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Abstract. In this paper, the stress influence in the guided wave velocity of the fundamental
torsional mode is presented. Two analytical models, based on the Acoustoelasticity effect, to
compute the fundamental torsional mode velocity propagating in a specimen subject to an
axial stress are studied. These models are obtained due to the relation between the T (0, 1)
guided wave velocity and the bulk shear velocity. The analytical models to calculate the guided
wave velocity are functions of the stress, second and third order elastic constants. A series of
axial stress levels applied to a cylindrical waveguide is investigated with numerical simulations
(Finite Elements) to estimate variations of the T (0, 1) guided wave velocity. This analysis
provides a criterion to evaluate the practical implementation of a stress monitoring scheme
based on velocity variations of the fundamental torsional mode.

Keywords: Torsional guided waves, Stressed cylinders, phase velocity, stress monitoring

1 Introduction
Lately, guided waves are gaining the attention of the NDT and SHM community. Guided waves
are suitable to explore large material volume for long distances from one probe position. all
material discontinuity (notches, cracks, erosion, etc) is revealed on the wave field once the ultrasonic
pulse interacts with the material disturbance. The ultrasonic guided wave analysis allow the
inspection of buried and underwater structures, coated structures, and structures encapsulated in
insulation and concrete. Inspection of tubes and pipelines by guided waves is probable the most
popular application of this technique. However, in order to have success in pipe inspection, a deep
understanding of the technique is required. Several factors may affect the guided wave propagation
such as environmental conditions, material structure and the presence of stress in the waveguide.
Stressed media as predicted by the Acoustoelasticity effect produces velocity variations in the bulk
wave, longitudinal and transversal, and consequently in the guided waves generated by them.

The stress influence in guided waves have been tackled in several studies, the change in the
guided wave velocity has been used to stress monitoring in plates with biaxial loads [1], in bolts
to verify tightening [2], in rails [3],[4],[5], steel strands [6],[7],[8], in grouted tendons [9] and finally
in pipes [10]. Among guided waves families of modes that propagate in cylindrical structures
i.e. longitudinal, flexural and torsional, the latter is preferred in some inspections. Torsional
guided waves barely are affected by fluids inside or outside of the cylinder, so the energy leakage
from the waveguide to the fluid is minimal because of the shearing nature of this type of guided
wave. In addition, the fundamental torsional mode T (0, 1) is non-dispersive i.e. phase and group
velocities are frequency independent and equal. Finally, due to the axisymmetric character of
T (0, 1) the wavefield energy is distributed uniformly over the cross-section avoiding blind zones to
the ultrasonic exploration.

two analytical models to compute the phase velocity of the T (0, 1) mode propagating in a
specimen subject to an axial stress are studied based on the acoustoelasticity effect. A series of
FEM simulations are performed to study the propagation of torsional guided waves in presence of
stress in the waveguide.

1.1 Fundamental torsional guided waves in cylindrical waveguides
A simplified analytical model of torsional guided waves assumes that the hollow cylindrical system
is geometrically axisymmetric, infinitely long, and stress-free in the boundaries. The material is



elastic, homogeneous and isotropic. The waves will be assumed to be continuous, the frequency
real (steady state), and the energy is finite and constant. The solutions to motion equation will
only be sought explored for guided waves, which are propagated axially.

The torsional modes are characterized mainly by a displacement primarily in the θ-direction.
The axisymmetric torsional mode corresponds to an uniform azimuthal displacement in θ-direction
(angular displacement) of the entire cylindrical waveguide.

The generalized guided wave propagation model is based on the combination of Euler’s equation
of motion and the generalized Hooke’s law. Both relations yield the Navier’s displacement equation
of motion given by

(λ+ 2µ)∇ (∇ · u) + µ∇× (∇× u) = ρ

(
∂2u

∂t2

)
, (1)

where u is the displacement vector, ρ is the mass density per unit volume and λ, µ are the Lame’s
constants. The resulting Navier’s equations, where (λ+ 2µ)∇ (∇ · u) considers the dilatation
(compressional) portion and, µ∇ × (∇× u) the rotational (equivoluminal) portion of the model.
These two terms are decoupled by the Helmholtz decomposition and individually belong to a wave
equation of the scalar field Φ and the H vector field are written as:

C1∇2Φ =
∂2Φ

∂t2
, (2)

C2∇2H =
∂2H

∂t2
, (3)

where C1 and C2 are the longitudinal and shear bulk velocities respectively. Since Equation (1)
is separable in cylindrical coordinates, the solution may be divided into the product of functions
of each one of the spatial dimensions in cylindrical coordinates. Assuming no propagation in the
radial direction (r) and the displacement field without variation in θ-direction or z-direction except
for the harmonic oscillation described by the wavenumber, the wave fields can be described by:

Φ, H = ΓΦ,H (r) eipθei(ξz−ωt), (4)

where ΓΦ,H (r) describe the wave field variation in r coordinate, ξ is the component of the complex
vector wavenumber in the z-direction, since only propagation in the cylinder axis-direction is
considered, p is referred to as the circumferential order which must be a whole number.

Recalling from Equation (1) and Hooke’s law, the field variables such as displacements and
stresses can be expressed in terms of potential functions, which can be numerically solved (see
[11, 12, 13, 14] for more details on this subject).

On the other hand, the family of torsional modes results when only the uθ displacement is
assumed to exist (ur, uz = 0). Such a displacement field is obtained only if rotational potential
function in z, hz 6= 0. Then, for sake of brevity, only the expressions for uθ, hz, and the stress (σrθ
as boundary condition), are used in forward to study the axisymmetric torsional modes as follows
[14].

hz (r) = K1Jp(βr), β2 =
ω2

C2
2

− ξ2 (5)

uθ = hz′ (r) cos (pθ) ei(ξz−ωt), (6)

σrθ = µ
[
−
(
2hz′′ − β

2hz
)]
, (7)

where Jp is the Bessel function of the first kind an order p, r is the cylinder radius, and K1 is
a constant. For the case of the axisymmetric modes, p=0, and by using the property of Bessel
functions J0’ (x) = −J1(x), the corresponding uθ can be expressed as:

uθ = −∂hz
∂r

= (K1β)J1 (βr) ei(ξz−ωt). (8)

The frequency equation for the torsional modes may be obtained by using the stress-free boundary
condition Eq.(7) as follows:[

β2a2J0 (βa)− 2βaJ1 (βa)
]
−
[
β2b2J0 (βb)− 2βbJ1 (βb)

]
= 0. (9)

where a and b are the inner and outer radius of the waveguide respectively . The fundamental
torsional mode, the first root of Equation (9), is β = 0. But, this mode is not adequately described



by the Bessel equations [15]. So this particular mode is described by the RHS relation expressed
in Eq. (5) which will be used to obtain the phase velocity of T (0, 1).

Vp =
ω

ξ
= C2 =

√
D66

ρ
(10)

where D66 belongs to the lineal elasticity matrix of an isotropic specimen. Eq. (10) shows that
T (0, 1) propagates at a constant phase velocity equivalent to the bulk shear velocity of the material.

2 The Acoustoelasticity Effect in T(0,1) mode
The acoustoelasticity effect in mechanics establishes the mathematical relationship between ultra-
sonic bulk velocities and mechanical stresses in the studied material. In this sense, the acoustoe-
lasticity establishes five elastic constants to describe the relation between stress and bulk wave
velocity for isotropic materials subject to uniaxial stress; the second order elastic constant, Lamé
constants (λ, µ) and the third order elastic constants (TOEC), Murnaghans constants (m,n, l),
in our case. The TOEC highly depend on the material processing, such as casting, rolling, or
drawing.

Now, acoustoelasticity in [16], it is tackled by replacing the elastic constants (second order) in
the stiffness tensor with effective elastic constants (EECs) to produce a modified elasticity matrix
which terms consider the influence of stress. In particular, the term D66 is re-expressed in EEC
as:

D66 = µ+
σ

E

[
3µ+

n

4
+ (1− 2ν)

(
λ+m− n

4

)]
(11)

where E is the Youngs modulus, ν is the Poisson ratio and σ is the stress (positive for tension
and negative for compression stresses). On the other hand, in [6] a first order approximation,
considering finite deformation theory and third-order terms, for the acoustoelastic shear velocity
propagating in the same direction as the applied stress is stated as follows:

C2 =

√
µ

ρ

{
1 +

σ

2µ (3λ+ 2µ)

(
4λ+ 4µ+m+

λn

4µ

)}
. (12)

So, based on the result expressed by Eq.(10) and the analytical models of the acoustoelastic
shear velocity expressed by Eqs.(11)-(12) two approximate expressions for calculating the stressed
phase velocity of the T (0, 1), are given by:

V σT (0,1) =

√
µ

ρ

{
1 +

σ

2µ (3λ+ 2µ)

(
4λ+ 4µ+m+

λn

4µ

)}
. (13)

V σT (0,1) =

√
µ+ σ

E

[
3µ+ n

4 + (1− 2ν)
(
λ+m− n

4

)]
ρ

(14)

where V σT (0,1) is the velocity of the T (0, 1) mode when the torsional wave propagates under a stress
(σ) along the cylinder axis, ρ is the mass density. Eq. (13) represents the approach named in
figures as finite deformation, meanwhile Eq. (14) is the EEC approach. Expression inside curly
brackets in Eq. (13) represents the stress influence in phase velocity of T (0, 1).

Clearly, the new expression for the phase velocity of the T (0, 1) depends on the second and
third order elastic constants and the applied stress. In addition, in absence of dispersion, phase
and group velocities are equal.

Although, T (0, 1) presents notable advantages as mentioned above (no dispersion and no leakage
of energy through the fluid), is few sensible in term of velocity change to the acoustoelasticity
effect. Experimental tests showed in [17], the smallest relatives changes associated with shear
waves propagating perpendicular to the load and polarized perpendicular to the axial loads.

2.1 Sensitivity analysis of the stressed wave velocity of T(0,1) mode
In order to analytically estimate the variations of T (0, 1) velocity produced by uniform axial stress
applied to the cylinder, the Murnaghan’s and Lame‘s constants are required. In this work, it is used
the reported values in [17]. Although the steel composition may be different among specimens,
the close agreement of the reported TOEC values for different steels suggest that TOEC for steel
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Figure 1: Velocity of T(0,1) for different stress levels (σ)

may be relatively independent of the specific composition. Here, ρ = 7800kg/m3, µ = 79.9 GPa,
λ = 115.8 GPa, l = −248 GPa, m = −623 GPa, and n = −714 GPa are considered.

Fig. 1 shows the velocity of the fundamental torsional mode propagating in a specimen un-
der different stress levels (-40 to 40 MPa). This plot is obtained by using Eqs.(13)-(14), where
small velocity variations can be noted with a difference between the extreme cases of only 1 m/s.
Comparing both models, the slope difference suggests an increasing gap in calculated velocity for
greater stress values. For this reason, it is performed a FEM simulation to verify which approach
provides a velocity value closer to the numerical model. Finally, as presented in Fig. 1 velocity
magnitude increases for compression stresses and the opposite for tension stresses.

The practical implementation of a stress monitoring scheme based on variations of the phase
velocity has some difficulties due to its small effect. Nevertheless, in order to determine the wave
velocity change, a Time of Flight (TOF) estimation of the waves at different load conditions are
performed.

Now, the TOF value in practice also consider the material elongation by applied load. Thus,
the effect of the material elongation in the variation of the time of flight with respect to the stress-
free condition has to be addressed. The variation of time of flight ∆ (TOF ) comparing with the
stress-free condition is given by:

∆ (TOF ) = TOFσ − TOF0, (15)

where TOFσ is the time of propagation of T (0, 1) mode subject to an axial load, TOF0 for the
stress-free wave. TOFσ is affected by the acoustoelasticity effect and the material elongation caused
by the applied load as follows.

TOF0 =
l0
V0
, (16)

TOFσ =
l0 (1 + ε)

Vσ
, (17)

where l0 is the original length of the material, ε is the strain after the load is applied, Vσ and
V0 are the phase velocity of T (0, 1) affected by the acoustoelasticity and stress-free respectively.
Replacing Eqs (16)-(17) in Eq.(15) and using the constitutive relation yields.

∆ (TOF ) =
l0
V0

[
V0 (1 + (σ/E))− Vσ

Vσ

]
, (18)

where E is the elasticity modulus. Based on the results presented in Fig. 1 and Eq. (18),
it can be concluded that both effects (material elongation and acoustoelasticity) contribute to
increase ∆ (TOF ) independently the kind of stress (tension or compression). Therefore, Eq. (18)
suggests the use of the ∆ (TOF ) as a stress indicator in a stress guided wave monitoring scheme
based on the propagation of T (0, 1). Two analytical expressions of fundamental torsional mode
velocity propagating in a medium under mechanical stress are studied based on the acoustoelasticity
effect. The expression depends on the material properties including the Lamé and the Murnaghans
constants and the applied stress.
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Figure 2: Phase velocity of T(0,1) for different stress levels (σ)

3 Finite Element Method approach
In order to investigate the Acoustoelastic effect in propagation of T (0, 1), FEM simulations are
performed. A 3D FEM model was built representing a cylindrical specimen with a limited length
to reduce the size of the FEM model and consequently the computational cost. A steel pipe of 1
inch schedule 40 (outer diameter: 33.4 mm and wall thickness: 3.38 mm) is modeled as a hollow
cylinder with an axial length of 0.42 m. Changes in stress are configured varying the displacement
of two constrains located at the left and right ends of the cylinder.

The material properties used for steel were assumed as follows: Density ρ = 7830 kg/m3,
Young’s modulus (E) = 210 GPa and Poisson’s ratio ν = 0.3. To ensure an adequate mesh refine-
ment level, the minimum allowed inter-nodal length Lmin is calculated. The lowest phase velocity
CT (i.e., transverse or shear wave speed), and consequently the shortest wavelength establishes
the minimum permissible mesh size so spatial aliasing due to the finite element discretization does
not occur [18]. Considering the frequency and the steel shear wave velocity, Lmin is calculated as
follows:

Lmin =
CT

nminfmax
=
λmin
nmin

, (19)

where, nmin is the number of elements across the smallest wavelength of interest (assumed in this
case as nmin ≥ 10) [19], and fmax the maximum frequency of interest. Considering nmin = 15,
fmax = 50000 Hz and CT = 3200 m/s, the minimum element length results, approximately 6.66
mm. Therefore, seeds size of 3 mm can be considered as a sufficient mesh refinement.

In addition, the simulation is executed in two stages: first, uniaxial stress is applied as boundary
displacement in both end sides of the cylinder. The stress and strain fields resulting are used as
a predefined field in the next stage. The first stage is executed using a standard step and the
next stage an explicit scheme. Explicit schemes are preferred as time marching process to simulate
guided waves. So, an adequate integration time step ∆t assures a more accurate solution. In
general, simulation accuracy can be increased with increasingly smaller integration time steps but
punished by a higher computational cost. So, the time step ∆t has to be smaller than the critical
time step ∆tcr which is the transit time of a dilatational wave through the smallest element in the
model which can be calculated by [20].

∆t ≤ ∆tcr =
Lmin
CL

, (20)

where CL is the velocity of the dilatational wave. A ∆t of 5 nsec meets these criterion (Considering
Lmin = 3 mm and CL = 5944 m/s) and it is used to solve the model. A total of 9980 linear eight
node brick element (C3D8) has been used with 52 elements around the circumferential section of
the pipe. The torsional wave is produced by a shear load at the left end face of the cylinder by a 5
cycles Hanning-window tone burst of 50 kHz. The model is configured such as the torsional wave
freely propagates along the z-axis.



4 Conclusions
As presented in Fig. 2 the estimation of the T (0, 1) velocity by EEC has a better agreement with
the result of the FEM simulation. It is also observed a slope of approximately 6.1 m/s per GPa,
which result in a low sensitivity expressed in time i.e. 90 nsec of ∆(TOF ) per GPa if actuator
and sensor are separated by 1 meter. Although some improvements can be done in sensitivity
increasing the distance between T(0,1) generation and its capture. Clearly, the exploitation of the
velocity change of T(0,1) with the purpose of waveguide stress monitoring has limitations for its
low sensitivity.
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