
HAL Id: hal-01879084
https://hal.science/hal-01879084v1

Submitted on 21 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Segmenting Objects through an Autonomous Agnostic
Exploration Conducted by a Robot

Leni Le Goff, Ghanim Mukhtar, Pierre-Henri Le Fur, Stephane Doncieux

To cite this version:
Leni Le Goff, Ghanim Mukhtar, Pierre-Henri Le Fur, Stephane Doncieux. Segmenting Objects through
an Autonomous Agnostic Exploration Conducted by a Robot. 2017 First IEEE International Con-
ference on Robotic Computing (IRC), Apr 2017, Taichung, Taiwan. �10.1109/IRC.2017.22�. �hal-
01879084�

https://hal.science/hal-01879084v1
https://hal.archives-ouvertes.fr


Segmenting objects through an autonomous
agnostic exploration conducted by a robot

Leni K. Le Goff, Ghanim Mukhtar, Pierre-Henri Le Fur and Stephane Doncieux
UMR 7222, ISIR, Sorbonne Universites, UPMC Univ Paris 06, Paris, France

UMR 7222, CNRS, ISIR, Paris, France
Email: {le goff, doncieux}@isir.upmc.fr

Abstract—Human’s everyday environment is an open envi-
ronment in which objects with new shapes, colors or textures
frequently appear. Enabling robots to deal with such environ-
ments and to manipulate those objects raises a difficult challenge:
how to recognize an object ? How to distinguish it from the
background ? An approach is proposed here to allow the robot
to find this segmentation on its own. It relies on an active
exploration of the environment aimed at identifying features of
things that move after a contact with robot’s end-effector. The
only assumption made is that objects of interest are solid objects
that the robot can move. The proposed approach can thus be
applied without modifications to a large range of environments,
as shown by the experiments performed by the robot.

Keywords-Autonomous exploration; Developmental robotics;
Interactive Perception; Learning; Computer Vision

I. INTRODUCTION

Our environment is full of objects with diverse size and/or
shape. New objects are not rare. Building a robot that could
manipulate them without the help of an expert would be
a first and significant step towards service robotics. Object
manipulation remains a challenge. It requires a fine control
of robot arm and end-effector, and also requires objects
recognition and segmentation. In this paper, focus is given to
objects segmentation. This problem is hard because of the wide
variety of objects in a typical human environment. Objects
vary by shape, color, size and texture. They also have different
functions or physical properties. The environments are also
diverse. For instance, in a bathroom, a robot could deal with
objects near the bath, the washbasin or closets. This diversity
makes it hard to preprogram a robot with the features of all
objects and environments it might face.

A robot that makes less assumption about objects or envi-
ronments features and that could learn on its own to distinguish
objects from the background environment would be able to
adapt to any situation [1] and could thus face a human
environment in all its complexity. This is the main concept of
developmental robotics [2], [3], in which the robot must build
its own representations of its body and of the world through
self-interactions and interactions with the environment. For
instance, to build a representation of objects, the robot ”plays”
with them and extracts the features which characterize them
and that are relevant with respect to robot abilities.

Perception driven by manipulation (or opposite) is known as
Interactive Perception [4]. By observing the effect of its action
on an object, the robot can build a representation in relation

Fig. 1. Overview of the proposed babbling approach. The robot chooses a
point of the environment to interact with. It observes if something has moved
as a result of its action. A classifier is trained online with the informations
gathered thanks to these interactions. Finally, a saliency map is computed to
guide the exploration.

to its own abilities. This field was first studied by Metta and
Fitzpatrick [5], [6], [7]. They developped a method on a real
robot to segment objects from a table. The robot, by pushing
an object and observing the resulting movement, is able to
separate the objects from the background. Interactive Percep-
tion is also related to the concept of affordances introduced
by J. J. Gibson [8]. This concept highlights that objects have
inherent ”values” and ”meanings” which could be perceived
by an agent and could be linked to its possible actions on those
objects. Sahin et al. highlight the fact that these affordances
are to be acquired by interacting with the environment [9].

The goal of this work is to define a method, that uses
Interactive Perception, affordances and exploration, to learn
autonomously how to distinguish manipulable elements in an
environment. In other words, how to segment objects from the
background with an autonomous exploration (see Figure 1).
We assume that something moveable by robot’s end-effector
is potentially an object. So, the robot learns to identify the
relevant features of things that are moveable as a result of
its action, i.e. objects that ”afford” the ”move” action. The
”move” action is considered here as the action to be applicable



to an object for it to be interesting from robot’s point of view.
Most of previous work, in Interactive Perception [4], use

a passive image processing step before any interactions to
produce objects hypothesis and bootstrap the system. But this
step needs assumptions on the structure of the environment
and on shapes and/or colors of objects (see section II-A).
In this work, to avoid assumptions that are specific to a
particular kind of environment, an over-segmentation of the
scene into supervoxels (see section III-B) is used to bootstrap
the exploration. Then, a saliency map is built online that
represents the distribution of features which afford the ”move”
action, i.e the potential presence of an object (see section
III-C). The main contribution of this work is :

The integration of action, perception and learning into a
single process to produce a saliency map which

represents the distribution of potential presence of
objects, in order to segment them from the background

in a cluttered environment with a minimum prior
knowledge about environment structure.

This work is not focused on object recognition or objects
model learning. It comes at a previous step, for a first identifi-
cation before a more targeted exploration. With a minimum of
a priori knowledge on the environment, this work represents
the very first step of a developmental process that would aim
at the acquisition of robust and adaptive object manipulation
skills. An object will be defined here as a cluster of adjacent
supervoxels that afford the ”move” action for the robot.

II. RELATED WORKS

A. Discovering Objects by Interactive Perception

Interactive Perception is used in many works [4] to learn
objects appearances, for objects recognition and manipulation,
by autonomous exploration with a humanoid robot. But as this
work is focused on objects segmentation, this section focuses
on works that use Interactive Perception for this purpose. As
written in the introduction, Interactive Perception has been
studied first by Fitzpatrick and Metta [5], [6], [7]. In their
work, a robot learns objects by interacting with them. It uses
the link between its action and the effect of its action to
segment the object, and then, collect data about it. Their
method is restricted to a plane as background. In this paper, the
method works on different environment and on many objects
as long as they are rigid solids.

Some works on Interactive Perception, use object candidate
or hypothesis generation as first step. Objects candidates are
clusters of the visual field of the robot built with passive
image processing algorithms. These candidates are rejected
or confirmed by the robot action [10], [11], [12], [13], [14].
In those works, candidates generation relies on assumption
that objects are on a flat surface. In some of these works,
they use also simple shape matching to work with textureless
object or highly textured background [12], [13], [14]. Works
like [11], [15] use object database to simplify object candidate
generation.

Most of those works are efficient and successful in segment-
ing and tracking objects. But the step of object hypothesis
generation needs strong assumptions on the environment and
the objects, and their generalization leads to computations of
increasing complexity.

The objective here is to learn object features from raw
sensor data with a single assumption: objects are rigid solids.
The robot uses Interactive Perception to learn what is relevant
to distinguish background from objects. By starting from a
lower level than previous works discussed in this section, less
assumptions are required, thus opening the way to a more
adaptive robot behavior [1].

B. Scene Understanding by Affordance Recognition

As discussed in section I, Interactive Perception is linked
with learning which features in the environment afford this
action. E. Gibson studied how children develop affordances
and claimed that learning is ”discovering distinctive features
and invariant properties of things and events” [16] and ”dis-
covering the information that specifies an affordance” [17].
Learning affordances and building a meaningful segmentation
for a robot is about learning ”regularities” in its sensorimotor1

domain .
In the work of Ugǔr et al. [18], a wheeled robot explores

an environment to learn the ”traversability” of obstacles. The
robot is confronted to obstacles with different shapes : spheres,
cylinders, parallelepiped. The ”traversability” of an obstacle
depends on its shape and its orientation. By trials, the robot
must learn which visual feature affords ”traversability”. This
set-up is far from real conditions but their work demonstrates
that learning of scene understanding through affordances on a
robot is possible.

The works of Popovic et al. and Krüger et al. use the
same approach but relate to grasping skill acquisition [19],
[20]. Like in the work of Ugǔr et al. [18], their goal is to
associate features to potential grasp. They use Early Cognitive
Vision (ECV) [21] for preliminary image processing. ECV
is a computer vision framework that extracts features with
a stereo camera. The features are edges, contours, textures
and surfaces. The robot tries to grasp different objects and
associate ECV’s features to successful grasp. But, ECV needs
textured or complex objects to work properly. Finally, in this
work, they focused on objects and did not discuss about
separating objects from background.

On the contrary, the method presented in this paper aims at
scene understanding by considering the whole environment,
like the work of Craye et al. [22], in which a wheeled robot
builds a map of presence probability of objects in its visual
field, by exploring its environment. Each pixel is associated
to a value between 0 and 1, that represents the probability to
be part of an object. They use 2D colored images segmented
into superpixels (e.g. clusters of pixels) and extract their
average color. A feature is an array of colors formed by

1Sensorimotor refer to the coupling of the sensor system and the motor
system for an agent



Fig. 2. General workflow of the approach.

averaging the color of a superpixel and the average colors of
its neighborhood. Those features can be applicable to all kinds
of environments, but, to discriminate objects from background,
they also assume that things, on a flat surface, are objects.

By drawing inspiration from these works, the method pre-
sented in this paper aims at using Interactive Perception to
learn which features afford the ”move” action on objects. This
work uses as features average colors and normals of clusters
resulting from an over-segmentation. These features are not
specific to a certain type of objects.

III. METHOD

A. Overview

The robot explores an unknown dynamic2 environment, and
this exploration is driven by a saliency map of the environment
built online. A saliency map is a distribution of salient parts
in the visual field. Salient parts of the visual field are parts
which attract gaze [23]. But salience is a subjective concept.
If the agent wants to move objects, salient features are those
of moveable objects, for instance. This notion is used here:
the robot builds a saliency map representing the distribution
of salient features, i.e. features of moveable objects. Figure
5 shows an example of a saliency map. A RGBD Camera
(Microsoft Kinect 3) is used to retrieve a 3D pointcloud of the
scene. This 3D pointcloud is over-segmented into supervoxels
thanks to Voxel Cloud Connectivity Segmentation (VCCS)
[24] (see section III-B).

Figure 2 presents the general workflow of the method. The
exploration is sequential, each iteration is structured into 5
steps :

Step 1 Over-segmentation of the pointcloud into supervoxels.
This step is described in section III-B.

Step 2 Computation of the saliency map. A classifier assigns a
saliency weight between 0 and 1 to each extracted su-
pervoxel according to the samples stored in the database.

2In this work, ”dynamic” means that the state of the environment is not
reinitialized at the begining of each iteration.

3Other kind of 3D cameras could be used such as stereoscopic cameras

These saliences represent the probability for a supervoxel
to be part of ”something” moveable by the robot, i.e. an
object, as we defined it. This step is described in section
III-C.

Step 3 Choice of a supervoxel to interact with. The choice is
random according to the saliency map, therefore the robot
will explore first supervoxels with high saliences.

Step 4 The robot tries to move something on the selected super-
voxel. To do it, the robot moves its end-effector towards
the center of the chosen supervoxel. Its Inverse Kinematic
model is provided for this purpose. Then, when it is
around the center of the supervoxel, the robot applies a
push primitive in the direction of the center. The push
primitive consists in moving its end-effector along a
straight line for a fixed distance. Finally, its arm comes
back to a position outside of the camera visual field.

Step 5 Observation of a possible effect. The chosen supervoxel is
used to create a mask on the 2d colored image to keep just
pixels in the area of the supervoxel. Then, images before
and after the action of the robot are filtered with the mask
and are compared. In this way, differences are checked
just around the point of action. Finally, the features are
added to the database as a sample labeled positive if there
is a difference, negative otherwise (see section III-C).

At the beginning of the exploration all saliences are initial-
ized to 1, because without information about the environment,
all the supervoxels are supposed to be interesting and are to be
explored. Then, after the first iteration, the random selection is
biased by the supervoxels saliences: the probability to explore
a supervoxel is its salience normalized by the sum of the
saliences of all observed supervoxels:

Pexp(svi) =
si∑
j sj

(1)

The definition of those saliencies is described in section III-C.

B. Voxel Cloud Connectivity Segmentation

The saliency map is based on an over-segmentation into
supervoxels using Voxel Cloud Connectivity Segmentation
[24] (VCCS). As illustrated in Figure 3, supervoxels are
clusters of voxels4.

VCCS is similar to superpixel methods, such as SLIC
superpixels [25]. It builds clusters of voxels based on colors,
normals and shapes features. From seeds evenly distributed
on the pointcloud, a region growing method is used to build
the supervoxels. The clusters are grown with a local k-means
algorithm. Expansion of clusters is controlled by a distance
computed with colors, normals and spatial distances. Normals
are computed during the algorithm by local plane estimation
for each voxel.

The use of 3D information to build supervoxels is a sig-
nificant enhancement compared to superpixels methods as it
allows this segmentation to respect object boundaries. The
samples stored to update classification are thus more likely to

4voxels are the smallest unit of a 3D image like pixels in 2D images



(a) wooden table (b) textured table (c) lectern

Fig. 4. Pictures of the environment used for the experiment : 4a a wooden table, 4b table with textured tablecloth and 4c a lectern.

Fig. 3. Examples of supervoxels segmentation.

be associated to a single object. It removes a significant source
of noise in the classification. Also, VCCS works on all kinds
of environments because the algorithm uses low level features,
such as color, normals and geometric descriptors. Therefore
VCCS produces a meaningful over-segmentation of RGB-D
images. Moreover, as output, the algorithm provides for each
supervoxel its average color and normal, which are used as
features for the classification. However a metaparameter (set
by the user) controls the size of the supervoxels, so objects
must be at least bigger than the size of supervoxels.

C. Building the Saliency Map

When the scene is segmented, each supervoxel is weighted
with a value between 0 and 1. These values represent the
supervoxels salience. The algorithm, used to compute this
salience (see algorithm 1), is a nearest neighbor classifier
in the visual features space. The salience of a supervoxel is
attributed by comparing its visual features with those stored
in the dataset.

At each iteration, all saliences are initialized to 1. Then, ac-
cording to the dataset, the saliences are increased or decreased
with the increment γ∗(1−D) . For each supervoxels and each
stored samples, if the label of the current sample is positive
(i.e sample from a supervoxel that has moved), γ ∗ (1−D) is
added to the salience of the current supervoxel and otherwise
γ∗(1−D) is subtracted. Saliences can not be decreased under

Algorithm 1 Algorithm used to update supervoxel saliences.
F is a set of samples f stored in the training dataset with their
labels (lbl). SV C is a set of supervoxels sv associated with
their salience (s), and feat(sv) is the features of sv. ζ and γ
are two meta parameters (both are expected to be closer to 0
than to 1). D ∈ [0, 1]

1: procedure UPDATESALIENCES
2: for all (lbl,f) in F do
3: for all (s,sv) in SVC do
4: D = dist(f,feat(sv))
5: if D < ζ then
6: if lbl = positive then
7: s = s+ γ ∗ (1−D)
8: end if
9: if lbl = negative then

10: s = s− γ ∗ (1−D)
11: end if
12: end if
13: if s < 0 then
14: s = 0
15: end if
16: if s > 1 then
17: s = 1
18: end if
19: end for
20: end for
21: end procedure

0 or increased over 1, to keep them within [0, 1].

Parameter ζ γ α
Value 0.3 0.05 0.5

TABLE I
VALUES OF THE META-PARAMETERS OF THE CLASSIFIER USED FOR THE

EXPERIMENTS

Furthermore, the saliences are updated only if the distance
D is lower than a threshold ζ. This threshold represents
the radius of influence of a stored sample. A sample will
only change the salience of a supervoxel whose features are
close to the features of the sample. This limits interferences
between samples. For instance, if ζ is equal to 1, a sample



Fig. 5. An example of a saliency map, i.e. distribution of saliences on
a set of supervoxels. On the left, a colored pointcloud and on the right,
the same point-cloud colored with the corresponding saliences distribution.
White corresponds to the most interesting area (supervoxels with a salience
of 1) and black to the less interesting area (supervoxels with a salience of
0). These figures have been created with only one sample with the parameter
γ fixed at 1 (see section III-C). The red dot indicates the position of the
supervoxel selected. The corresponding feature is labelled as non interesting,
as a consequence, the features close to it have saliences close to 0. So, the
distribution represented on left images is the distance (see equation 2) between
the selected supervoxel and the other supervoxels.

will modify the saliences of all observed supervoxels, and
so, a single negative sample could decrease the salience of
moveable elements. However, if ζ is too low the classifier
will need too many samples to learn.
γ is a parameter to control the speed of convergence of the

algorithm. If γ is high the saliency will be learned fast but will
be very sensitive to false positive or false negative samples.
So, γ must be chosen as a compromise between speed and
robustness. In the experiments this parameter is fixed at 0.05.
In Figure 5, an example of saliency map on each set-up is
given. To compute these maps and for illustration, γ is fixed
to 1 (its maximum value), so just one sample (with a negative
label in this case) is needed to have a saliency map that has
converged. Obviously, these saliency maps are not perfect, this
can be easily observed on the textured table and the lectern in
which the background is not entirely black. Furthermore, any
noise or failed attempts will be over-integrated.

D is the distance between the features of two supervoxels:

D =
√
α ∗D2

c + (1− α) ∗D2
n (2)

Dc is the L2 distance between average colors of supervoxels
and Dn is the L2 distance between their averages normals; α
represents the relative importance of the color with respect to
the normal and is between 0 and 1. α is set for the experiments
at 0.5, so the color and the normal have an equal influence.
Both Dc and Dn are normalized, so, the distance D is between

0 and 1. The values of the parameters used for the experiments
described here are given in Table I.

IV. EXPERIMENTS

A. Set-up
The experiments made to validate the proposed method rely

on the Baxter robot. This is a robot with two arms with 7
degrees of freedom each. For the experiment, just one arm is
used. The vision sensor is a Microsoft Kinect first version. It
provides RGB-D images with a resolution of 640*480.

An experiment is made up with a fixed number of iterations
during which the robot tries to reach objects in order to train
its classifier, as shown in figure 2. 12 classifiers have been
trained like this in 3 different set-ups (4 classifiers each) (see
figure 4) : a wooden table, a table with complex textures and
a lectern. This last set-up allows to test the method on a non
flat environment (e.g. a non tabletop scenario).

B. Evaluation
After training the 12 classifiers, as indicated above, they are

evaluated. We propose for the evaluation two metrics:
• raw performance : which is an indicator of how well a

classifier is able to segment objects from a background
identical to the one used during its training.

• generalization performance : which is an indicator of
how well the classifier is able to segment objects from
a background that is different to the one used during its
training.

During the training, at each iteration, a snapshot of the
classifier is taken, which makes it possible to evaluate its
capacity to segment objects at that point of its training. This
is done until the end of the training.

Also, for the evaluation, an expert procedure is used to
segment objects from background manually5. This acts as a
reference to count the number of chosen supervoxels that are
part of an object. The performances are computed as follows:

1) A naive policy performance to segment objects is es-
timated, by choosing randomly N supervoxels with an
uniform distribution:

frandom =
nU
N

(3)

Where: frandom ≡ The naive policy performance index;
N ≡ Number of supervoxels randomly chosen (N =
100); nU ≡ Number of supervoxels are actually part
of an object.

2) The classifier snapshot performance is estimated by
choosing randomly N supervoxels with a distribution
biased by the relevant saliency map (look at equation
1):

fclass =
nSM

N
(4)

Where: fclass ≡ The classifier snapshot performance;
N ≡ Number of supervoxels chosen (N = 100); nSM ≡
Number of supervoxels are actually part of an object.

5This manual segmentation is used only for the evaluation, the proposed
algorithm does not rely on it.



(a) textured table (b) lectern

Fig. 6. Example of a saliency map during an exploration on the textured table and the lectern. The evolution of the saliency map is depicted at 4 different
steps. At iteration 1, as all saliences of the map are initialized at 1, the map is represented in white. Then for the textured table, from iteration 60, the table
starts to be black and parts of objects are white.

3) Finally compute an performance score:

η =
fclass − frandom
1− frandom

(5)

Where: η ≡ Performance score of the classifier snap-
shot; 1 ≡ Expert policy efficiency.

Thus 1 is the maximum value of efficiency, it is the
efficiency expected for an expert controller whereas 0 means
that the approach has the same efficiency as that of a naive
random controller. The goal of the training process is thus to
progressively move from the performance of a naive controller
to that of an expert one [26].

For the generalization performance of a classifier, classifiers
trained on the wooden table are evaluated on the textured
table. This case allows to confront the classifier with a more
complex environment than the one used during its training.
Moreover, those trained on the textured table and on the lectern
are evaluated on the wooden table. These two cases allow to
confront the classifier with a less complex environment than
the one used during its training.

V. RESULTS

Figure 6 shows pictures of the saliency at different moments
of the exploration. As explained in section III, the saliency map
starts with all saliences at 1, so, all supervoxels are represented
in white in the first picture. After several iterations and after
having collected new samples, the objects are distinguishable
from the background: supervoxels on objects are lighter than
those on the background.

The top graphics on Figure 7, represent the raw performance
(black curve) and the generalization performance (blue curve)
of the classifier. Both performances are computed with equa-
tion 5. The bottom graphics represent the accumulated number
of negative and positive samples during the exploration of the
environment, and the sub-figures 7a, 7b and 7c are respectively
the results on the wooden table, the textured table and the
lectern.

For each set-up, at a certain iteration (around 40 for wooden
table, around 60 for textured table and after 100 for the
lectern) the raw performance increases quickly before reaching
a plateau. Also, at this moment, the rate of change of both
curves, which represents the number of negative and positive
samples, changes critically: the first one (negative samples)
starts to decline, while the second one (positive samples)
increases faster. As represented on the bottom graph of Figure
7, at the beginning, the robot collects almost only negative
samples (i.e. interacts only with the background), then at the
transition point, its starts to gather more positive samples (i.e.
it interacts with moveable elements). Indeed, the absolute dif-
ference between the number of positive and negative samples
(represented in blue) reaches its maximum around 40 iterations
for the wooden table and around 60 iterations for the textured
table. At this moment, the classifier has a sufficient number of
samples from the background to ”recognize” it. As shown in
Figure 6, it corresponds to the moment when the background
starts to become entirely dark, and so, the background is
classified, with a good certainty, as non moveable elements.

However, the number of negative samples continues to
increase. This is due to false negative samples. In some cases,
the simple push primitive is not able to move an object.
Obviously, a simple push primitive, like used in this work, is
not enough to explore fully the environment. This has a little
influence on the classifier efficiency because the robot needs
to interact several times with the same object to conclude if
it is moveable or not. Therefore, this issue only slows down
the training.

The classifier needs enough samples about the background
to distinguish objects from it, moreover the more complex
the background is, the more time is required for the robot to
bootstrap its saliency map. Also, on the textured table and the
lectern, the efficiency increases more progressively than for the
wooden table. Moreover, on the lectern, after 150 iterations,
the robot still gathered a lot of samples of the background,
even if the raw performance of its classifier has reached a



(a) wooden table (b) textured table (c) lectern

Fig. 7. Top graphics represent the performance (as define in equation 5) over the iterations, in black is represented the performance computed on the same
set-up as the one used for training and in blue the performance computed on a different set-up. The second performance represents the generalisation efficiency
of the classifier. Bottom graphics represent the accumulated number of positive and negative samples; and the absolute difference between both. Each sub
figure is related to different environment : 7a the wooden table, 7b the textured table and 7c the lectern.

plateau. So, for this set-up the robot will need more iterations
to fully separate objects from the background.

The raw performance has never reached the maximum score.
That is due principally to the lighting variations and the shad-
ows of objects. The classifier could consider a shadow as part
of an object. That could be solved by an exploration focused
around an object. Furthermore, the training is made with RGB
encoding which is very sensitive to lighting variations. This
can be fixed by working with HSV encoding which is less
sensitive to lighting variations.

For the wooden table, its generalization performance is
significantly less than the raw performance, but for the tex-
tured table, both performances are close. For the lectern, its
generalization performance is significantly better than its raw
performance. The wooden table is the simplest set-up in the
paper, so, there is less information to collect. Consequently,
when the classifier trained on this set-up is evaluated on
more complex environments (textured table), information is
missing to separate objects from background. On the contrary,
the lectern has a lot of visual informations, so the classifier
trained on it could be efficient on different and simpler kinds
of environments, but only if those environments share visual
features with the lectern.

VI. DISCUSSION AND FUTURE WORKS

The results show that this online classifier is able to separate
objects from the background. It is able to do it in different
kinds of environments and with different kinds of objects. For
a complex background, the robot must gather more samples
than with simple background like an uncolored table. However,
even in the hardest set-up (the lectern) tested in this paper,
the exploration needs around one hundred iterations to reach
a sufficient efficiency. It takes around half an hour for one
hundred iterations with our implementation, so, a few hours
might be enough to have a performance equal to an expert
policy (e.g. hand-made). In future work, longer exploration
will be performed to see if the classifier performance can reach
the expert one and to check if it over-fits.

Also, the generalization performance, shown on Figure 7,
demonstrates that the robot must explore different kinds of

environments to collect a wide range of samples. But, even
if the classifier seems to have at least some generalization
ability, the saliency map produced at the end of a session
of exploration is specific to the explored environment. The
deceptive aspects of real environments make the generalization
difficult. What is learned in a particular situation is not always
applicable to another situation. The exploration phase must
then be applied during the whole ”life” of the robot to produce
a meaningful segmentation of its environment. The classifier
presented in this paper, could be used in this way thanks to its
speed. Indeed, it learns fast (see section V), and so, it could
adapt to new situations and new features quickly. But to avoid
over-fitting, a mechanism of unlearning must be used.

The algorithm 1 has a complexity of O(n*m), where n is the
size of the dataset and m the number of supervoxels extracted
on the current scene. For a large scene, with many supervoxels,
and a long exploration, that leads to a large dataset, this
algorithm will be very slow. To avoid this problem, a clustering
process, such as k-means, or a second learning process, such
as neuronal network or random forest, could be applied on the
dataset to reduce its size.

This method could be linked to the concept of affordances.
The saliency map produced after exploring the environment
with a push primitive represents the distribution of visual
features that afford a ”push” action. But the features chosen
for learning are critical. In this work, the choice was to have
features that are neither specific to a kind of environment
nor to a kind of object. But, if an object has the same
color and shape as a part of the background this will lead to
misclassification. This method can be used with other features
or descriptors. Also, introducing other modalities such as touch
or hearing senses could be interesting.

This link with affordances suggests also to provide more
complex capacities of interaction to the robot. The robot could
have several ways to interact with objects in order to explore
more efficiently its environment.

The experiments presented in section IV show that the
hypothesis of what can be moved by the robot end-effector is
an object is sufficient to produce a meaningful segmentation.
This criterion is sufficient to segment objects from background



in the set-ups presented in this paper. Such a segmentation can
be used for an exploration focused on objects to collect more
accurate and complete information on those objects. Thanks
to this dynamic and adaptive segmentation, the robot could
explore further how to manipulate objects. This method could
be used in a bootstrap phase for the works discussed in section
II.

Finally, this method is not limited to objects. It is applicable
to all manipulable entities by the robot as long as they are rigid
bodies. For instance, the robot could discover manipulable
mechanisms, like door handles to turn, buttons on a wall or
on a dashboard to push, or a drawer to open. Indeed, the only
assumption made on the objects, in this method, is : all entities
that are not part of background are rigid body moveable by
the robot independently from the background.

VII. CONCLUSION

A method has been proposed to identify the features of
objects that can be moved by the robot. This method re-
lies on an exploration of the environment with integration
of interactive perception and online learning into a single
process. It is aimed at segmenting objects from the background
without strong hypothesis on objects or background features.
It can thus be applied in different environments without any
adaptation, thanks to the saliency map learned by the robot
from its own experiences. The results show that the system
can indeed extract relevant features and segment objects from
the background.

ACKNOWLEDGEMENT

This research is sponsored by the DREAM project6. This
project has received funding from the European Union’s
Horizon 2020 research and innovation program under grant
agreement No 640891.

REFERENCES

[1] S. Doncieux, “Creativity: A driver for research on robotics in open
environments,” Intellectica, vol. 2016/1, no. 65, pp. 205–219, 2016.

[2] M. Asada, K. F. MacDorman, H. Ishiguro, and Y. Kuniyoshi, “Cognitive
developmental robotics as a new paradigm for the design of humanoid
robots,” Robotics and Autonomous Systems, vol. 37, no. 2, pp. 185–193,
2001.

[3] A. Cangelosi, M. Schlesinger, and L. B. Smith, Developmental robotics:
From babies to robots. MIT Press, 2015.

[4] J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal, and
G. S. Sukhatme, “Interactive perception: Leveraging action in perception
and perception in action,” CoRR, vol. abs/1604.03670, 2016.

[5] G. Metta and P. Fitzpatrick, “Early integration of vision and manipula-
tion,” in Neural Networks, 2003. Proceedings of the International Joint
Conference on, vol. 4. IEEE, 2003, pp. 2703–vol.

[6] P. M. Fitzpatrick and G. Metta, “Towards manipulation-driven vision,”
in Intelligent Robots and Systems, 2002. IEEE/RSJ International Con-
ference on, vol. 1. IEEE, 2002, pp. 43–48.

[7] P. Fitzpatrick and G. Metta, “Grounding vision through experimen-
tal manipulation.” Philosophical transactions. Series A, Mathematical,
physical, and engineering sciences, vol. 361, no. 1811, pp. 2165–2185,
2003.

[8] J. J. Gibson, The ecological approach to visual perception: classic
edition. Psychology Press, 2014.

6http://www.robotsthatdream.eu/

[9] E. Sahin, M. Cakmak, M. R. Dogar, E. Ugur, and G. Ucoluk, “To
Afford or Not to Afford: A New Formalization of Affordances Toward
Affordance-Based Robot Control,” Adaptive Behavior, vol. 15, no. 4,
pp. 447–472, 2007.

[10] H. van Hoof, O. Kroemer, and J. Peters, “Probabilistic Segmentation
and Targeted Exploration of Objects in Cluttered Environments,” IEEE
Transactions on Robotics, pp. 1–12, 2014.

[11] K. Xu, H. Huang, Y. Shi, H. Li, P. Long, J. Caichen, W. Sun, and
B. Chen, “Autoscanning for coupled scene reconstruction and proactive
object analysis,” ACM Transactions on Graphics (TOG), vol. 34, no. 6,
p. 177, 2015.

[12] D. Schiebener, J. Morimoto, T. Asfour, and A. Ude, “Integrating
visual perception and manipulation for autonomous learning of object
representations,” Adaptive Behavior, vol. 21, no. 5, pp. 328–345, 2013.

[13] D. Schiebener, A. Ude, and T. Asfour, “Physical interaction for segmen-
tation of unknown textured and non-textured rigid objects,” Proceedings
- IEEE International Conference on Robotics and Automation, pp. 4959–
4966, 2014.

[14] K. Hausman, F. Balint-benczedi, D. Pangercic, Z.-c. Marton, R. Ueda,
K. Okada, and M. Beetz, “Tracking-based Interactive Segmentation of
Textureless Objects,” in Robotics and Automation (ICRA), 2013.

[15] N. Bergström, C. H. Ek, M. Björkman, and D. Kragic, “Scene un-
derstanding through autonomous interactive perception,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 6962 LNCS, pp.
153–162, 2011.

[16] E. J. Gibson, “Perceptual learning in development: Some basic con-
cepts,” Ecological Psychology, vol. 12, no. 4, pp. 295–302, 2000.

[17] ——, “The world is so full of a number of things: On specification and
perceptual learning,” Ecological psychology, vol. 15, no. 4, pp. 283–287,
2003.

[18] E. Ugur, M. R. Dogar, M. Cakmak, and E. Sahin, “Curiosity-driven
learning of traversability affordance on a mobile robot,” in 2007 IEEE
6th International Conference on Development and Learning. IEEE,
2007, pp. 13–18.

[19] M. Popović, G. Kootstra, J. A. Jørgensen, D. Kragic, and N. Krüger,
“Grasping unknown objects using an early cognitive vision system
for general scene understanding,” IEEE International Conference on
Intelligent Robots and Systems, pp. 987–994, 2011.

[20] N. Krüger, M. Popovic, L. Bodenhagen, D. Kraft, and F. Guerin, “Grasp
learning by means of developing sensorimotor schemas and generic
world knowledge,” in AISB Convention. Citeseer, 2011, pp. 23–31.

[21] N. Krüger, N. Pugeault, E. Baseski, L. Jensen, S. Kalkan, D. Kraft,
J. Jessen, F. Pilz, A. Kjaer-Nielsen, M. Popovic et al., “Early cognitive
vision as a front-end for cognitive systems,” in ECCV 2010 Workshop
on Vision for Cognitive Tasks, 2010.

[22] C. Craye, D. Filliat, and J.-F. Goudou, “Exploration Strategies for
Incremental Learning of Object-Based Visual Saliency,” Proc. of the
5th Joint IEEE International Conference on Development and Learning
and on Epigenetic Robotics, pp. 13–18, 2015.

[23] L. Itti and C. Koch, “Computational modelling of visual attention.”
Nature reviews. Neuroscience, vol. 2, no. 3, pp. 194–203, 2001.

[24] J. Papon, A. Abramov, M. Schoeler, and F. Worgotter, “Voxel cloud
connectivity segmentation - Supervoxels for point clouds,” Proceedings
of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 2027–2034, 2013.

[25] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk,
“SLIC Superpixels,” EPFL Technical Report 149300, no. June, p. 15,
2010.

[26] S. Doncieux, R. Duro, A. Prieto, F. Bellas, F. Stulp, D. Filliat,
T. Hospedales, J. Heinerman, E. Haasdijk, and A. Eiben, “Del. 6.1:
Experimental protocol for the validation experiments,” DREAM FET
H2020, Tech. Rep., 2015.


