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Abstract

In the big data era, it is often needed to resolve the problem of par-
simonious data representation. In this paper, the data under study are
curves and the sparse representation is based on a semiparametric model.
Indeed, we propose an original registration model for noisy curves. The
model is built transforming an unknown function by plane similarities.
We develop a statistical method that allows to estimate the parameters
characterizing the plane similarities. The properties of the statistical pro-
cedure is studied. We show the convergence and the asymptotic normality
of the estimators. Numerical simulations and a real life aeronautic exam-
ple illustrate and demonstrate the strength of our methodology.

Keywords: Semiparametric model, Registration of curves, Statistical learn-
ing of a physical system

MSC Classification: 62F12, 62F30, 62P30

1 Introduction

It may be useful, when dealing with a large set of curves differing slightly from
each other, to exhibit a parametric model of transformations. Indeed, usually
a reduction taking into account some prior knowledge on the curves may lead
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to a better understanding of the variability within the population. One way to
perform such reduction consists in considering that the set of curves has been
obtained by deforming a template with parametric transformations. This point
of view is usually called curve registration and has been widely studied in statis-
tics. Two main statistical tasks are generally considered: the estimation of the
template, and the estimation of transformation parameters.

For example, Härdel [12] considers the case of semiparametric models where
the curves are nonparametric but are related in a parametric manner: the x-axis
is shifted and the ordinate axis is rescaled. Regarding Golubev in [10], the idea
is to estimate the period of an unknown signal with white noise conditions. In
[8], Gasser and Kneip study the shape estimation of such templates, i.e struc-
tural features (extrema, inflection point) which can occur in a consistent manner
among a sample of curves. The paper [16] introduces the shape invariant model
(SIM). In this paper, the authors estimate the deformation parameters and
the unknown model function at the same time for a parametric family. In [14],
Kneip considers a general non linear parametric regression model with unknown
template function. Many authors have worked on the SIM estimating either the
template, the parameters or both. We refer to [14, 17, 12, 13, 7] for more de-
tails and examples on the SIM. More recently, these estimation topics have seen
a resurgence pushed by applications in image and signal processing. We refer
for example to [11, 19, 1, 7, 4, 5, 9, 26] for models and techniques related to
signal processing problems and the multidimensional extension of SIM defined
on the plane. Concerning non parametric approaches, we refer to [21, 15]. In
these papers, a nonlinear regression method is developed. It allows to aligned
features of curves through the use of monotone functions acting on the abscissa
axis (also called Dynamic Time Warping in the literature).

Hence, the set of transformations often consists in a parametric family of
operator acting on curves [3]. In this paper, the parametric transformations
involve rotation and scaling parameters. This model has been studied for image
registration see for example [5] or [19]. According to our knowledge, all the mod-
els studied in the literature considered transformations that act independently
on the argument and on the value of the template function. In this work, we con-
sidered a family of parametric transformations that act jointly on the argument
and on the value of the template function. We work on functions defined on
[0, 1] and with plane similarities acting on the whole curve C̃ := (x, f̃(x))x∈[0,1]

representing the template.

Our aim is twofold:

• Estimation of the deformation parameters: we address the estimation of
the deformation parameters and study the asymptotic properties of the
estimator when the template is known on [0, 1]. Then, using these pre-
liminary results we study the consistency and the asymptotic normality
of our estimator in the more realistic case where the reference curve is
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defined on the same grid as the set of curves to be registered. In this pa-
per, we consider that the set of curves to be registered are noisy but not
the template. By supposing the legitimate existence of this template, it
allows us to estimate the deformation parameters through a M -estimation
procedure (see [25]).

• Building a meta-model : we will use the estimation of the deformation pa-
rameters in a real world application - the prediction of aeronautic loads.
The idea will be to use and predict the transformation parameters for dif-
ferent aircraft configurations. Using a proper representation of the prob-
lem, we get as good results as classical methods of dimension reduction
techniques. Additionally, our methodology endows aerospace engineers
with a better understanding of the variability within the set of load curves.

Our paper is organized as follow: in Section 2, we define our framework and
the model of transformations. On the regression model, we use a M -estimation
procedure to perform the estimation and study the asymptotic behavior of the
estimators in two cases: when the reference curve C̃ is known, and when it
is defined on the same grid as the set of curves to be registered. Section 3 is
devoted to examples. We first compare our procedure to the Dynamic Time
Warping method studied in [21] and using the fda package [22]. It appears, in
particular, that for the class of functions we consider, our deformation strategy
outperforms the warping method in the case where the noise does not exceed a
certain threshold. Then, we apply our methodology to the prediction of aero-
nautic loads (see [6]): for different aircraft configurations we will predict the
deformation parameters allowing us to compute the external constraints affect-
ing the wing structure.

All the proofs are postponed to the last section.

2 Framework, model and analytic results

In this section, we describe the statistical model studied and give the asymptotic
behavior of the M -estimators of the unknown parameters.

2.1 The observations

Notation. Let be x ∈ [0, 1], and f : [0, 1]→ R+. We denote by C the curve

C :=

(
x

f(x)

)
x∈[0,1]

.

In our framework, we have at hand K + 1 curves. One is the reference
curve denoted by C̃ that will also be called pattern. The K other curves
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Cj , j = 1, ...,K are assumed to be the images of C̃ by the transformation
model described bellow. The K curves are observed on the same random grid
DN := {X1, ..., XN} where (Xi)i=1,...,N are iid random variables with uniform
distribution on [0, 1]. Hence we have at our disposal

CNj = (Xi, fj(Xi))i=1,...,N, j=1,...,K .

We will consider the following two cases

i) C̃ is known everywhere: C̃ = (x, f̃(x)), ∀x ∈ [0, 1],

ii) C̃ is only known on DN : C̃ = (Xi, f̃(Xi))i=1,...,N .

2.2 Transformation model

Before defining the transformation model linking the K observed curves to the
pattern C̃, one must ensure that the functions fj , j = 1, ...,K and f̃ are ”ad-
missible”. This is the aim of the next definition:

Definition. Let θ0 ∈]0, π2 [, Fθ0 is the set of applications defined by:

Fθ0 := {f : [0, 1]→ R+, f is differentiable on [0, 1],
f(0) > 0, f(1) = 0,

∀x ∈ [0, 1], f ′(x) < 0, f ′(1) = 0, f ′(x) > − cot θ0}.

The class of curves Cθ0 is defined such that:

Cθ0 := {(x, f(x)), x ∈ [0, 1], f ∈ Fθ0}.

Let us now define the parametric family of transformation that we consider.

Notation. For any function Tα : R2 → R2 depending on a parameter α ∈ Θ,
we will denote by T 1

α and T 2
α its two coordinates.

In the following, we define our transformation model.

Set 0 < θ0 < θ1 <
π
2 , and 0 < λmin < λmax. For any α := (θ, λ) ∈ Θ =

[−θ0, θ1]× [λmin, λmax], we introduce the transformations

Tα := Hλ ◦ R̃θ.
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Our parametric set of transformations is the compositions of a rotation R̃θ
and a scaling on the second coordinate Hλ. More precisely

• R̃θ is the rescaled rotation centered in

(
1
0

)
and of angle θ. Note that if

one performs just a rotation on a curve C of Fθ0 , the input space of the
transformed curve is no longer [0, 1] but [aθ,C , 1] so we must rescale the
input space to [0, 1].That is

R̃θ : Cθ0 → Cθ0
C → R̃θ(C),

which transforms each point (x, f(x)) of C to

(
(x−1) cos θ−f(x) sin θ+1−aθ,C

1−aθ,C
(x− 1) sin θ + f(x) cos θ

)
,

where aθ,C = − cos θ − f(0) sin θ + 1.

Notice that the elements of Fθ0 are functions that are decreasing but not
too strongly. Indeed, if there is a (smooth)-vertical drop on the graph of
a function in Fθ0 such that ∀x ∈ [0, 1], |f ′(x)| < cot θ0, when operating
a negative rotation on the curve, it prevents the transformed curve to be
still a function. As a matter of fact, if the vertical drop does not respect
the constraint, the transformed curve’s graph does not look like a graph
function but more to a ”zig-zag” going locally forward and backward.

• The scaling transformation of parameter λ > 0 acting on the second co-
ordinate of the curve:

Hλ : Cθ0 → Cθ0
C → Hλ(C).

which transforms each point (x, f(x)) of C to

(
x

λf(x)

)
.

We now introduced the assumption that will be used:

(A1): The functions (fj)j=1,...,K , and f̃ belong to Fθ0 .

(A2): For any θ ∈ [−θ0, θ1], ∀C ∈ Cθ0 , all the second coordinate of R̃θ(C)
are non-negative.

(A3): Θ = [−θ0, θ1]× [λmin, λmax].
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(A4): C̃ is known on [0, 1].

(A5): C̃ is known on the grid DN .

Thus, the transformation model considered is as follows:

Tα : Cθ0 → Cθ0
C → Tα(C)

which transforms each point (x, f(x)) of C to

(
(x−1) cos θ−f(x) sin θ

cos θ+f(0) sin θ + 1

λ((x− 1) sin θ + f(x) cos θ)

)
:

the transformation model acts jointly on the argument and on the value of the
template function.

2.3 Regression model

Reminding that we wish to adjust the reference curve C̃ on the other curves
Cj (j = 1, ...,K) by transformations belonging to {Tα, α = (θ, λ) ∈ Θ}. Notice
that these transformations act on both axis. For any α, we want to compare
the value of the transformed curve (TαC̃)(Xi) with fj(Xi). Since the abscissa
points are affected by the transformation, we denote by Xi(α) the point such
that T 1

α(Xi(α)) = Xi. For that reason, we introduce the following definition:

Definition. We denote by x(α, f̃) the solution of the equation:

T 1
α(u, f̃(u)) = x. (1)

To ease the notation, we finally set x(α) := x(α, f̃), so Xi(α) = Xi(α, f̃).
We consider the parametric regression model:

fj(Xi) = T 2
α∗
j
(Xi(α

∗
j ), f̃(Xi(α

∗
j ))) + εj,i, (j = 1, ...,K). (2)

Where:

• (Xi) are iid, [0, 1]-uniformly distributed. It is the design on which we
observe the curves Cj ;

• α∗j = (θ∗j ,λ∗j ) is the couple of true parameters for each curve (j = 1, ...,K);

• εj,i, ∀i = 1, ..., N, ∀j = 1, ...,K are iid N (0, σ2) random variables. These
variables are assumed to be independent of Xi.
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2.4 Estimation

We consider the case where the noise applies on the set of curves to be registered
only, and not on the reference curve. We legitimately suppose the existence of
a reference curve. Under this last assumption, we will estimate the deformation
parameters through a M -estimation procedure. The first subsection refers to
the estimation of the deformation parameters and its analytical results when the
reference curve is known on [0, 1]. Although this case is not realistic, these first
results are necessary prerequisites to show the consistency and the asymptotic
normality of the estimator in the more realistic case where the reference curve
is defined on the same grid DN as the set of curves to be registered - this is the
topic of the last subsection.

2.4.1 Estimation when C̃ is known on [0, 1]

For the sake of simplicity, let us fix j. Relying on a classical M -estimation
procedure, we consider a semiparametric method to estimate the parameters and
define consequently the following empirical contrast function to fit the reference
curve C̃ to Cj (j = 1, ...,K):

M j
N (α) =

1

N

N∑
i=1

(fj(Xi)− T 2
α(Xi(α), f̃(Xi(α))))2

=
1

N

N∑
i=1

mj
α(Xi).

(3)

The random function M j
N is non negative. Furthermore, intuitively, its

minimum value should be reached close to the true parameter α∗j . Indeed, the
following theorem gives the consistency of the M -estimator, defined by :

α̂jN = argmin
α∈Θ

M j
N (α). (4)

Recall that our empirical contrast function enters in the general theory of
M -estimator. The Central Limit Theorem will be shown by using M -estimator
arguments.

Theorem 1. Assume that A1, A2, A3 and A4 are satisfied. Then

i) α̂jN
P−−−−−→

N→+∞
α∗j , (5)

ii)
√
N(α̂jN − α

∗
j )

L−−−−−→
N→+∞

N (0,Γα∗
j
). (6)

In particular, the covariance matrix has the following form

Γα∗
j

= V −1
α∗
j

2σ2, (7)
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with Vα∗
j

= 2E[Ṫ 2
α∗
j
Ṫ 2T
α∗
j

], and Ṫ 2
α∗
j

is the vector of partial derivatives of T 2
αj w.r.t

elements of α taken at α∗j .

2.4.2 Estimation when C̃ is observed on D

In this section, we consider the case where the reference curve C̃ is observed on

the same grid D := (Xi)i=1,..,N as the other curve Cj , i.e C̃ =

(
x

f̃(x)

)
x∈D

. By

applying the transformation Tα to C̃, the transformed pattern TαC̃ is no longer
observable on D. As a consequence, one must make use of an approximation
process over f̃ . Let f̃N be the linear interpolate of f̃ , defined by:

f̃N (x) =

N∑
i=1

∆i(x)1x∈[X(i),X(i+1)), (8)

where

∆i(x) =
f̃(X(i+1))− f̃(X(i))

X(i+1) −X(i)
x + f̃(X(i))−

f̃(X(i+1))− f̃(X(i))

X(i+1) −X(i)
X(i). (9)

It is easy to see that f̃N belongs also to Fθ0 . Replacing C̃ by Ĉ in (3) we
obtain

M̂ j
N (α) = 1

N

∑N
i=1(fj(Xi)− T 2

α(Xi(α,N), f̃N (Xi(α,N))))2,

where Xi(α,N) is the solution to the equation T 1
α(u, f̃N (u)) = Xi.

Using the linear interpolate defined by (8), we show the consistency and
asymptotic normality of our M -estimator defined as follow:

ˆ̂αjN = argmin
α∈Θ

M̂ j
N (α). (10)

Theorem 2. Assume that A1, A2, A3 and A5 are satisfied. Let f̃N be defined
by (8) and assume that ∃C > 0 s.t ∀x ∈ [0, 1], f̃ ′N (x) ≤ C, and f̃ ′(x) ≤ C, then

i) ˆ̂αjN
P−−−−−→

N→+∞
α∗j , (11)

ii)
√
N( ˆ̂αjN − α

∗
j )

L−−−−−→
N→+∞

N (0,Γα∗
j
) (12)

with Γα∗
j

such defined in (7).

Remark. Notice that the asymptotic variance of the estimator is the same as in
Theorem 1.
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3 Simulations and applications

In this section we illustrate the method on numerical applications. The first
subsection is dedicated to some simulated example while the second to a real
problem. The optimisation problems (4) and (10) will be numerically solved
by using the BFGS algorithm [20]. In each case, in order to apply the results
presented in the previous section, one shall define a reference curve. In the
simulated example, the reference curve is known. In the real world application,
we simply choose the average curve as the reference curve (note that choosing the
curve with the lowest values would assure that (A2) is automatically satisfied).

3.1 Simulated example

We consider the following model:

fλ,θ(x) = λ[(x− 1) sin θ + g(x) cos θ],

with g(x) = 2(cos (πx) + 1). We observe fj(Xi) = fλj ,θj (Xi) + εij for
i = 1, ..., N , for J = 25 values of (λ, θ) with some iid errors εij .

• The observations points Xi, i = 1, ..., N are iid random variables with
uniform distribution on [0, 1].

• The parameters are chosen randomly with the following arbitrary distri-
bution (λ, θ) ↪→ U([0, 15])× U([−π3 ,

π
30 ]).

• The errors are assumed to be N (0, σ2).

The numerical experiment will be conducted for different values of N =
50, 100, 1000 and σ2 = 0, 0.01, 0.05, 0.1, 0.5, 1. To avoid numerical issues, each
curve is rescaled to [0, 1]. Some simulated data are shown in Figure 1. In this
example, the reference curve is known. This is the function g displayed in blue.
As shown in Figure 1 (b), one shall emphasize that by increasing the value of the
noise variance we loss the properties that the functions fj , j = 1, ..., J belong
to Fθ0 , which is not in our best interests.

In the following, we compare the method developed in the previous section
to the famous non-parametric method of curve registration defined by J.O.
Ramsay and X. Li in [21]. This method is also called Dynamic Time Warping
(DTW): a non-parametric technique is used to estimate the smooth monotone
transformations hi applied on the features (i.e the x-abscissa) by preserving
their order. Hence, the features Xi are warped through hi and the characteristic
(peaks, valleys) of the reference curve and the target are aligned. In order to
compare the two methodologies, we will use the following mean squared error
(MSE) between the registered curve and fλj ,θj

MSE =
1

25

25∑
j=1

N∑
i=1

(fλj ,θj (Xi)− f̂λ̂j ,θ̂j (Xi))
2
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(a) (b)

Figure 1: Simulated data with : (a) N = 100 and σ2 = 0, (b) N = 100 and
σ2 = 0.5

Results are displayed in Table 1. It comes at no surprise that increasing
the noise’s variance increases the MSE. Nevertheless, due to its transformation
nature, Ramsay’s method might take the augmentation of noise variance to its
advantage contrary to our morphing strategy. However, when the noise is small,
our methodology outperforms the other. This is due to the fact that the peaks
and valleys of the curves are most of the time already aligned in this kind of
function class inducing few deformations on the abscissa.

Table 1: Mean Squared Error (MSE) comparison between our morphing
strategy and the DTW for different N and σ2.

Morphing DTW

N = 50 N = 100 N = 1000 N = 50 N = 100 N = 1000
σ2 = 0.00 7.e-05 6.e-05 4.e-05 0.0011 0.0014 0.0012
σ2 = 0.01 0.0006 0.0002 0.0001 0.0061 0.0041 0.007
σ2 = 0.05 0.0032 0.0025 0.0024 0.0076 0.0051 0.0092
σ2 = 0.10 0.0104 0.0098 0.0091 0.012 0.0086 0.015
σ2 = 0.50 0.2489 0.2449 0.2473 0.1451 0.1413 0.1732
σ2 = 1.00 0.9942 0.9782 0.9892 0.65 0.5974 0.79

In Figure 2 are displayed the errors when estimating the deformation pa-
rameters for the different values of the noise variance σ2 and the number of
observations N . The rotation parameter θ is the one which is the most sensitive
to the number of observations N , and in average our morphing strategy seems
to be slightly optimistic in the estimation of λ for a small noise variance.

10



(a)

(b)

Figure 2: Boxplot of the errors for the estimation of (a) λ and (b) θ depending
on the noise variance σ2 and the number of observations N using the morphing
method.

Examples of the registration process are displayed in Figure 3. Our method-
ology works better when the data we are dealing with are closed to the proposed
model, else it tends to make more error undeniably. Nevertheless, compared to a
nonparametric model, we can use the estimations of the deformation parameters
to do meta-modeling as we will show in the next subsection.
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(a) (b)

Figure 3: Results of the registration process with : (a) N = 100 and σ2 = 0,
(b) N = 100 and σ2 = 0.5

3.2 Aeronautic loads

An airframe structure is a complex system and its design is a complex task
that today involves many simulation activities generating massive amounts of
data. This is, for example, the process of loads and stress computations of
an aircraft. That is the computations of the forces and the mechanical strains
suffered by the structure. The overall process exposed in Figure 4 is run to
identify load cases (i.e aircraft mission and configurations: maneuvers, speed,
loading, stiffness...), that are critical in terms of stress endured by the structure
and, of course, the parameters which make them critical. The final aim is to
size and design the structure (and potentially to reduce loads in order to reduce
the weight of the structure). Typically for an overall aircraft structure, mil-
lions of load cases can be generated and for each of these load cases millions of
structural responses (i.e how structural elements react under such conditions)
have to be computed. As a consequence, computational times can be significant.

In an effort to continuously improve methods, tools and ways-of-working,
Airbus has invested a lot in digital transformation and the development of in-
frastructures allowing to treat data (newly or already produced). The main
industrial challenge for Airbus is to reduce lead time in the computation and
preliminary sizing of an airframe as well as extracting value from already calcu-
lated loads. In this paper, we focus on the external loads of a wing: the shear
forces (transverse forces near to vertical arising from aerodynamic pressure and
inertia) and the associated bending moments (resulting from the shear forces,
they represent the flexion of the wing) are calculated for each load case. Exam-
ples of bending moments are displayed in Figure 5.

These external loads appeared to be extremely regular and one can legiti-
mately suppose that there exists a link between all those curves. Indeed, it is
natural to assume that there exists a reference bending moment (a reference
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Figure 4: Flowchart for loads and stress analysis process

(a) (b)

Figure 5: (a) Examples of bending moments along the wing for different load
cases - (b) Finite element model of a generic aircraft representing the wing
deformation [23]

curve) which can be morphed through a deformation model to give all the other
curves.

In [6], the authors present an aeronautic model that computes the loads
(forces and moments) on the wing of some aircraft model denoted by ACM1.
They present several statistical methods in order to study these data. In this sec-
tion, we will compare the method used in [6] with the model presented in Section
2 for a new aircraft model called ACM2. The data at our disposal represents
bending moments of a wing (representing its flexion) of an aircraft calculated
for 1152 different configurations (load cases). Each configuration is defined by
28 features (speed of the aircraft, mass, altitude, quantity of fuel, etc.), leading
to a bending moment calculated on 45 stations along the wing. In a more formal
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way, we observe the couple (Xj , Yj)j=1,...,1152, where Xj = (X1
j , ..., X

28
j ) are the

features and Yj = (Y 1
j , ..., Y

45
j ) is the bending moment. The idea is to predict

the bending moment for different configurations. The data are represented in
Figure 6.

Figure 6: Representation of all the bending moments of a wing of our data base:
the wing root is located at the zero origin, where the strains are maximum when
the wing bends.

Due to the discontinuities at the 3rd and 20th stations, we apply our method-
ology to each section independently: we suppose, reasonably, that the average
curve (of each section), can be used as the reference curve. Then, each section
can be represented by its minimum and maximum values, and by its rotation
and scaling coefficients λj and θj . Figure 7 assess the quality of the matching
process (the reference curve used is the average bending moment). As a com-
parison, we display in Table 2 the MSE between the DTW and our deformation
method (note that the MSE values are high due to the fact that the curves have
high values).

Figure 7: Results of the matching process
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Table 2: Mean Squared Error comparison between our morphing strategy and
the DTW for the real world application.

Morphing DTW

MSE 2.2e+09 3.1e+09

Thus the dimensional space of the outputs is reduce to 12 instead of 45. We
compare our method to three other methods of [6] applied on the outputs: no
transformation (we call it raw - we build 45 models, one per station); a PCA
(the three first principal components represent 99,9% of the explained variance
- 3 models instead of 45); a polynomial fitting per section (of degree 4 for the
first section, of degree 2 for the second and of degree 1 for the third section)
which leads to 10 models instead of 45. The Table 3 sums up the number of
outputs to predict depending on the method used.

Table 3: Number of outputs to be predicted depending on the method used on
the raw outputs: Raw, Deformation Model, PCA, polynomial fitting

Number of outputs Names of outputs

Raw 45 Bending moment value at
station 0 to 44

Deformation 12 θ1, θ2, θ3, λ1, λ2, λ3,min1,min2,
Model min3,max1,max2,max3

PCA 3 Principal components 1 to 3
Polynomial fitting 10 Coefficients of polynomials

The significant advantage of the reduction dimension techniques used is that
the response of the model would have a physical form contrary to the simple
linear models performed on the raw data. To build our models, we use the
Orthogonal Greedy Algorithm (OGA) also known as the Matching Pursuit Al-
gorithm. Detailed explanations can be found in [2], [24] and [18]. Roughly
speaking, we consider the problem of approximating a function by a sparse lin-
ear combination of inputs.

To assess the goodness of fit of our models, we defined for a curve of bending
moment j the error rate as follows:

error(j) =

√∑45
i=1(ŷ(xi)−yj(xi))2∑45

i=1 y
2
j (xi)

, j = 1, ..., ntest,

where ntest is the size of the sample of test. We compute the error rates on
(the sample of test is of 25% the size of the total database). It gives an idea
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of how accurate our predictions are. For this standpoint, we can easily com-
pute the empirical cumulative distribution function (CDF): ∀ j = 1, ..., ntest, let
α ∈ [0, 1]. The empirical CDF is defined as:

α→ G(α) = 1
n

∑ntest
j=1 1(error(j)≤α)

In Table 4, we give the values of G(α) for α = 1%, 2%, 5%, 10% and the
mean error. In Figure 8 we give the plots of the function G(α) for the different
methods.

Table 4: Average estimated P(error ≤ 1%), P(error ≤ 2%), P(error ≤ 5%)
P(error ≤ 10%), E(error) calculated on several random test data set (25% of
the size of the total dataset)

Deformation Model Polynomial Fitting PCA Raw

P(error ≤ 1%) 17% 14% 16% 15%
P(error ≤ 2%) 45% 45% 43% 51%
P(error ≤ 5%) 88% 88% 86% 88%
P(error ≤ 10%) 98% 97% 95% 98%

E(error) 2.9% 2.9% 3% 2.8%

Figure 8: Empirical CDF of error rates (P(error ≤ α))

Concerning the approximation and prediction of loads, our model is equiv-
alent in average to other tested methods, there are just slightly more observa-
tions with an error below 1%. Nevertheless, in our case, the linear models built
through the deformation model are sparser than the other. Indeed, in average,
11 variables are chosen as optimal parameter of the greedy algorithm by cross-
validation for the deformation model, 13 for the polynomial fitting, 15 for the
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PCA and 14 for the raw outputs one.

Even though the prediction of loads with the deformation model is so likely
equivalent to none transformation, it obtains better results than the polynomial
fitting and the PCA. Besides, using this deformation model gives a physical
response contrary to a simple linear model per station whose response could be
irregular.

We have shown that, when dealing with a large set of curves, if we provide
and use a good representation, we can have: as good results as state of the
art classical methods of dimension reduction techniques or none; and a better
understanding of the variability within the population at the same time. It
is the last point which is important particularly: indeed, it exists many ways
to have good prediction results (non-parametric regression, black-box models),
but using reduction dimension techniques without an underlying engineering
judgement is not of significant interest: from our methodology, besides having
a good prediction accuracy, we can extract knowledge for aerospace engineers
to better understand the variation of behaviors of the wing depending on the
reference behavior (in other words, it gives to engineers a physical interpretation
and idea of how the wing will react to new constraints). Hence, in this sense,
our proposed methodology outperforms the others.

4 Proofs and technical result

4.1 Technical result

This section is dedicated to the technical result used in the proof of Theorem 2.

Lemma 3. Let X1, ..., XN be N independent and identically distributed random
variables with uniform distribution on [0, 1] and let X(1) ≤ ... ≤ X(N) be the

reordered sample . Let aN = O(
√
N), then:

P(aN sup
j
|X(j+1) −X(j)| ≥ ε) −−−−−→

N→+∞
0.

Proof of Lemma 3. Let Z1, ..., ZN+1 beN independent and identically distributed
random variables with exponential distribution with parameter 1. It is a well
known fact that

( Z1∑N+1
k=1 Zk

, Z1+Z2∑N+1
k=1 Zk

, ..., Z1+...+ZN∑N+1
k=1 Zk

)
(L)
= (X(1), ..., X(N)) and we have

X(j+1) −X(j)
(L)
=

Zj+1∑N+1
k=1 Zk

. (13)

Now, for ε > 0
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P(sup
j
|X(j+1) −X(j)| ≥ ε) ≤

∑
j

P(X(j+1) −X(j) ≥ ε)

≤ N max
j

P(X(j+1) −X(j) ≥ ε).

By using (13), we have

P(X(j+1) −X(j) ≥ ε) = (1− ε)N−1.

Then,

P(sup
j
|X(j+1) −X(j)| ≥ ε) ≤ N(1− ε)N−1.

The result follows replacing ε by ε
aN

and letting N → +∞.

4.2 Proofs of Theorems 1 and 2

Proof of Theorem 1. To ease the notation, we do not display the dependency in
j.

i) By (3) it is easy to see that MN (α) is an empirical mean of iid bounded
random variables. Thus, by the Strong Law of Large Number (SLLN)

MN (α)
p.s−−−−−→

N→+∞
M(α),

with M(α) = E[ε2] + E[(T 2
α(X(α), f̃(X(α)))− T 2

α∗(X(α∗), f̃(X(α∗))))2].

M(α) is continuous and has an obvious unique minimum α∗. Since Θ is
compact, this implies that inf

α:d(α,α∗)≥ε
M(α) > M(α∗) is satisfied (see Problem

27 p. 84 in [25]).

It remains to prove that {mα : α ∈ Θ} is a Glivenko-Cantelli class. Thanks to
the remark following the proof of Theorem 5.9 in [25], this is an easy consequence
of the continuity of α → mα and the fact that the function is bounded by a
continuous and integrable function on [0, 1]. Indeed, it exists at least a function
f∗ in Fθ0 which bounds every other functions, and two constants K1 > 0,K2 > 0
such that

mα(x) ≤ K1(f∗(x) +K2)2,

and
sup
α∈Θ

|MN (α)−M(α)| P−−−−−→
N→+∞

0. (14)

The result follows from the Theorem 5.7 in [25].
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ii) The Central Limit Theorem will be a consequence of Theorem 5.23 in
[25]. Recall that

mα(x) = [f(x)− λ((x(α)− 1) sin θ + cos θf̃(x(α)))]2.

By the Implicit Function Theorem, that is easy to see that α→ x(α) is C1

on a compact set. This implies that the norm of the gradient of mα is uniformly
bounded in α. Hence ∃φ̇(x) ∈ L1 such that ||∇αmα(x)|| ≤ φ̇(x) hence

|mα1
(x)−mα2

(x)| ≤ φ̇(x)× ||α1 − α2||.

In order to give an explicit formula for the limit variance, we apply the
results of Example 5.27 in [25] where fθ becomes in our case T 2

α and hence, we
have √

N(α̂jN − α
∗
j )

L−−−−−→
N→+∞

N (0,Γα∗
j
),

with Γα∗
j

= V −1
α∗
j

2σ2 and Vα∗
j

= 2E[Ṫ 2
α∗
j
Ṫ 2T
α∗
j

].

Proof of Theorem 2.

i) To prove the consistency of ˆ̂αN we have to show that

sup
α∈Θ
|M̂N (α)−M(α)| P−−−−−→

N→+∞
0.

We have,

sup
α∈Θ
|M̂N (α)−M(α)| ≤ sup

α∈Θ
|M̂N (α)−MN (α)|+ sup

α∈Θ
|MN (α)−M(α)|.

It has been shown in the proof of Theorem 1 that

sup
α∈Θ
|MN (α)−M(α)| P−−−−−→

N→+∞
0.

It remains to prove that

sup
α∈Θ
|M̂N (α)−MN (α)| P−−−−−→

N→+∞
0.

To ease the notation, we write T 2
α(i,N) = T 2

α(Xi(α,N), f̃N (Xi(α,N))), and
T 2
α(i) = T 2

α(Xi(α), f̃(Xi(α))). Set

DN (α) = MN (α)− M̂N (α)

=
1

N

N∑
i=1

2f(Xi)[T
2
α(i,N)− T 2

α(i)]− 1

N

N∑
i=1

[T 2
α(i,N)− T 2

α(i)][T 2
α(i,N) + T 2

α(i)].
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As f and T 2
α are continuous and bounded on Θ× [0, 1], this implies that:

|Dn(α)| ≤ | 1

N

N∑
i=1

2f(Xi)[T
2
α(i,N)− T 2

α(i)]|+ | 1

N

N∑
i=1

[T 2
α(i,N)− T 2

α(i)][T 2
α(i,N) + T 2

α(i)]|

≤ K(
1

N

N∑
i=1

[T 2
α(i,N)− T 2

α(i)]2)
1
2

≤ K ′( 1

N

N∑
i=1

[(Xi(α,N)−Xi(α))(1 + C) + (f̃N (Xi(α))− f̃(Xi(α))]2)
1
2 .

By construction, there exists j such that X(j) ≤ Xi(α) ≤ X(j+1), and X(j) ≤
Xi(α,N) ≤ X(j+1) which leads to:

Xi(α,N)−Xi(α) = γ(X(j+1) −X(j)).

Besides, there exists γ′ > 0 such that
f̃N (Xi(α)) = γ′f̃(X(j+1)) + (1− γ′)f̃(X(j)). C and γ′ being uniform constants,
we have

|f̃N (Xi(α))− f̃(Xi(α))| ≤ γ′|f̃(X(j+1))− f̃(X(j))|
≤ Cγ′|X(j+1) −X(j)|,

and

|Dn(α)| ≤ K ′( 1

N

N∑
j=1

[X(j+1) −X(j)]
2)

1
2

sup
α∈Θ
|Dn(α)| ≤ K ′( 1

N

N∑
j=1

sup
α∈Θ

[X(j+1) −X(j)]
2)

1
2

≤ K ′sup
j
|X(j+1) −X(j)|.

By Lemma 1 P(K ′sup
j
|X(j+1)−X(j)| ≥ ε) −−−−−→

N→+∞
0. Hence DN is bounded

by an integrable and continuous function which goes to 0 in probability on Θ

sup
α∈Θ
|M̂N (α)−M(α)| P−−−−−→

N→+∞
0.

So we may conclude.
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ii) First, we use that
√
N( ˆ̂αN − α∗) =

√
N( ˆ̂αN − α̂N ) +

√
N(α̂N − α∗). By

Theorem 3,
√
N(α̂N − α∗)

L−−−−−→
N→+∞

N (0,Γα∗) with Γα∗ defined in (6). It re-

mains to prove that
√
N( ˆ̂αN − α̂)

P−−−−−→
N→+∞

0.

Using the same arguments as in the proof i), we have

P(
√
N sup
α∈Θ
|M̂N (α)−MN (α)| ≥ ε) ≤ P(K

√
N sup
α∈Θ
|X(j+1) −X(j)| ≥ ε) (15)

The right hand side of (15) converges to 0 by Lemma 3. This implies that√
N( ˆ̂αN − α̂)

P−−−−−→
N→+∞

0.

5 Perspectives and conclusion

One of the main quality of our approach is that it is easy to implement and
execute. The cost function being simple, we use a BFGS algorithm to find the
optimal parameters, and because of the regularity of curves we deal with, the
initial points for optimization can be easily defined. Furthermore, the search
of the coordinate of the reference curve which is sent to the coordinate of the
curve to fit can be easily implemented with a simple value search.

We have seen that our methodology performs very well when the data we are
dealing with are close to the chosen model. Besides, the deformation parameters
can be exploited through an explainable model such as the linear model used in
the real world problem.

It seems that the deformation model is robust if the noise is controlled. An
interesting extension of this work would be to study what is going on when the
reference curve is noisy. A generalization of this work to less regular functions
would be worthwhile. Finally, it would be interesting to include in the model a
way to handle discontinuities in order to reduce the dimension and have a more
global representation of the deformation.
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