f(ui, γ)} = 0, (5.1)

with logitf(ui, γ) = u⊤
i γ.

5.1 Balanced imputation procedure

We first consider the balanced imputation procedure proposed in Section

3.4. We do not need to account for the imputation variance, since it is

approximately eliminated for the estimation of the total with the proposed

imputation procedure. By following the approach of Kim and Rao (2009),

we obtain after some algebra the two-term variance estimator

V̂BMRR(t̂yI) = V̂1(t̂yI) + V̂2(t̂yI), (5.2)
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see equations (10) and (13) in Kim and Rao (2009). The first term in the

right-hand side of (5.2) is

V̂1(t̂yI) =
∑

i,j∈s

(

πij − πiπj

πij

)

ξ̂iξ̂j,

with ξ̂i = di(φ̂iz
⊤
i B̂ar) + ri

(

di + ωiφ̂iv
−1
i â⊤zi

)(

yi − φ̂iz
⊤
i B̂ar

)

+ riωi(b̂− ĉ)⊤ui

(

ηi − φ̂i

)

, (5.3)

with

â =

(

∑

i∈s

riωiφ̂iv
−1
i ziz

⊤
i

)−1
∑

i∈s

di(1− ri)φ̂izi,

b̂ =

(

∑

i∈s

riωiφ̂i(1− φ̂i)uiu
⊤
i

)−1
∑

i∈s

di(1− ri)φ̂i(1− φ̂i)(z
⊤
i B̂ar)ui, (5.4)

ĉ =

(

∑

i∈s

riωiφ̂i(1− φ̂i)uiu
⊤
i

)−1
∑

i∈s

ωiriv
−1
i φ̂i(1− φ̂i)(z

⊤
i â)(z

⊤
i B̂ar)ui,

and with πij the probability that units i and j are selected together in the

sample. The second term in the right-hand side of (5.2) is

V̂2(t̂yI) =
∑

i∈s

ridi

{

(1 + ωiπiv
−1
i â⊤zi)(yi − φ̂iz

⊤
i B̂ar) + ωiπi(b̂− ĉ)⊤ui(ηi − φ̂i)

}2

.(5.5)

As underlined by Kim and Rao (2009), V̂2(t̂yI) is not sensitive to a mis-

specification of the covariance structure in model (2.6).
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5.2 Random imputation procedure

We now consider the random imputation procedure proposed in Section 3.3.

We need to account to the additional variance due to the imputation process.

By following once again the approach in Kim and Rao (2009, Section 4.1),

we obtain the variance estimator

V̂MRR(t̂yI) = V̂BMRR(t̂yI) + V̂3(t̂yI), (5.6)

where V̂BMRR(t̂yI) is given in equation (5.2), and with

V̂3(t̂yI) =
∑

i∈s

d2i (1− ri)(y
∗
i − φ̂iz

⊤
i B̂ar)

2, (5.7)

with y∗i the imputed value given in equation (3.5).

6 Simulation study

To evaluate the performance of the proposed imputation methods, we im-

plement a simulation study inspired by Haziza et al. (2014). We generate

nine finite populations of size N = 10, 000 with an interest variable y and an

auxiliary variable z. The values of z are generated according to a Gamma

distribution with shift parameter 2 and scale parameter 5. The values of y

are generated according to the following mixture model:

yi = ηi(a0 + a1zi + ǫi), (6.1)
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where the ǫi’s are generated according to a standard normal distribution with

variance σ2. We use a0 = 30 and a1 = 1.5. Also, we choose three different

values of σ2 so that the coefficient of determination R2 equals 0.4, 0.5 or 0.6

for the units i such that ηi = 1.

The ηi’s are generated according to a Bernoulli distribution with parameter

φi, and

log

(

φi

1− φi

)

= b0 + b1zi, (6.2)

and with four possible values for the parameters b0 and b1, chosen so that the

proportion of non-null values is approximately equal to 0.60, 0.70, or 0.80.

The three different proportion of non-null values, crossed with the three dif-

ferent levels for the R2, lead to the nine finite populations.

In each population, we select R = 1, 000 samples by means of rejective sam-

pling (Hájek, 1964) of size n = 500, with inclusion probabilities proportional

to the variable zi. In each sample, we generate a response indicator ri for

unit i according to a Bernoulli distribution with parameter pi such that

log

(

pi
1− pi

)

= c0 + c1zi. (6.3)

We use three possible values for the parameters c0 and c1, chosen so that the

proportion of respondents is approximately equal to 0.30, 0.50 or 0.70.

19



6.1 Properties of point estimators

In this Section, we are interested in estimating the total ty, and the distribu-

tion function FN (t) with t = tα, the α-th quintile. In this simulation study,

we consider the values α = 0.50, 0.75 and 0.90. We compare four imputation

methods to handle non-response: (i) random imputation (RRφ) proposed

by Haziza et al. (2014), and presented in Section 3.1; (ii) balanced random

imputation (BRRφ) proposed by Haziza et al. (2014), and presented in Sec-

tion 3.2; (iii) proposed random imputation method (MRRφ), presented in

Section 3.3; (iv) proposed balanced random imputation method (BMRRφ),

presented in Section 3.4. For each of the four methods, we use imputation

weights ωi = 1, and the φi’s and pi’s are estimated by means of logistic re-

gression modeling. In each sample, missing values are replaced by imputed

values according to imputation methods (i) to (iv), and the imputed estima-

tors t̂yI and F̂I(tα) are computed.

As a measure of bias of an estimator θ̂I of a finite population parameter θ,

we compute the Monte Carlo percent relative bias

RBMC(θ̂I) =
100

R

R
∑

k=1

(θ̂I(k) − θ)

θ
, (6.4)

where θ̂I(k) denotes the imputed estimator computed in the k-th sample. As

a measure of relative efficiency for each imputation method, using BMRRφ
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as a benchmark, we computed

REMC(θ̂I) =
MSEMC(θ̂I)

MSEMC(θ̂BMRRφ
)

with MSEMC(θ̂I) =
1

R

R
∑

k=1

(θ̂I(k) − θ)2,

the Mean Square Error of θ̂I approximated by means of the R simulations.

We observed no qualitative difference according to the different response

rates. For brevity, we therefore only present the simulation results with an

average proportion of respondents of 0.50. The simulation results for the two

other response rates are given in the Supplementary Material.

We first consider the estimation of the total ty, for which the simulation

results are given in Table 1. The four imputation methods lead to approxi-

mately unbiased estimators of the total, as expected. Turning to the relative

efficiency (RE), we note that in all studied cases the balanced version of

an imputation method outperforms its unbalanced version. Also, the two

balanced imputation procedures exhibit similar efficiency, with BRRφ per-

forming slightly better. This is likely due to fact that the balancing equations

(3.12) and (3.13) are not exactly respected due to the landing phase of the

cube method (see Deville and Tillé, 2004).

We now consider the estimation of the population distribution function, for

which the simulation results are presented in Table 2. In all the cases con-

sidered, the two proposed imputation methods MRRφ and BMRRφ lead to

approximately unbiased estimators of the distribution function, with abso-

lute relative biases no greater than 4 % . On the contrary, the RRφ and

21



RRφ BRRφ MRRφ BMRRφ

R2 φ RB % RE RB % RE RB % RE RB % RE
0.4 0.6 1.30 1.06 1.25 0.98 1.20 1.09 1.21 1.00
0.4 0.7 0.21 1.09 0.26 0.95 0.22 1.14 0.23 1.00
0.4 0.8 0.05 1.02 0.09 0.97 0.04 1.11 0.09 1.00
0.5 0.6 1.26 1.04 1.25 0.98 1.22 1.06 1.26 1.00
0.5 0.7 0.25 1.00 0.30 0.98 0.24 1.05 0.34 1.00
0.5 0.8 0.16 1.02 0.06 0.96 0.19 1.09 0.06 1.00
0.6 0.6 1.13 1.10 1.20 0.99 1.15 1.14 1.22 1.00
0.6 0.7 0.25 1.05 0.30 0.96 0.24 1.10 0.27 1.00
0.6 0.8 -0.02 1.04 0.07 0.97 0.00 1.08 0.08 1.00

Table 1: Relative bias (RB %) and Relative efficiency (RE) of four imputed
estimators of the total with an average response probability of 50%

the BRRφ imputation methods lead to biased estimators, and the absolute

relative bias can be as large as 16 % . We note that the bias is larger for the

lower quantiles. Turning to the relative efficiency, we note that MRRφ and

BMRRφ always outperform RRφ and BRRφ, which is partly due to the bias

under these latter imputation methods. Comparing the two proposed impu-

tation methods, we note that BMRRφ is equivalent or better than MRRφ in

terms of efficiency, with values of RE ranging from 1.00 to 1.12 for MRRφ.

6.2 Properties of variance estimators

We now consider the properties of the variance estimators proposed in Section

5. Under the rejective sampling design used in the simulation study, we

replace the component V̂1(t̂yI) given in (5.3) with the Hajek-Rosen variance

estimator

V̂HR,1(t̂yI) =
n

n− 1

∑

i∈s

(1− πi)(ξ̂i − R̂)2 with R̂ =

∑

i∈s(1− πi)ξ̂i
∑

i∈s(1− πi)
, (6.5)
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RRφ BRRφ MRRφ BMRRφ

RB % RE RB % RE RB % RE RB % RE

R2 φ 50% quartile
0.4 0.6 -15.64 3.96 -15.56 3.86 -3.75 1.04 -3.84 1.00
0.4 0.7 -18.73 7.85 -18.83 7.74 -1.33 1.09 -1.31 1.00
0.4 0.8 -8.82 4.21 -8.85 4.19 -1.08 1.12 -1.15 1.00
0.5 0.6 -15.00 3.91 -14.99 3.84 -3.54 1.03 -3.66 1.00
0.5 0.7 -15.17 6.30 -15.20 6.34 -0.99 1.03 -0.99 1.00
0.5 0.8 -5.86 2.79 -5.82 2.74 -1.18 1.07 -0.83 1.00
0.6 0.6 -14.46 3.78 -14.48 3.71 -3.75 1.08 -3.89 1.00
0.6 0.7 -12.22 5.03 -12.29 5.04 -0.78 1.06 -0.76 1.00
0.6 0.8 -3.82 2.13 -3.85 2.12 -0.81 1.05 -0.75 1.00

R2 φ 75% quartile
0.4 0.6 9.81 6.19 9.81 6.20 1.82 1.03 1.80 1.00
0.4 0.7 11.93 6.53 11.94 6.53 3.06 1.02 3.07 1.00
0.4 0.8 10.59 6.83 10.57 6.80 2.25 1.09 2.10 1.00
0.5 0.6 9.14 4.87 9.13 4.86 2.33 1.05 2.35 1.00
0.5 0.7 11.23 4.75 11.25 4.76 3.86 1.03 3.83 1.00
0.5 0.8 9.52 5.28 9.54 5.30 2.58 1.07 2.61 1.00
0.6 0.6 8.55 3.81 8.59 3.81 2.81 1.01 2.89 1.00
0.6 0.7 10.60 3.55 10.57 3.53 4.51 1.01 4.55 1.00
0.6 0.8 8.60 3.85 8.58 3.84 3.09 1.05 2.97 1.00

R2 φ 90% quartile
0.4 0.6 4.82 2.46 4.80 2.45 2.33 1.00 2.32 1.00
0.4 0.7 5.26 2.46 5.27 2.46 2.75 1.01 2.80 1.00
0.4 0.8 4.87 3.03 4.87 3.03 2.08 1.00 2.06 1.00
0.5 0.6 4.52 1.94 4.54 1.94 2.65 1.02 2.63 1.00
0.5 0.7 5.00 1.93 5.00 1.93 3.14 1.03 3.13 1.00
0.5 0.8 4.53 2.40 4.53 2.40 2.36 1.03 2.34 1.00
0.6 0.6 4.32 1.60 4.32 1.60 2.90 1.01 2.89 1.00
0.6 0.7 4.85 1.58 4.84 1.57 3.45 1.00 3.47 1.00
0.6 0.8 4.23 1.89 4.22 1.89 2.60 1.02 2.58 1.00

Table 2: Relative bias (RB %) and Relative efficiency (RE) of four imputed
estimators of the distribution function evaluated at the 50%, 75% and 90%
quartiles with an average response probability of 50%
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see also Chauvet and Do Paco (2018). This leads to the simplified variance

estimator

ṼBMRR(t̂yI) = V̂HR,1(t̂yI) + V̂2(t̂yI), (6.6)

for the proposed balanced imputation procedure BMRRφ, and to the sim-

plified variance estimator

ṼMRR(t̂yI) = ṼBMRR(t̂yI) + V̂3(t̂yI), (6.7)

for the proposed random imputation procedure MRRφ.

We computed the Monte-Carlo percent relative bias of these two variance es-

timators, using an independent simulation-based approximation of the true

mean square error of t̂yI based on 10, 000 simulations. We also computed the

coverage rates of the associated normality-based confidence intervals, with

nominal error rate of 2.5% in each tail. We only consider the two cases when

the average proportion of respondents is 0.50 and 0.70. We first consider the

results for BMRRφ, which are presented in Table 3. The variance estimator

ṼBMRR(t̂yI) is approximately unbiased with p̄ = 0.50, but is slightly nega-

tively biased with p̄ = 0.70. This is likely due to the fact that the imputation

variance is not completely eliminated with the proposed balanced imputation

procedure, due to the landing phase of the cube method. The coverage rates

are approximately respected in any case, but the confidence intervals tend to

be narrow when p̄ = 0.70 which is in accordance with the variance estimator
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Population 1
φ̄ = 0.6 φ̄ = 0.7 φ̄ = 0.8

p̄ = 0.5 p̄ = 0.7 p̄ = 0.5 p̄ = 0.7 p̄ = 0.5 p̄ = 0.7
RB (% ) -2.4 -6.5 -0.8 -4.4 -2.1 -4.7
Cov. Rate 94.8 92.7 95.0 93.8 96.0 93.1

Population 2
φ̄ = 0.6 φ̄ = 0.7 φ̄ = 0.8

p̄ = 0.5 p̄ = 0.7 p̄ = 0.5 p̄ = 0.7 p̄ = 0.5 p̄ = 0.7
RB (% ) -2.1 -5.8 -0.8 -3.6 -3.9 -3.4
Cov. Rate 94.2 92.7 95.7 93.4 95.4 93.6

Population 3
φ̄ = 0.6 φ̄ = 0.7 φ̄ = 0.8

p̄ = 0.5 p̄ = 0.7 p̄ = 0.5 p̄ = 0.7 p̄ = 0.5 p̄ = 0.7
RB (% ) -2.4 -5.5 -2.0 -3.3 -1.7 -3.9
Cov. Rate 94.5 92.4 95.1 93.4 95.1 93.2

Table 3: Monte-Carlo percent relative bias of the variance estimator and
coverage rate for the proposed balanced imputation procedure BMRRφ

being negatively biased. We now turn to MRRφ, for which the simulation

results are presented in Table 4. The variance estimator ṼBMRR(t̂yI) is ap-

proximately unbiased with p̄ = 0.70, but is slightly positively biased with

p̄ = 0.50. The coverage rates are approximately respected in all cases.

7 Conclusion

In this paper, we considered imputation for zero-inflated data. We proposed

two imputation methods which enable to respect the nature of the data, and

in particular which preserve the finite population distribution function. In

particular, we proposed a balanced imputation method which enables to pre-

serve the distribution of the imputed variable while being fully efficient for

the estimation of a total.
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Population 1
φ̄ = 0.6 φ̄ = 0.7 φ̄ = 0.8

p̄ = 0.5 p̄ = 0.7 p̄ = 0.5 p̄ = 0.7 p̄ = 0.5 p̄ = 0.7
RB (% ) 4.7 1.8 7.6 3.0 5.8 3.3
Cov. Rate 95.2 94.2 96.2 94.6 96.3 94.1

Population 2
φ̄ = 0.6 φ̄ = 0.7 φ̄ = 0.8

p̄ = 0.5 p̄ = 0.7 p̄ = 0.5 p̄ = 0.7 p̄ = 0.5 p̄ = 0.7
RB (% ) 6.5 3.2 8.0 2.5 4.7 3.6
Cov. Rate 95.4 93.8 96.4 94.0 94.8 93.7

Population 3
φ̄ = 0.6 φ̄ = 0.7 φ̄ = 0.8

p̄ = 0.5 p̄ = 0.7 p̄ = 0.5 p̄ = 0.7 p̄ = 0.5 p̄ = 0.7
RB (% ) 6.1 1.4 8.4 3.0 4.1 3.7
Cov. Rate 94.9 94.1 95.7 94.7 96.1 94.4

Table 4: Monte-Carlo percent relative bias of the variance estimator and
coverage rate for the proposed random imputation procedure MRRφ

Our imputation methods rely upon the mixture regression imputation model

proposed by Haziza et al. (2014). As mentioned by these authors, the pro-

posed methods could be extended to more general mixture regression models,

for example to handle count data.

In practice, we may not be interested in the distribution function in itself, but

rather in complex parameters such as quantiles. Establishing the theoretical

properties of estimators of such parameters under the proposed imputation

procedures is a challenging task, and is currently under investigation.
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A Proof of Proposition 1

Lemma 1. We have E
{

‖Ĝr −G‖2
}

= O(n−1).

Proof. We can write Ĝr −G =
(

Ĝr − G̃r

)

+
(

G̃r −G
)

, where

G̃r =
1

N

∑

i∈s

ωiriφiv
−1
i ziz

⊤
i . (A.1)
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With a proof similar to that of Lemma 2 in Chauvet and Do Paco (2018),

we obtain E
{

‖G̃r −G‖2
}

= O(n−1). Also, we obtain from the assumptions:

∥

∥

∥
Ĝr − G̃r

∥

∥

∥
≤ C6(C9)

2C11

C7

‖γ̂r − γ‖ , (A.2)

so that the result follows from Assumption (H6).

We can write B̂ar − β = T1 − T2 + T3, where

T1 = Ĝ−1
ar

{

1

N

∑

i∈s

ωiriv
−1
i zi(yi − φiz

⊤
i β)

}

,

T2 = Ĝ−1
ar

{

1

N

∑

i∈s

ωiriv
−1
i (φ̂i − φi)ziz

⊤
i

}

β, (A.3)

T3 = Ĝ−1
ar

{

(Ĝr − Ĝar)1(Ĝar 6= Ĝr)
}

β.

We have

‖T1‖2 ≤ a−2

N2

∑

i,j∈S

rirjωiωjv
−1
i v−1

j z⊤i zj(yi − φiz
⊤
i β)(yj − z⊤j β). (A.4)

Since the sampling design is non-informative and the response mechanism is

unconfounded, we can write E(‖T1‖2) = EpqEm(‖T1‖2) and

E(‖T1‖2) ≤ Epq

[

a−2

N2

∑

i∈s

riω
2
i v

−2
i

{

σ2φivi + φi(1− φi)(z
⊤
i β)

2
}

]

,(A.5)

and from the assumptions we obtain E(‖T1‖2) = O(n−1). Also, we have

‖T2‖ ≤ C6(C9)
2C11

aC7
‖γ̂r − γ‖ , (A.6)
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and from Assumption (H6) we obtain E(‖T2‖2) = O(n−1). Finally, since

‖Ĝr − Ĝar‖2 ≤ a2, we have

E(‖T3‖2) ≤ ‖β‖2 × Pr(Ĝar 6= Ĝr)

≤ 4‖β‖2
(αp − a)2

E
{

‖Ĝr −G‖2
}

, (A.7)

where the second line in (A.7) follows from equation (B.21) in Chauvet and

Do Paco (2018), and αp is the largest eigenvalue of G given in equation (4.1).

From Lemma 1, we have E(‖T3‖2) = O(n−1), which completes the proof.

B Proof of Proposition 2

Lemma 2. We have

E
{

(ēr)
2
}

= O(n−1), (B.1)

E
{

σ2
er

}

= O(1). (B.2)

Proof. We consider equation (B.1) only. The proof of equation (B.2) is

similar. We can rewrite ēr = T4 − T5, with

T4 =
∑

j∈s

ω̃jηjrjǫj and T5 =

(

∑

j∈s

ω̃jηjrjv
−1/2
j zj

)⊤

(B̂ar − β). (B.3)

It follows from the assumptions and from Proposition 1 that E(T 2
5 ) = O(n−1).

We can rewrite E(T 2
4 ) = σ2E(T ′

4), with T ′
4 =

∑

j∈s ω̃
2
jηjrj. We note X =
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∑

j∈s ωjrjηj, and mX =
∑

j∈s ωjpjφj. We can write T ′
4 = T ′

41 + T ′
42, where

T ′
41 = T ′

41(X > mX/2) and T ′
42 = T41(X ≤ mX/2). From the assumptions,

we have

T ′
41 ≤ 4

(C4C
′
4C5)2

× 1

N2

∑

i∈s

ω2
i piφi, (B.4)

which leads to E(T ′
41) = o(n−1). Also, since T ′

4 ≤ 1, we have T ′
42 ≤ 1(X ≤

mX/2) and by using the Chebyshev inequality we obtain

E(T ′
42|s) ≤ 4

(C4C
′
4C5)2

× 1

N2

∑

i∈s

ω2
i (piφi)(1− piφi), (B.5)

which leads to E(T ′
42) = o(n−1).

From the assumptions, we have E
[

{

N−1(t̂yπ − ty)
}2
]

= O(n−1), so that

it is sufficient to prove that E
[

{

N−1(t̂yI − t̂yπ)
}2
]

= O(n−1). We have

N−1(t̂yI − ty) = T6 + T7 + T8 + T9, with

T6 = N−1
∑

i∈s

di(1− ri)(y
∗
i − φ̂iz

⊤
i B̂ar),

T7 = N−1
∑

i∈s

di(1− ri)φ̂iz
⊤
i (B̂ar − β),

T8 = N−1
∑

i∈s

di(1− ri)(φ̂i − φi)z
⊤
i β,

T9 = N−1
∑

i∈s

di(1− ri)(φiz
⊤
i β − yi).

It readily follows from the assumptions, equation (??) and Proposition 1,
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that E(T 2
7 ) = o(1) and E(T 2

8 ) = o(1). Also, since Em(T9) = 0, we obtain

E(T 2
9 ) = EVm(T9) = E

[

N−2
∑

i∈s

d2i (1− ri)
{

σ2φivi + φi(1− φi)(z
⊤
i β)

2
}

]

,

which is O(n−1). Therefore, we only need to focus on T6, for which we have

EI(T
2
6 ) =

{

N−1
∑

i∈s

di(1− ri)φ̂i

√
vi

}2

(ēr)
2

+ N−2
∑

i∈s

d2i (1− ri)
{

φ̂i(1− φ̂i)(z
⊤
i B̂ar +

√
viēr)

2 + φ̂iviσ
2
er

}

.

From Proposition 1 and Lemma 2, we obtain E(T 2
6 ) = O(n−1).

C Proof of Proposition 3

From the assumptions, we have E

[

{

F̂N (t)− FN(t)
}2
]

= O(n−1), so that it

is sufficient to prove that E

[

{

F̂I(t)− F̂N (t)
}2
]

= o(1). We have hatFI(t)−

F̂N (t) = T10 + T11 + T12, where

T10 = N−1
∑

i∈s

di(1− ri) {1(y∗i ≤ t)− 1(y∗∗i ≤ t)} , (C.1)

T11 = N−1
∑

i∈s

di(1− ri) {1(y∗∗i ≤ t)− 1(ŷi ≤ t)} , (C.2)

T12 = N−1
∑

i∈s

di(1− ri) {1(ŷi ≤ t)− 1(yi ≤ t)} . (C.3)

The values y∗∗i and ŷi are obtained as follows. We take

ŷi = ηi
{

z⊤i β +
√
viǫ̂i
}

, (C.4)
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where ǫ̂i is selected with-replacement from the set E ′
r = {ǫj ; rj = 1 and ηj = 1}.

We note j(i) the donor selected for unit i, so that ǫ̂i = ǫj(i). Also, we take

y∗∗i = ηi

{

z⊤i B̂ar +
√
vieg(i)

}

= ηi

{

z⊤i B̂ar +
√
viǫ

∗
i

}

. (C.5)

We consider the term T10 first. We can write

1(y∗i ≤ t)− 1(y∗∗i ≤ t) = (η∗i − ηi){1(ε∗i ≤ t̂i)− 1(t ≥ 0)}, (C.6)

with t̂i = v
−1/2
i (t− z⊤i B̂ar. This leads to (T10)

2 = T10,1 + T10,2, with

T10,1 = N−2
∑

i∈s

d2i (1− ri)(η
∗
i − ηi)

2{1(ε∗i ≤ t̂i)− 1(t ≥ 0)}2,

T10,2 = N−2
∑

i 6=j∈s

di(1− ri)dj(1− rj)(η
∗
i − ηi)(η

∗
j − ηj)×

{1(ε∗i ≤ t̂i)− 1(t ≥ 0)}{1(ε∗j ≤ t̂j)− 1(t ≥ 0)}.

From the assumptions, T10,1 = O(n−1). Also, since η∗i , η
∗
j , ε

∗
i and ε∗j are inde-

pendent with respect to the imputation mechanism, we obtain successively

EI(T10,2) = N−2
∑

i 6=j∈s

di(1− ri)dj(1− rj)(φ̂i − ηi)(φ̂j − ηj)×

{F̂εr(t̂i)− 1(t ≥ 0)}{F̂εr(t̂j)− 1(t ≥ 0)

Em{EI(T10,2)|εj, j ∈ s; ηg, g ∈ Sr} = N−2
∑

i 6=j∈s

di(1− ri)dj(1− rj)(φ̂i − φi)(φ̂j − φj)×

{F̂εr(t̂i)− 1(t ≥ 0)}{F̂εr(t̂j)− 1(t ≥ 0)},
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where F̂εr(t) =
∑

j∈s ω̃jrjηj1(ej ≤ t). This leads to

E(T10,2) ≤
(

C11

C1

)2

E
(

‖γ̂r − γ‖2
)

= o(1).

Consequently, E(T 2
10) = o(1).

We now consider T11, that we can write as

T11 = N−1
∑

i∈s

di(1− ri)ηi{1(ε∗i ≤ t̂i)− 1(ε̂i ≤ ti)}

with ti = v
−1/2
i (t− z⊤i β, which leads to

EI(|T11|) ≤ N−1
∑

i∈s

di(1− ri)ηi
∑

j∈s

ω̃jrjηj | 1(ej ≤ t̂i)− 1(εj ≤ ti) |

≤ N−1
∑

i∈s

di(1− ri)ηi
∑

j∈s

ω̃jrjηj | 1(εj ≤ tij)− 1(εj ≤ ti) |≡ T ′
11,

with

tij = ti +

(

zj√
vj

− zi√
vi

)⊤

(B̂ar − β).

Let us take some constant ν > 0. Since the distribution function Fε is

absolutely continuous, there exists some τν such that

|t− u| ≤ τν ⇒ |Fε(t)− Fε(u)| ≤ ν

We note 1A = 1
(

‖B̂ar − β‖ ≥ 0.25τν
√
C7/C9

)

, and 1B = 1 − 1A. We have

E{T ′
111(A)} ≤ (C1)

−1E{1(A)}, which is o(1) from Proposition 1 and the
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Chebyshev inequality. Also, we have

T ′
111(B) ≤ N−1

∑

i∈s

di(1− ri)ηi
∑

j∈s

ω̃jrjηj1
(

ti −
τν
2

≤ εj ≤ ti +
τν
2

)

.

This leads toEm{T ′
111(B)} ≤ (C1)

−1ν, and since ν is arbitrary small, E{T ′
111(B)} =

o(1). Consequently, E(|T11|) = o(1).

Finally, we now consider T12 that we can write as

T12 = N−1
∑

i∈s

di(1− ri)ηi {1(ε̂i ≤ ti)− 1(εi ≤ ti)} .

This successively leads to

T12 = N−1
∑

i∈s

di(1− ri)ηi {1(ε̂i ≤ ti)− 1(εi ≤ ti)} , (C.7)

EI(T12) = N−1
∑

i∈s

di(1− ri)ηi
∑

j∈s

ω̃jrjηj {1(εj ≤ ti)− 1(εi ≤ ti)} ,

Em{EI(T12)|ηi, i ∈ s} = N−1
∑

i∈s

di(1− ri)ηi
∑

j∈s

ω̃jrjηj {Fε(ti)− 1(Fε(ti)} = 0,

and E(T12) = 0, which gives

E{(T12)
2} = EpEqEmVI(T12) + EpEqVmEI(T12). (C.8)

We have VI(T12) ≤ C−1
1 n−1, so that the first term in the r.h.s. of (C.8) is

O(n−1). From the third line in equation (C.7), we obtain

Vm{EI(T12)} = EmVm{EI(T12)|ηi, i ∈ s}, (C.9)
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and from the rewriting

EI(T12) = N−1
∑

j∈s

ω̃jrjηj
∑

i∈s

di(1− ri)ηi1(εj ≤ ti)−N−1
∑

i∈s

di(1− ri)ηi1(εi ≤ ti),

we obtain

Vm{EI(T12)|ηi, i ∈ s} = N−2
∑

j∈s

ω̃2
j rjηjVm{

∑

i∈s

di(1− ri)ηi1(εj ≤ ti)|ηi, i ∈ s}

+ N−2
∑

i∈s

d2i (1− ri)ηiFε(ti){1− Fε(ti)}

= N−2(
∑

i∈s

di)
2
∑

j∈s

ω̃2
j rjηjVm

{
∑

i∈s di(1− ri)ηi1(εj ≤ ti)
∑

i∈s di

∣

∣

∣

∣

ηi, i ∈ s

}

+ N−2
∑

i∈s

d2i (1− ri)ηiFε(ti){1− Fε(ti)}

≤ N−2(
∑

i∈s

di)
2
∑

j∈s

ω̃2
j ηjrj +N−2

∑

i∈s

d2i .

≤
∑

j∈s ω̃
2
j ηjrj + n−1

C2
1

. (C.10)

From the proof of Lemma 2, we have E(
∑

j∈s ω̃
2
j ηjrj) = O(n−1). From (C.9)

and (C.10), we obtain that the second term in the r.h.s. of (C.8) is O(n−1).

Consequently, E(T 2
12) = O(n−1). This completes the proof.
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