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Edouard Fournier∗1,2,3, Stéphane Grihon†2, and Thierry Klein‡ 1,3
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Abstract

In this paper, we perform registration of noisy curves. We provide an
appropriate model in estimating the rotation and scaling parameters to
adjust a set of curves through a M -estimation procedure. We prove the
consistency and the asymptotic normality of our estimators. Numerical
simulation and a real life aeronautic example are given to illustrate our
methodology.
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1 Introduction

An airframe structure is a complex system and its design is a complex task
involving today many simulation activities generating massive amounts of data.
This is, for example, the process of loads and stress computations of an aircraft.
That is the computations of the forces and the mechanical strains suffered by the
structure. The overall process exposed in Figure 1 is run to identify load cases
(i.e aircraft mission and configurations: maneuvers, speed, loading, stiffness...),
that are critical in terms of stress endured by the structure and, of course, the
parameters which make them critical. The final aim is to size and design the
structure (and potentially to reduce loads in order to reduce the weight of the
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structure). Typically for an overall aircraft structure, millions of load cases can
be generated and for each of these load cases millions of structural responses
(i.e how structural elements react under such conditions) have to be computed.
As a consequence, computational times can be significant.

Figure 1: Flowchart for loads and stress analysis process

In an effort to continuously improve methods, tools and ways-of-working,
Airbus has invested a lot in digital transformation and the development of in-
frastructures allowing to treat data (newly or already produced). The main
industrial challenge for Airbus is to reduce lead time in the computation and
preliminary sizing of an airframe as well as extracting value from already cal-
culated loads.

In this paper, we focus on the external loads of a wing: for each load case
are calculated the shear forces (transverse forces near to vertical arising from
aerodynamic pressure and inertia) and bending moments (resulting from the
shear forces, they represent the flexion of the wing) such as shown in Figure 2.

These external loads appeared to be extremely regular and one can legiti-
mately suppose that it exists a link between all those curves. Indeed, it is natural
to assume that it exists a reference bending moment (a reference curve) which
can be morphed through a deformation model to give all the other curves. This
problem of point sets, curves and images registration has been widely studied
and extended to image and shape analysis [1, 8].

The first problem of registration is the identification of a reference function:
which binds all the others and the second is to define the transformation model.
Numerous papers refers to the identification of a proper reference template such
as [3] who used a wavelet threshold to identify the mean pattern, or [5] who
proposed to estimate a common template to through an approximated geodesic
distance for manifold embedding. Nevertheless, the use of a template is not
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Figure 2: (a) Examples of bending moments along the wing for different load
cases - (b) Finite element model of a generic aircraft representing the wing
deformation [13]

always necessary as shown in [4]. In our work, we do not focus on the identifi-
cation of the reference curve and use simply the mean curve as a template.

While the estimation of the rotation and scaling parameters have been widely
studied for image registration such as shown in [4], [10], researches on curve reg-
istration have been focused on warping strategies and estimations of shifts such
as shown in [12], [7]. However, to the best of our knowledge, none work has been
realized on the estimation of rotation and scaling parameters when the trans-
formation is applied on the couple of ordinate and abscissa of a curve. More
precisely in our study, we observe a large number of functions differing from
each other only by the non- linear combination of transformations: a rotation, a
homothetic transformation and a dilation of the design space. The idea is then
to use a transformation model in order to predict the deformation parameters
to estimate loads for different loads configurations.

Our paper is organized as follow: in Section 1, we define the observations
as well as the transformation model used and the non linear regression model.
Estimation of the rotation and scaling parameters is made following the clas-
sical guideline of M -estimators and we provide M -estimators of the unknown
parameters and we give their asymptotic behaviour. Then, in Section 3, we give
a simulated example illustrating our methodology and discuss an application to
the aeronautic problem. The proofs are postponed to the last section.

2 Framework, model and analytic results

In this section, we describe the statistical model studied and give the asymptotic
behaviour of the M -estimators of the unknown parameters.
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2.1 The observations

Notation 1 Let be x ∈ [0, 1], and f : [0, 1]→ R+. We denote by C the curve

C :=

(
x

f(x)

)
x∈[0,1]

.

In our framework, we have at hand K + 1 curves. C̃ is the reference curve
and we assume that the K other curves Cj , j = 1, ...,K are the images of C̃
by the transformation model described bellow. The K curves are observed on
the same random grid DN := {X1, ..., XN} where (Xi)i=1,...,N are iid random
variables with uniform distribution. Hence we have at our disposal

CNj = (Xi, fj(Xi))i=1,...,N, j=1,...,K .

We will consider the following two cases

i) C̃ is known everywhere: C̃ = (x, f̃(x)), ∀x ∈ [0, 1],

ii) C̃ is only known on DN : C̃ = (x, f̃(x)), ∀x ∈ DN .

2.2 Transformation model

Before defining the transformation model linking the K observed curves to the
pattern C̃, one must ensure that the functions fj , j = 1, ...,K and f̃ are ”ad-
missible”. This is the aim of the next definition:

Definition 2 Let θ0 ∈]0, π2 [, Fθ0 is the set of applications defined by:

Fθ0 := {f : [0, 1]→ R+, f is differentiable on [0, 1],
f(0) > 0, f(1) = 0,

f ′(x) < 0, f ′(1) = 0, f ′(0) > − cot θ0}.

Let now define the parametric family of transformation that we will put in
action.

Notation 3 For any function Tα : R2 → R2 depending on a parameter α ∈ Θ,
we will denote by T 1

α and T 2
α its two coordinates.

In the following, we define our transformation model.

Set 0 < θ0 < θ1 <
π
2 , and 0 < λmin < λmax. For any α := (θ, λ) ∈ Θ =

[−θ0, θ1]× [λmin, λmax], set
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Tα := Hλ ◦ Sθ ◦Rθ

the composition of a rotation Rθ, a rescaling Sθ applied on the x-axis, and a
homothetic transformation Hλ on the y-axis. More precisely

• Rθ is the rotation centered in

(
1
0

)
and of angle θ. That is

Rθ : [0, 1]× R+ → [−Amin, 1]× R(
x
y

)
→
(

(x− 1) cos θ − y sin θ + 1
(x− 1) sin θ + y cos θ

)
,

with Amin =
√

1 + y(0)2 − 1.

• After rotating a curve, depending of the angle θ, the resulting design
space of the curve is generally no more [0,1]. Hence, we define the follow-
ing transformation to re-position the curve on [0,1]:

Sθ : [−Amin, 1]× R→ [0, 1]× R(
x
y

)
→
(
x−a
1−a
y

)
,

with a is the real minimum value of the design space after rotating the
curve.

• The scaling transformation of parameter λ > 0 acting on the second co-
ordinate of the curve:

Hθ : [0, 1]× R+ → [0, 1]× R+(
x
y

)
→
(
x
λy

)
.

We now introduced the assumption that will be used:

(A1): The functions (fj)j=1,...,K , and f̃ belong to Fθ0 .

(A2): For any θ ∈ [−θ0, θ1], for any x ∈ [0, 1] and any f ∈ Fθ0 , the second
coordinate of Rθ is positive.

(A3): Θ = [−θ0, θ1]× [λmin, λmax].

5



(A4): C̃ is known on [0, 1].

(A5): C̃ is known on the grid DN .

Thus, the transformation model considered is as follows:

Tα : [0, 1]× R+ → [0, 1]× R+(
x

f(x)

)
→

(
(x−1) cos θ−f(x) sin θ

cos θ+f(0) sin θ + 1

λ((x− 1) sin θ + f(x) cos θ)

)
.

2.3 Non-linear regression model

Recall that we wish to adjust the reference curve C̃ on the other curves Cj
(j = 1, ...,K) by transformations defined in the previous subsection. Notice
that these transformations act on both axis. For any α, we want to compare
the value of the transformed curve (TαC̃)(Xi) with fj(Xi). Since the abscissa
points are affected by the transformation, we denote by Xi(α) the point such
that T 1

α(Xi(α)) = Xi. For that reason, we introduce the following definition:

Definition 4 We denote by x(α, g) the solution of the equation:

T 1
α(u, g(u)) = x. (1)

To ease the notation, we finally set x(α) := x(α, g), so Xi(α) = Xi(α, f̃).
We consider the non-linear parametric regression model:

fj(Xi) = T 2
α∗

j
(Xi(α

∗
j ), f̃(Xi(α

∗
j ))) + εj,i, (j = 1, ...,K). (2)

Where:

• (Xi) are iid with distribution PX . It is the design on which we observe
the curves Cj ;

• α∗j = (θ∗j ,λ∗j ) is the couple of true parameters for each curve (j = 1, ...,K);

• εj,i, ∀i = 1, ..., N, ∀j = 1, ...,K are iid N (0, σ2) random variables. These
variables are assumed to be independent of Xi.

2.4 Estimation

2.4.1 Estimation when C̃ is known on [0, 1]

For the sake of simplicity, let us fix j. Relying on a classical M -estimation pro-
cedure, we consider a semi-parametric method to estimate the parameters and
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define consequently the following empirical contrast function to fit the reference
curve C̃ to Cj (j = 1, ...,K):

M j
N (α) =

1

N

N∑
i=1

(fj(Xi)− T 2
α(Xi(α), f̃(Xi(α))))2

=
1

N

N∑
i=1

mj
α(Xi).

(3)

The random function M j
N is non negative. Furthermore, intuitively, its

minimum value should be reached close to the true parameter α∗j . Indeed, the
following theorem gives the consistency of the M -estimator, defined by :

α̂jN = argmin
α∈Θ

M j
N (α). (4)

Recall that our empirical constrast function enters in the general theory of
M -estimator. The Central Limit Theorem will be shown by using M -estimator
arguments.

Theorem 5 Assume that A1, A2, A3 and A4 are satisfied. Then

i) α̂jN
P−−−−−→

N→+∞
α∗j , (5)

ii)
√
N(α̂jN − α

∗
j )

L−−−−−→
N→+∞

N (0,Γα∗
j
). (6)

In particular, the covariance matrix has the following form

Γα∗
j

= V −1
α∗

j
2σ2, (7)

with Vα∗
j

= 2E[Ṫ 2
α∗

j
Ṫ 2T
α∗

j
], and Ṫ 2

α∗
j

is the vector of partial derivatives of T 2
αj

w.r.t

elements of α taken at α∗j .

2.4.2 Estimation when C̃ is observed on D

In this section, we consider the case where the reference curve C̃ is observed on

the same grid D := (Xi)i=1,..,N as the other curve Cj , i.e C̃ =

(
x

f̃(x)

)
x∈D

. By

applying the transformation Tα to C̃, the transformed pattern TαC̃ is no longer
observable on D. As a consequence, one must make use of an approximation
process over f̃ . Let f̃N be the linear interpolate of f̃ , defined by:

f̃N (x) =

N∑
i=1

∆i(x)1x∈[X(i),X(i+1)), (8)
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where

∆i(x) =
f̃(X(i+1))− f̃(X(i))

X(i+1) −X(i)
x + f̃(X(i))−

f̃(X(i+1))− f̃(X(i))

X(i+1) −X(i)
X(i). (9)

It is easy to see that f̃N belongs also to Fθ0 . Replacing C̃ by Ĉ in (3) we
obtain

M̂ j
N (α) = 1

N

∑N
i=1(fj(Xi)− T 2

α(Xi(α,N), f̃N (Xi(α,N))))2,

where Xi(α,N) is the solution to the equation T 1
α(u, f̃N (u)) = Xi.

Using the linear interpolate defined by (8), we show the consistency and
asymptotic normality of our M -estimator defined as follow:

ˆ̂αjN = argmin
α∈Θ

M̂ j
N (α). (10)

Theorem 6 Assume that A1, A2, A3 and A5 are satisfied. Let f̃N be defined
by (8) and assume that ∃C > 0 s.t ∀x ∈ [0, 1], f̃ ′N (x) ≤ C, and f̃ ′(x) ≤ C, then

i) ˆ̂αjN
P−−−−−→

N→+∞
α∗j , (11)

ii)
√
N( ˆ̂αjN − α

∗
j )

L−−−−−→
N→+∞

N (0,Γα∗
j
) (12)

with Γα∗
j

such defined in (7).

3 Simulations and applications

In this section we illustrate the method on numerical applications. The first
subsection is dedicated to some simulated toy example while the second to a
real problem. The optimisation problems (4) and (10) will be numeritically
solved by using the BFGS algorithm [11].

3.1 Simulated toy example

We consider the following model:

fλ,θ(x) = λ[(x− 1) sin θ + g(x) cos θ],

with g(x) = 2(cosπx+1). We observe fλj ,θj (xi) for i = 1, ..., 100, for J = 25
values of (λ, θ) with some iid errors εij .

• The observations points xi, i = 1, ..., 100 are iid random variables with
uniform distribution on [0, 1].
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• The parameters are chosen randomly with the following arbitrary distri-
bution (λ, θ) ↪→ U([0, 15])× U([−π3 ,

π
30 ]).

• The errors are assumed to be N (0, 0.01).

Results are given in Figure 3. The simulated data are shown in Figure 3 (a).
Each of these curves is rescaled to [0, 1] to avoid numerical issues. The curve
in blue is the reference curve. After the estimation of the parameters λj and
θj , all curves can be rescaled back to their original space as shown in Figure 3 (b).

Rescaling the curves allows to easily choose the initial point of parameters
for the optimization algorithm taking 1 for λ and 0 for θ.

(a) (b)

Figure 3: Rotating and scaling results for simulated data: (a) Simulated data;
(b) Fitted data

3.2 Aeronautic loads

In [6], the authors present an aeronautic model that computes the loads (forces
and moments) on the wing of some aircraft model denoted by ACM1. They
present several statistical methods in order to study these data. In this section,
we will compare the method used in [6] with the model presented in Section
2 for a new aircraft model called ACM2. The data at our disposal represents
bending moments of a wing (representing its flexion) of an aircraft calculated
for 1152 different configurations (load cases). Each configuration is defined by
28 features (speed of the aircraft, mass, altitude, quantity of fuel, etc.), leading
to a bending moment calculated on 45 stations along the wing. In a more formal
way, we observe the couple (Xj , Yj)j=1,...,1152, where Xj = (X1

j , ..., X
28
j ) are the

features and Yj = (Y 1
j , ..., Y

45
j ) is the bending moment. The idea is to predict

the bending moment for different configurations. The data are represented in
Figure 4.
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Figure 4: Representation of all the bending moments of a wing of our data base:
the wing root is located at the null coordinate, where the strains are maximum
when the wing bends.

Due to the discontinuities at the 3rd and 20th stations, we apply our method-
ology to each section independently. Then, each section can be represented by
its minimum and maximum values, and by its rotation and scaling coefficients
λj and θj . Figure 5 assess the quality of the matching process (the reference
curve used is the average bending moment).

Figure 5: Results of the matching process

Thus the dimensional space of the outputs is reduce to 12 instead of 45. We
compare our method to three other methods of [6] applied on the outputs: no
transformation (we call it raw - we build 45 models, one per station); a PCA
(the three first principal components represent 99,9% of the explained variance
- 3 models instead of 45); a polynomial fitting per section (of degree 4 for the
first section, of degree 2 for the second and of degree 1 for the third section)
which leads to 10 models instead of 45. The Table 1 sums up the number of
outputs to predict depending on the method used.
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Table 1: Number of outputs to be predicted depending on the method used on
the raw outputs: Raw, Deformation Model, PCA, polynomial fitting

Number of outputs Names of outputs

Raw 45 Bending moment value at
station 0 to 44

Deformation 12 θ1, θ2, θ3, λ1, λ2, λ3,min1,min2,
Model min3,max1,max2,max3

PCA 3 Principal components 1 to 3
Polynomial fitting 10 Coefficients of polynomials

The significant advantage of the reduction dimension techniques used is that
the response of the model would have a physical form contrary to the simple
linear models performed on the raw data. To build our models, we use the
Orthogonal Greedy Algorithm (OGA) also known as the Matching Pursuit Al-
gorithm. Detailed explanations can be found in [2], [14] and [9]. Roughly
speaking, we consider the problem of approximating a function by a sparse lin-
ear combination of inputs.

To assess the goodness of fit of our models, we defined for a curve of bending
moment j the error rate as follows:

error(j) =

√∑45
i=1(ŷ(xi)−yj(xi))2∑45

i=1 y
2
j (xi)

, j = 1, ..., ntest,

where ntest is the size of the sample of test. We compute the error rates on
(the sample of test is of 25% the size of the total database). It gives an idea of
how far our predictions are. For this standpoint, we can easily compute the em-
pirical cumulative distribution function (CDF): ∀ j = 1, ..., ntest, let α ∈ [0, 1].
The empirical CDF is defined as:

α→ G(α) = 1
n

∑ntest

j=1 1(error(j)≤α)

In Table 2, we give the values of G(α) for α = 1%, 2%, 5%, 10% and the
mean error. In Figure 6 we give the plots of the function G(α) for the different
methods.

Concerning the approximation and prediction of loads, our model is equiv-
alent in average to other tested methods, there are just slightly more observa-
tions with an error below 1%. Nevertheless, in our case, the linear models built
through the deformation model are sparser than the other. Indeed, in average,
11 variables are chosen as optimal parameter of the greedy algorithm by cross-
validation for the deformation model, 13 for the polynomial fitting, 15 for the
PCA and 14 for the raw outputs one.
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Table 2: Average estimated P(error ≤ 1%), P(error ≤ 2%), P(error ≤ 5%)
P(error ≤ 10%), E(error) calculated on several random test data set (25% of
the size of the total dataset)

Deformation Model Polynomial Fitting PCA Raw

P(error ≤ 1%) 17% 14% 16% 15%
P(error ≤ 2%) 45% 45% 43% 51%
P(error ≤ 5%) 88% 88% 86% 88%
P(error ≤ 10%) 98% 97% 95% 98%

E(error) 2.9% 2.9% 3% 2.8%

Figure 6: Empirical CDF of error rates (P(error ≤ α))

Even though the prediction of loads with the deformation model is so likely
equivalent to none transformation, it obtains better results than the polynomial
fitting and the PCA. Besides, it is important to notice that it gives to engineers
a physical interpretation and idea of how react the wing to new constraints.
Besides, using this deformation model gives a physical response contrary to a
simple linear model per station whose response could be irregular.

4 Proofs and technical result

4.1 Technical result

This section is dedicated to the technical result used in the proof of Theorem 4.

Lemma 7 Let X1, ..., XN be N independent and identically distributed random
variables with uniform distribution on [0, 1] and let X(1) ≤ ... ≤ X(N) be the

reordered sample . Let aN = O(
√
N), then:
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P(aN sup
j
|X(j+1) −X(j)| ≥ ε) −−−−−→

N→+∞
0.

Proof of Lemma 1 Let Z1, ..., ZN+1 be N independent and identically dis-
tributed random variables with exponential distribution with parameter 1. It is
a well known fact that

( Z1∑N+1
k=1 Zk

, Z1+Z2∑N+1
k=1 Zk

, ..., Z1+...+ZN∑N+1
k=1 Zk

)
(L)
= (X(1), ..., X(N)) and we have

X(j+1) −X(j)
(L)
=

Zj+1∑
k Zk

. (13)

Now, for ε > 0

P(sup
j
|X(j+1) −X(j)| ≥ ε) ≤

∑
j

P(X(j+1) −X(j) ≥ ε)

≤ N max
j

P(X(j+1) −X(j) ≥ ε).

By using (13), we have

P(X(j+1) −X(j) ≥ ε) = (1− ε)N−1.

Then,

P(sup
j
|X(j+1) −X(j)| ≥ ε) ≤ N(1− ε)N−1.

The result follows replacing ε by ε
aN

and letting N → +∞.

4.2 Proofs of Theorems 3 and 4

Proof of Theorem 3 To ease the notation, we do not display the dependency
in j.

i) By (3) it is easy to see that MN (α) is an empirical mean of iid bounded
random variables. Thus, by the Strong Law of Large Number (SLLN)

MN (α)
p.s−−−−−→

N→+∞
M(α),

with M(α) = E[ε2] + E[(T 2
α(X(α), f̃(X(α)))− T 2

α∗(X(α∗), f̃(X(α∗))))2].

M(α) is continuous and has an obvious unique minimum α∗. Since Θ is
compact, this implies that inf

α:d(α,α∗)≥ε
M(α) > M(α∗) is satisfied (see Problem

27 p. 84 in [15]).
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It remains to prove that {mα : α ∈ Θ} is a Glivenko-Cantelli class. Thanks to
the remark following the proof of Theorem 5.9 in [15], this is an easy consequence
of the continuity of α → mα and the fact that the function is bounded by a
continuous and integrable function on [0, 1]. Indeed, it exists at least a function
f∗ in Fθ0 which bounds every other functions, and two constants K1 > 0,K2 > 0
such that

mα(x) ≤ K1(f∗(x) +K2)2,

and
sup
α∈Θ

|MN (α)−M(α)| P−−−−−→
N→+∞

0. (14)

The result follows from the Theorem 5.7 in [15].

ii) The Central Limit Theorem will be a consequence of Theorem 5.23 in
[15]. Recall that

mα(x) = [f(x)− λ((x(α)− 1) sin θ + cos θf̃(x(α)))]2.

By the Implicit Function Theorem, that is easy to see that α→ x(α) is C1

on a compact set. This implies that the norm of the gradient of mα is uniformly
bounded in α. Hence ∃φ̇(x) ∈ L1 such that ||∇αmα(x)|| ≤ φ̇(x) hence

|mα1(x)−mα2(x)| ≤ φ̇(x)× ||α1 − α2||.

In order to give an explicit formula for the limit variance, we apply the
results of Example 5.27 in [15] where fθ becomes in our case T 2

α and hence, we
have √

N(α̂jN − α
∗
j )

L−−−−−→
N→+∞

N (0,Γα∗
j
),

with Γα∗
j

= V −1
α∗

j
2σ2 and Vα∗

j
= 2E[Ṫ 2

α∗
j
Ṫ 2T
α∗

j
].

Proof of Theorem 4

i) To prove the consistency of ˆ̂αN we have to show that

sup
α∈Θ
|M̂N (α)−M(α)| P−−−−−→

N→+∞
0.

We have,

sup
α∈Θ
|M̂N (α)−M(α)| ≤ sup

α∈Θ
|M̂N (α)−MN (α)|+ sup

α∈Θ
|MN (α)−M(α)|.

It has been shown in the proof of Theorem 3 that

sup
α∈Θ
|MN (α)−M(α)| P−−−−−→

N→+∞
0.
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It remains to prove that

sup
α∈Θ
|M̂N (α)−MN (α)| P−−−−−→

N→+∞
0.

To ease the notation, we write T 2
α(i,N) = T 2

α(Xi(α,N), f̃N (Xi(α,N))), and
T 2
α(i) = T 2

α(Xi(α), f̃(Xi(α))). Set

DN (α) = MN (α)− M̂N (α)

=
1

N

N∑
i=1

2y(Xi)[T
2
α(i,N)− T 2

α(i)]− 1

N

N∑
i=1

[T 2
α(i,N)− T 2

α(i)][T 2
α(i,N) + T 2

α(i)].

As f and T 2
α are continuous and bounded on Θ× [0, 1], this implies that:

|Dn(α)| ≤ | 1

N

N∑
i=1

2f(Xi)[T
2
α(i,N)− T 2

α(i)]|+ | 1

N

N∑
i=1

[T 2
α(i,N)− T 2

α(i)][T 2
α(i,N) + T 2

α(i)]|

≤ K(
1

N

N∑
i=1

[T 2
α(i,N)− T 2

α(i)]2)
1
2

≤ K ′( 1

N

N∑
i=1

[(Xi(α,N)−Xi(α))(1 + C) + (f̃N (Xi(α))− f̃(Xi(α))]2)
1
2 .

By construction, there exists j such that X(j) ≤ Xi(α) ≤ X(j+1), and X(j) ≤
Xi(α,N) ≤ X(j+1) which leads to:

Xi(α,N)−Xi(α) = γ(X(j+1) −X(j)).

Besides, since there exists γ′ > 0 such that
f̃N (Xi(α)) = γ′f̃(X(j+1)) + (1− γ′)f̃(X(j)) we have

|f̃N (Xi(α))− f̃(Xi(α))| ≤ γ′|f̃(X(j+1))− f̃(X(j))|
≤ Cγ′|X(j+1) −X(j)|,

and

|Dn(α)| ≤ K ′( 1

N

N∑
j=1

[X(j+1) −X(j)]
2)

1
2

sup
α∈Θ
|Dn(α)| ≤ K ′( 1

N

N∑
j=1

sup
α∈Θ

[X(j+1) −X(j)]
2)

1
2

≤ K ′sup
j
|X(j+1) −X(j)|.
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By Lemma 1 P(K ′sup
j
|X(j+1)−X(j)| ≥ ε) −−−−−→

N→+∞
0. Hence DN is bounded

by an integrable and continuous function which goes to 0 in probability on Θ

sup
α∈Θ
|M̂N (α)−M(α)| P−−−−−→

N→+∞
0.

So we may conclude.

ii) First, we use that
√
N( ˆ̂αN − α∗) =

√
N( ˆ̂αN − α̂N ) +

√
N(α̂N − α∗). By

Theorem 3,
√
N(α̂N − α∗)

L−−−−−→
N→+∞

N (0,Γα∗) with Γα∗ defined in (6). It re-

mains to prove that
√
N( ˆ̂αN − α̂)

P−−−−−→
N→+∞

0.

Using the same arguments as in the proof i), we have

P(
√
N sup
α∈Θ
|M̂N (α)−MN (α)| ≥ ε) ≤ P(K

√
N sup
α∈Θ
|X(j+1) −X(j)| ≥ ε) (15)

The right hand side of (15) converges to 0 by Lemma 1. This implies that√
N( ˆ̂αN − α̂)

P−−−−−→
N→+∞

0.

5 Perspectives and conclusion

One of the main quality of our approach is that it is easy to implement and
execute. The cost function being simple, we use a BFGS algorithm to find the
optimal parameters, and because of the regularity of curves we deal with, the
initial points for optimization can be easily defined.

Furthermore, the search of the coordinate of the reference curve which is sent
to the coordinate of the curve to fit can be easily implemented with a simple
value search.

Besides, the deformation parameters can be exploited through an explain-
able model such as the linear model used in the real world problem.

It seems that the deformation model is robust if the noise is controlled. An
interesting extension of this work would be to study what is going on when the
reference curve is noisy. A generalization of this work to less regular functions
would be worthwhile. Finally, it would be interesting to include in the model a
way to handle discontinuities in order to reduce the dimension and have a more
global representation of the deformation.
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