
HAL Id: hal-01879014
https://hal.science/hal-01879014v1

Preprint submitted on 18 Nov 2020 (v1), last revised 6 Oct 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quasi-projective manifolds with negative holomorphic
sectional curvature

Henri Guenancia

To cite this version:
Henri Guenancia. Quasi-projective manifolds with negative holomorphic sectional curvature. 2020.
�hal-01879014v1�

https://hal.science/hal-01879014v1
https://hal.archives-ouvertes.fr


QUASI-PROJECTIVE MANIFOLDS WITH NEGATIVE HOLOMORPHIC

SECTIONAL CURVATURE

by

Henri Guenancia

Abstract. — Let (M,ω) be a compact Kähler manifold with negative holomorphic sectional curva-

ture. It was proved by Wu-Yau and Tosatti-Yang that M is necessarily projective and has ample

canonical bundle. In this paper, we show that any irreducible subvariety of M is of general type, thus
confirming in this particular case a celebrated conjecture of Lang. Moreover, we can extend the the-

orem to the quasi-negative curvature case building on earlier results of Diverio-Trapani. Finally, we

investigate the more general setting of a quasi-projective manifold X◦ endowed with a Kähler metric
with negative holomorphic sectional curvature and we prove that such a manifold X◦ is necessarily

of log general type.

1. Introduction

1.1. Singular subvarieties. — Let M be a compact Kähler manifold of dimension n and let ω be
a Kähler metric on M such that its holomorphic sectional curvature is negative; that is, for every
x ∈M and any [v] ∈ P(TM,x), one has HSCω(x, [v]) < 0.

Let us briefly recall how that last quantity is defined. Start by picking a point x ∈ X and a
system of holomorphic coordinates (zi) near x, assumed to be orthonormal at x. If (Rij̄k ¯̀) is the

curvature tensor of ω in these coordinates and if v =
∑
vi

∂
∂zi

is a non-zero tangent vector at x,

then the holomorphic sectional curvature of (M,ω) at (x, [v]) is defined by

HSCω(x, [v]) :=
1

|v|4ω
·
∑
i,j,k,`

Rij̄k ¯̀viv̄jvkv̄`.

Under the assumptions on (M,ω) above, the Ahlfors-Schwarz lemma shows that M is Brody
hyperbolic; that is, every holomorphic map f : C → M is constant. Hyperbolicity for projective
(or merely compact Kähler) manifolds is conjectured to be related to algebraic properties. More
precisely, S. Lang formulated the following

Conjecture [Lan86, Conj. 5.6]. — A projective manifold X is hyperbolic if and only if each of its
subvarieties (including X itself) is of general type.
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Recall that an irreducible projective variety Y is said to be of general type if the canonical bundle

KỸ of any smooth birational model Ỹ of Y is big; that is, Ỹ has maximal Kodaira dimension.
Thirty years after its formulation, Lang’s conjecture remains mostly open. Besides the trivial case
of curves, the known cases of the conjecture are:
• Surfaces with some specific geometry [Des79, GG80, MM83, McQ98].
• Generic hypersurfaces of high degree in Pn.

By the work of Clemens [Cle86], Ein [Ein88, Ein91] and Voisin [Voi96] later improved by Pacienza
[Pac04], their subvarieties are of general type. Moreover, they are hyperbolic thanks to the recent
breakthroughs by Siu [Siu15] and Brotbek [Bro17] independently; cf also Demailly [Dem18].
• Quotients of bounded domains (Boucksom and Diverio [BD18]).

Let us go back to the case of a compact Kähler manifold (M,ω) with negative holomorphic
sectional curvature. It was proved by Wu and Yau [WY16] that KM is ample provided that M is
a projective manifold. Shortly after, Tosatti and Yang [TY17] extended the result to the general
Kähler case. In particular, under those general assumptions, M is automatically projective. Now, if
Y ⊂M is a smooth subvariety of M , then the decreasing property of the holomorphic (bi)sectional
curvature shows that KY is ample again. However, in view of Lang’s conjecture, it is crucial to
control the geometry of singular subvarieties of M as well. That is the precisely the object of the
first main result of this paper given below.

Theorem A. — Let (M,ω) be a compact Kähler manifold with negative holomorphic sectional
curvature and let Y ⊆M be a possibly singular, irreducible subvariety of M . Then, Y is of general
type.

It follows from Theorem A that Lang’s conjecture holds for compact manifolds M admitting a
Kähler metric with negative holomorphic sectional curvature.

About the proof. The main original idea is to construct on a desingularization Ỹ of Y a family
of singular Kähler-Einstein metrics (ωb)b>0 having generically cone singularities along a given
ample divisor B and whose cone angle 2π(1 − b) is meant to tend to 2π. These metrics are

relatively well understood only on the log canonical model of (Ỹ , bB) and the heart of the proof
consists in working on these varying birational models and to show that the volume of ωb does
not go to 0 when b approaches 0. The general idea of using a continuity method and Royden’s
Laplacian estimate originates from [WY16], but the degree of technicality in the singular setting
is significantly higher. For instance, the Ricci curvature blows down to −∞, thus prohibiting the
use of a maximum principle. Also, as the computations are performed on spaces which depend on
the parameter b, establishing the volume estimate requires a delicate analysis.

The quasi-negative curvature case. Theorem A generalizes to the case of quasi-negative holo-
morphic sectional curvature, where one needs to use as an important first step a result of
Diverio-Trapani [DT19]. We refer to § 3 and Theorem 3.1 for a statement and a proof.

Log terminal subvarieties. In the setting of the Theorem A, one can additionally show that if Y
has log terminal singularities, then KY is an ample Q-line bundle, cf Remark 2.3.

1.2. The general quasi-projective case. — Another way to think of the situation of Theorem A is
to view Yreg as a quasi-projective manifold endowed with a Kähler metric ω such that

1. ω has negative holomorphic sectional curvature;

2. ω extends smoothly to a (singular) compactification.
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Given this point of view, it is natural to ask to which extent Theorem A generalizes to arbitrary
quasi-projective manifolds. More precisely, given a projective manifold X, a reduced divisor D
with simple normal crossings and a Kähler metric ω on X◦ := X\D with negative holomorphic
curvature, is it true that (X,D) is of log general type; that is, KX +D is big?

This question is in part motivated by recent results of Cadorel [Cad16] who proved that given a
projective log smooth pair (X,D) such thatX◦ admits a Kähler metric ω with negative holomorphic
sectional curvature and non-positive holomorphic bisectional curvature, then ΩX(logD) is big, and,
moreover, ΩX is big provided that ω is bounded near D.

His proof involves working on P(ΩX(logD)) and considering the tautological line bundle O(1)
on it. By the assumption on the bisectional curvature, ω induces a smooth, non-negatively curved
hermitian metric h on O(1) away from (the inverse image of) D. Moreover, the Alhfors-Schwarz
lemma guarantees that h extends across D as a singular metric with non-negative curvature.
Using a result of Boucksom [Bou02] on a metric characterization of bigness then completes the
proof.

One cannot expect such a strong result on the logarithmic cotangent bundle if one drops the
assumption on the bisectional curvature. However, it seems reasonable to expect it for the logarith-
mic canonical bundle. The main difficulty is that one does not get from ω a positively curved metric
on KX +D even on a Zariski open set. So one has to produce such a metric out of other methods,
like the continuity method, cf [WY16]. However, one faces several new difficulties compared to the
setting of Theorem A:

1. To start the continuity method, one needs KX +D to be pseudo-effective. In the case D = 0,
this is a consequence of the absence of rational curves (Ahlfors-Schwarz lemma) combined
with Mori’s bend and break and [BDPP13]. If D is not empty then one only knows that X◦

has no entire curves hence X has no rational curve meeting D at at most two points. To
conclude, one would then need to have a logarithmic version of Mori’s bend and break, but
unfortunately it is not known as of now, cf Remark 4.3. To circumvent the difficulty and
inspired by the proof of [CP15, Thm. 4.1], we modify the boundary D into D+ sB for some
ample B and some s > 0 to make KX +D+ sB psef. Only at the very end of the argument,
one will see that KX +D is pseudoeffective.

2. The finiteness of the log canonical ring, known for klt pairs and crucial to understanding the
deforming Kähler-Einstein metrics, is not known for lc pairs like (X,D). The idea is then to
deform (X,D) into a klt pair (X,∆b,s := (1 − b)D + (b + s)B) that makes it klt and of log
general type. The price to pay is that we have to carry on an additional error term in the
volume estimate (compare Proposition 2.1 and Theorem 4.4).

Give or take these adjustements, one can still run the strategy of Theorem A mutatis mutandis;
it will tell us that the volume of KX + (1− b)D + (b+ s)B is bounded away from zero uniformly
in b, s > 0. A very important point is that the behavior of ω near D is not arbitrary, as ω must
be dominated by a metric with Poincaré singularities along D thanks to Ahlfors-Schwarz lemma.
However, one needs to look early on at ω on birational models of (X,D) where the Kähler-Einstein
metrics are better understood, and ω will pick up singularities along exceptional divisors which
will complicate the argument. In the end, the result is the following

Theorem B. — Let (X,D) be a pair consisting of a projective manifold X and a reduced divisor
D =

∑
i∈I Di with simple normal crossings. Let ω be a Kähler metric on X◦ := X\D such that

there exists κ0 > 0 satisfying

∀(x, v) ∈ X◦ × TX,x\{0}, HSCω(x, [v]) < −κ0.

Then, the pair (X,D) is of log general type; that is, KX +D is big. If additionnally ω is assumed
to be bounded near D, then KX is big.
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In particular, Theorem A is a corollary of Theorem B. However, we chose to state and prove
Theorem A separately in order to better highlight the new ideas that are necessary for Theorem A
and then only later add a layer of technicality to go from Theorem A to the more general Theorem
B. Another reason for this choice is that the proof of Theorem B does not seem to extend to the
quasi-negative case.

Acknowledgements. I would like to thank Simone Diverio for introducing me to this problem and
for the many related insightful discussions. I am very much indebted to Sébastien Boucksom for
his comments on a preliminary draft of this paper and for suggesting me to consider the quasi-
projective case. I am also grateful to Benôıt Cadorel for interesting exchanges about this topic.
Finally, I would like to thank the referees for their careful reading and useful suggestions.

2. Proof of Theorem A

Let (M,ω) as in the Theorem, and let Y ⊂M be an irreducible subvariety of dimension m. One
considers p : X → Y a desingularization of Y , and the goal is to show that X is of general type
using the special Kähler metric ω|Y . The important observation is that p∗(ω|Y ) is a smooth closed
(1, 1)-form on X which is positive on a Zariski open set Ω of X. Moreover, there exists κ0 > 0
such that the Kähler metric (p∗(ω|Y ))|Ω has holomorphic sectional curvature bounded above by
−κ0. This is because the holomorphic sectional curvature of the Kähler metric ω|Yreg admits such
a bound by the compactness of M and the decreasing property of the bisectional curvature. These
observations lead us to consider the following setting.

2.1. Setting. — Let X be a smooth, complex projective variety of dimension m. Let ω be a
smooth, closed, semipositive (1, 1)-form on X such that there exists a Zariski open subset Ω ⊂ X
satisfying:

1. The restriction ω|Ω is a Kähler metric on Ω.

2. There exists κ0 > 0 such that for any (x, [v]) ∈ Ω× P(TX,x), one has

HSCω(x, [v]) 6 −κ0.

Moreover, let B be a smooth divisor such that KX +bB is a big Q-divisor for some rational number
b ∈ [0, 1). Let ωKE,b be the Kähler-Einstein metric associated to the pair (X, bB). That is, ωKE,b is
a closed, positive current with minimal singularities in c1(KX+bB) satisfying the Einstein equation

RicωKE,b = −ωKE,b + b[B]

cf [BEGZ10]. That current defines a smooth Kähler metric on the Zariski open set Amp(KX +
bB)\B thanks to the techniques of loc. cit. (cf. also [Gue13]) and the existence of a log canonical
model for (X, bB), cf [BCHM10].

The following proposition is the crucial estimate needed for the proof of the main Theorem.

Proposition 2.1. — In the setting 2.1 above, there exists a constant C = C(m,κ0) independent
of b such that ∫

Amp(KX+bB)\B
trωKE,b

ω ·ωmKE,b 6 C vol(KX + bB).

Using the proposition above, Theorem A follows relatively quickly.

Corollary 2.2. — In the setting 2.1 above, X is of general type, ie KX is big.
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As hinted in the introduction, the idea of the proof of the Corollary is to consider an ample
divisor B on X and analyze the family of singular Kähler-Einstein metrics ωKE,b of the pairs of
log general type (X, bB) when b > 0 approaches zero. More precisely, the main point is to show
that the volume of these singular metrics does not go to zero when b → 0. The metrics ωKE,b

are not so well understood directly on X, but become much more manageable when seen on the
log canonical model Xcan,b of the pair (X, bB) whose existence is guaranteed by the fundamental
results of [BCHM10]. However, these models vary with b, hence it is crucial that the estimates be
obtained on the fixed manifold X, which is the essence of Proposition 2.1.

2.2. Proof of the volume estimate. — This section is devoted to the proof of Proposition 2.1.

Proof of Proposition 2.1. — By [BCHM10], there exists a canonical model (Xcan, bBcan) of (X, bB)
with klt singularities such that KXcan +bBcan is ample. Let us consider a resolution Z of the graph
of the birational map φ : X 99K Xcan as summarized in the diagram below

Z
µ

��

ν

!!
X

φ
// Xcan

Then, there exists a Q-divisor BZ =
∑r
i=0 biBi with snc support, coefficients bi ∈ (0, 1), with

b0 = b, µ∗B0 = B and Bi being ν-exceptional for i = 1, . . . , r such that

KZ +BZ = ν∗(KXcan + bBcan) + EZ

for some effective, ν-exceptional Q-divisor EZ =
∑d
j=0 ajEj . Let us stress here that µ is an

isomorphism over the Zariski open set Amp(KX + bB) given that φ is defined there and induces
an isomorphism onto its image when restricted to that set.

Let A := KXcan + bBcan and let ωZ be a background Kähler metric on Z. For any t ∈ [0, 1],
the cohomology class c1(ν∗A + t{ωZ}) is semi-positive and big (it is even Kähler if t > 0). Thus,
it follows from [EGZ09] that there exists a unique singular Kähler-Einstein metric ωt ∈ c1(ν∗A+
t{ωZ}) solving

Ricωt = −ωt + tωZ + [BZ ]− [EZ ]

Moreover, the current ωt has bounded potentials for any t ∈ [0, 1] and there exists an effective,
µ-exceptional Q-divisor F on Z such that

(2.1) µ∗ωKE,b = ω0 + [F ].

Step 1. Approximate KE metrics on a birational model
In the following, we will introduce a family of smooth approximations (ωt,ε)ε>0 of ωt defined as
follows. Let us choose on OZ(Bi) (resp. OZ(Ej)) a holomorphic section si (resp. tj) cutting out
Bi (resp. Ej) and a smooth hermitian metric hBi (resp. hEj ) with Chern curvature ΘhBi

(resp.

ΘhEj
). In order to lighten notation, one sets |si|2 := hBi(si, si) (resp. |tj |2 := hEj (tj , tj)). For any

ε ∈ (0, 1), one defines θBε :=
∑r
i=0 bi(ΘhBi

+ddc log(|si|2+ε2)) and similarly θEε :=
∑d
j=0 aj(ΘhEj

+

ddc log(|tj |2 + ε2)). The smooth (1, 1)-form θBε represents c1(BZ) and converges weakly to the
current of integration [BZ ] when ε → 0, and similarly for θEε . Thanks to [Aub78, Yau78], there
exists for any t, ε > 0 a unique smooth, Kähler metric ωt,ε ∈ c1(ν∗A+ t{ωZ}) such that

(2.2) Ricωt,ε = −ωt,ε + tωZ + θBε − θEε
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In terms of Monge-Ampère equations, this is equivalent to saying that ωt,ε = ν∗ωA+ tωZ +ddcϕt,ε
solves

(ν∗ωA + tωZ + ddcϕt,ε)
m =

∏d
j=0(|tj |2 + ε2)aj∏d
i=0(|si|2 + ε2)bi

eϕt,εdV

where ωA ∈ c1(A) is a Kähler form on Xcan and dV is a smooth volume form chosen such that
Ric dV = −ν∗ωA+tωZ +

∑
biΘhBi

−
∑
ajΘhEj

. By the proof of [GP16, Prop. 1] and the estimates

of [GP16, Sect. 4], there exists a constant Ct independent of ε > 0 such that

(2.3) ωt,ε 6 Ct ωBZ ,ε

where ωBZ ,ε is an approximate conical metric along BZ , cf. e.g. [GP16, Sect. 3].

Step 2. Bounding the Ricci curvature from below
The heart of the proof relies on the following formula due to Royden, cf [WY16, Prop. 9], valid on
the Zariski open set U ⊂ Z defined by U := µ−1(Ω ∩Amp(KX + bB)), and where ω̃ := µ∗ω.

(2.4) ∆ωt,ε log trωt,ε ω̃ > κ· trωt,ε ω̃ − λ

where κ := n+1
2n ·κ0 and λ : Z → R+ is any function such that Ricωt,ε > −λωt,ε.

The first step is to get an explicit expression for λ, and then to write a global regularized
version of (2.4) that we could integrate over the whole Z.

Keeping in mind that we want to get a lower bound of Ricωt,ε, it is clear from (2.2) that θBε
and θEε will not play the same role. We first deal with the easier term

θBε =

d∑
i=0

bi

(
ε2

(|si|2 + ε2)2
· 〈Dsi, Dsi〉+

ε2

|si|2 + ε2
·ΘhBi

)
> −fBε ωZ

where fBε := C
(∑d

i=0
ε2

|si|2+ε2

)
for some C > 0 large enough. In particular, one gets

(2.5) θBε > −(fBε trωt,εωZ)·ωt,ε
Similarly, one can decompose

θEε = αε + βε

where αε > 0 and ±βε 6 C
(∑

j
ε2

|tj |2+ε2

)
·ωZ for some uniform constant C > 0. More precisely,

αε =
∑
j aj

ε2

(|tj |2+ε2)2 · 〈Dtj , Dtj〉 and βε =
∑
j aj

ε2

|tj |2+ε2 ·ΘhEj
. If we define fEε := C

(∑
j

ε2

|tj |2+ε2

)
for some large C > 0, then we have

θEε 6 αε + fEε ωZ(2.6)

6 trωt,ε(αε + fEε ωZ) ·ωt,ε
= trωt,ε(θ

E
ε + (fEε ωZ − βε))·ωt,ε

6 trωt,ε(θ
E
ε + 2fEε ωZ)·ωt,ε

Let us now set χε := fBε +2fEε ; this is a smooth, positive function bounded uniformly when ε→ 0
and such that χε → 0 almost everywhere. From (2.2), (2.5) and the inequality above, one deduces
that

Ricωt,ε > −
(
1 + trωt,ε(θ

E
ε + χε ωZ)

)
·ωt,ε

which, along with (2.4), yields the following formula valid on U

(2.7) ∆ωt,ε log trωt,ε ω̃ > κ· trωt,ε ω̃ − trωt,ε(θ
E
ε + χε ωZ)− 1
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Step 3. Integration by parts.
Set u := trωt,ε ω̃ and v = trωt,ε(θ

E
ε + χε ωZ) + 1. These are smooth, nonnegative functions on the

whole Z which depend on t, ε > 0. They satisfy

(2.8) ∆ log u > κu− v

on U . Because ω̃ might vanish outside of U , the left-hand side of the (2.8) might become singular
across Z r U . So let us choose δ > 0; it is easy to deduce from (2.8) the following inequality

(2.9) ∆ωt,ε log(u+ δ) > κ· u2

u+ δ
− v· u

u+ δ

Indeed, the inequality (2.7) can be rewritten as

∆u > κu2 +
1

u
|∇u|2 − vu

hence

∆ log(u+ δ) >
1

u+ δ
· (κu2 +

1

u
|∇u|2 − vu)− 1

(u+ δ)2
· |∇u|2

= κ· u2

u+ δ
− v· u

u+ δ
+

(
1

u(u+ δ)
− 1

(u+ δ)2

)
· |∇u|2

> κ· u2

u+ δ
− v· u

u+ δ

and (2.9) follows.

As both sides of (2.9) are continuous on Z (remember that t, ε, δ > 0 are fixed for the time
being), the inequality extends across Z \U . Then, one can multiply each side by ωmt,ε and integrate
over Z. We get ∫

Z

κ· u2

u+ δ
ωmt,ε 6

∫
Z

v· u

u+ δ
ωmt,ε

By dominated convergence, one can pass to the limit in the integrals when δ → 0 to get

(2.10)

∫
Z

κ· trωt,ε ω̃ ·ωmt,ε 6
∫
Z

(trωt,ε(θ
E
ε + χε ωZ) + 1)ωmt,ε

Step 4. Computing the error terms
Let us now analyze the right-hand side of (2.10), which coincides with

(2.11) m

∫
Z

θEε ∧ ωm−1
t,ε +m

∫
Z

χε ωZ ∧ ωm−1
t,ε +

∫
Z

ωmt,ε

The first and last terms of (2.11) depend only on the cohomology classes of θEε and ωt,ε so, in
particular, they are independent of ε and depend polynomially on t. More precisely, the first term
is equal to

mEZ · (ν∗A+ t{ωZ})m−1 = mtm−1EZ · {ωZ}m−1

as EZ is ν-exceptional, hence it converges to zero when t → 0. The last one is equal to {ν∗ωA +
tωZ}m and converges to (Am) = vol(KX + bB) when t → 0. As for the second term, it can be

estimated at t > 0 fixed thanks to (2.3) by the integral

Ct

∫
Z

χε ω
m
BZ
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where ωBZ is a metric with conical singularities along BZ . In particular, ωmBZ = gωmZ for some

density g ∈ L1(ωmZ ). As χε is uniformly bounded and tends to 0 almost everywhere when ε
approaches 0, the dominated convergence theorem asserts that

lim
ε→0

∫
Z

χε ωZ ∧ ωm−1
t,ε = lim

ε→0

∫
Z

χε ω
m
BZ = 0.

In conclusion, one gets

(2.12) lim sup
t→0

lim sup
ε→0

∫
Z

κ· trωt,ε ω̃ ·ωmt,ε 6 vol(KX + bB)

Step 5. Conclusion
Let us fix a relatively compact open set K b Amp(KX + bB)\B. Given (2.1), we know that on
µ−1(K), µ∗ωKE is the smooth limit of ωt,ε when t, ε approach zero. Therefore∫

K

κ· trωKE,b
ω ·ωmKE,b =

∫
µ−1(K)

κ· trµ∗ωKE
ω̃ · (µ∗ωKE)m

= lim sup
t→0

lim sup
ε→0

∫
µ−1(K)

κ· trωt,ε ω̃ ·ωmt,ε

6 lim sup
t→0

lim sup
ε→0

∫
Z

κ· trωt,ε ω̃ ·ωmt,ε

6 vol(KX + bB)

and as this holds for any K, we get the desired inequality. Proposition 2.1 is proved.

2.3. End of the proof. — This section is devoted to the proof of Corollary 2.2.

Proof of Corollary 2.2. — We first claim that KX is pseudoeffective. Indeed, as M contains no
rational curve by e.g. [Roy80, Cor. 2], X cannot be uniruled and the conclusion follows from
[BDPP13].

Let B be an ample divisor on X. For any rational number b > 0, the Q-line bundle KX + bB
is big, hence there exists a unique Kähler-Einstein metric ωb ∈ c1(KX + bB) on X solving

Ricωb = −ωb + b[B]

cf [BEGZ10] or [Gue13, Thm. 2.2]. In terms of Monge-Ampère equation, if θ (resp. θB) is a smooth
representative of c1(KX) (resp. c1(B)), then ωb = θ + bθB + ddcϕb solves

〈(θ + bθB + ddcϕb)
m〉 =

eϕb

|s|2b
dV

where dV is a fixed smooth volume form such that Ric dV = −θ, s is a section of OX(B) cutting
out B and |· | is a smooth hermitian metric on OX(B) whose curvature is equal to θB . Thanks to
loc. cit., ωb has full mass; that is ∫

X

〈ωmb 〉 = vol(KX + bB)

and, moreover, ωb is a genuine smooth Kähler-Einstein metric on the Zariski open set Ωb :=
Amp(KX + bB)\B. Combining this with the content of Proposition 2.1, one gets a uniform
constant C > 0 such that the following inequality holds

(2.13)

∫
Ωb

trωbω ·ωmb 6 C vol(KX + bB)

Les us define Mb := esupX ϕb and ub := ϕb − supX ϕb so that (ub)b>0 is a family of sup-normalized
CωX -psh functions for some C > 0 large enough, independent of b. In particular, (ub)b>0 is
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relatively compact in L1(dV ), hence by the dominated convergence theorem, there exists C > 0
independent of b ∈ (0, 1/2) such that

C−1 6
∫
X

eub

|s|2b
dV 6 C

hence

(2.14) vol(KX + bB) = Mb

∫
X

eub

|s|2b
dV ∈ [C−1Mb, CMb]

In particular, (2.13) allows us to conclude that

(2.15)

∫
Ωb

trωbω ·ωmb 6 CMb

On Ωb, one has the following standard inequality

trωbω >

(
ωm

ωmb

)1/m

= (ωm/dV )1/m(Mbe
ub/|s|2b)−1/m

Now let K b Ω be a relatively compact open subset which is located away from the degeneracy
locus of ω so that (ωm/dV )1/m > C−1 > 0 on K, up to taking C larger. Then, one has∫

K∩Ωb

trωbω ω
m
b > C−1M

1−1/m
b

∫
K∩Ωb

e(1− 1
m )ub |s|2b(

1
m−1)dV

= C−1M
1−1/m
b

∫
K

e(1− 1
m )ub |s|2b(

1
m−1)dV

> C ′
−1
M

1−1/m
b

for some C ′ > 0 independent of b as K\(K ∩ Ωb) has zero Lebesgue measure. Combined with
(2.15) one gets that

Mb > C−1M
1−1/m
b

for some uniform C > 0. In particular, Mb is uniformly bounded from below away from zero, hence
one deduces from (2.14) the existence of η > 0 independent of b > 0 such that

vol(KX + bB) > η.

By the continuity of the volume function, cf [Laz04, Thm. 2.2.37], one deduces that vol(KX) > 0,
hence KX is big and X is of general type.

Let us finish this section with the following

Remark 2.3. — In the setting of the Theorem A, one can additionally see that if Y has log
terminal singularities (see e.g. [KM98, Def. 2.34] for a definition), then KY is an ample Q-line
bundle.
To see this, first observe that KY is a big Q-line bundle because a desingularization Ỹ of Y is

of general type and there is a natural inclusion H0(Ỹ ,mKỸ ) ⊆ H0(Y,mKY ) for any integer m
divisible enough. By [BBP13, Thm A.(ii)], the augmented base locus of KY is uniruled, hence
empty, as M does not contain any rational curve.
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3. The quasi-negative case

The argument in the proof of Theorem A is relatively robust and allows us to work with a weaker
assumption on the holomorphic sectional curvature of (M,ω). More precisely, let us consider a
compact Kähler manifold (M,ω) with quasi-negative holomorphic sectional curvature; that is

(i) For any pair (x, [v]) ∈M × P(TM,x), one has HSCω(x, [v]) 6 0.

(ii) There exists x0 ∈M such that for any [v] ∈ P(TM,x0
), one has HSCω(x0, [v]) < 0.

In this setting, Diverio-Trapani [DT19] proved that the conclusions of [WY16, TY17] hold as well,
namely M is projective and KM is ample. Introducing the (open) negative curvature locus

W := {x ∈M ;∀v ∈ TM,x\{0},HSCω(x, [v]) < 0}

one can use again the decreasing property of the holomorphic (bi)sectional curvature to conclude
that any smooth subvariety Y ⊂ M such that Y ∩W 6= ∅ satisfies that KY is ample. The goal of
this section is to extend this result to singular subvarieties:

Theorem 3.1. — Let (M,ω) be a compact Kähler manifold with quasi-negative holomorphic sec-
tional curvature. Let Y be a possibly singular irreducible subvariety Y ⊂M such that Y ∩W 6= ∅.
Then Y is of general type.

The proof of Theorem 3.1 is very much similar to the proof of Theorem A. Considering a
desingularization of Y , one gets a smooth projective manifold X which is not uniruled as M
contains no rational curve. Again, using [BDPP13], KX is pseudo-effective. Then one considers
an ample line bundle B on X and a rational number b > 0 so that KX + bB is big, hence there
is a unique KE metric ωb ∈ c1(KX + bB). The pull-back of the Kähler metric on X will still be
denoted ω, as in the case of Theorem A. Let us point out the main adjustments that need to be
performed in the quasi-negative case.

Step 1.
There is no change to be made here, as we consider the same metrics ωt,ε on Z.

Step 2.
On the Zariski open set U := µ−1(Ω∩Amp(KX +bB)) ⊂ Z, the Laplacian inequality now becomes

(3.1) ∆ωt,ε log trωt,ε ω̃ > κ· trωt,ε ω̃ − λ

where κ : U → R+ is a function such that −n+1
2n ·κ(z) is a nonpositive upper bound for the

holomorphic sectional curvature of ω̃z and λ : Z → R+ is a function such that Ricωt,ε > −λωt,ε,
as before.
The continuous function κ : U → R+ does not necessarily extend to a continuous function on Z.
However it easy to construct a continuous function κ̃ : Z → R+ along with two small neighborhoods
W ⊂W ′ of Z r U with the following properties

· κ̃|W ≡ 0

· κ̃ = κ on U rW ′

· κ̃ 6 κ on U

· (U rW ′) ∩ (p ◦ µ)−1(Y ∩W) 6= ∅
Because of the third point, the formula (2.9) remains true if one replaces κ by κ̃.

Steps 3-5.
No change is needed here. The conclusion we get is



QUASI-PROJECTIVE MANIFOLDS WITH NEGATIVE HSC 11

(3.2)

∫
Amp(KX+bB)\B

κ̃· trωbω ·ωmb 6 vol(KX + bB).

Moving on to the last part of the proof, one can pick a relatively compact subset K b Ω ∩
p−1(W) ⊂ X such that on K, one has κ̃ > C−1 and (ωm/dV )1/m > C−1. Therefore∫

K∩Ωb

trωbω ·ωmb 6 C

∫
K∩Ωb

κ̃· trωbω ·ωmb

6 C vol(KX + bB)

At this point, the same arguments as before show that vol(KX + bB) ∈ [C−1Mb, CMb] as well as∫
K∩Ωb

trωbω ω
m
b > C−1M

1−1/m
b

from which the uniform positive lower bound on vol(KX + bB) follows.

4. The quasi-projective case

4.1. Setting. — Let X be a smooth, complex projective variety of dimension m and let D =∑p
k=0Di be a reduced divisor with simple normal crossings. Let X◦ := X\D and let ω be a

Kähler form on X◦ such that there exists κ0 > 0 such that

∀ (x, [v]) ∈ X◦ × P(TX,x), HSCω(x, [v]) 6 −κ0.

In this setting, one can deduce from the Ahlfors-Schwarz lemma the following

Lemma 4.1. — In the setting 4.1 above, the following statements hold

1. Every holomorphic map f : C→ X◦ is constant.

2. The Kähler metric ω is dominated by a Kähler metric ωP on X◦ with Poincaré singularities
along D.

Recall that a Kähler metric ωP on X◦ is said to have Poincaré singularities along D if for any
x ∈ D and any coordinate chart U ' ∆m around x where D is given by (z1 · · · zr = 0), ω||U is
quasi-isometric to the model Poincaré metric

ωmod :=

r∑
k=1

i dzk ∧ dz̄k
|zk|2 log2 |zk|2

+

m∑
k=r+1

i dzk ∧ dz̄k

Proof of Lemma 4.1. — The first item is a consequence of [Roy80, Cor. 1]. The second one is a
consequence of [Roy80, Thm. 1] applied to f = id : ((∆∗)r ×∆m−r, ωmod) → ((∆∗)r ×∆m−r, ω)
where one identifies U ∩X◦ with (∆∗)r ×∆m−r.

Remark 4.2. — At this point, one would like to conclude that KX+D is pseudoeffective. Indeed,
if KX+D were to fail to be pseudo-effective, then by [BDPP13], one would obtain a covering family
of curves (Ct) such that (KX + D)·Ct < 0. Following Mori’s bend and break, one could deform
each curve Ct into a new reducible curve containing a rational curve C ′t passing through a given
point. From the second item of Lemma 4.1, one would obtain a contradiction if one knew that
C ′t intersects D in a most two points. Therefore, the pseudoeffectiveness of KX + D would be a
consequence of the following general conjecture of Keel-McKernan
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Conjecture 4.3. — (Logarithmic bend and break, cf [KM99, 1.11])
Let (X,D) be a pair consisting of a smooth projective complex variety X and a reduced divisor D
with simple normal crossings.
If C ⊂ X is a curve such that (KX + D)·C < 0 and C * D, then through a general point of C
there is a rational curve meeting D at most once.

The logarithmic bend and break is known in dimension two by [KM99, 1.12]. Let us also
mention that Lu-Zhang [LZ17, Thm. 1.4] and McQuillan-Pacienza [MP12, Rem. 1.1] proved the
above conjecture assuming that for any non-empty subset J ⊂ I, any holomorphic map f : C →⋂
j∈J Di\

⋂
k/∈J Dk is constant.

4.2. The main statement. — Let B be a smooth divisor on X such that

1. B +D has simple normal crossings

2. The line bundles associated to B and B −D are ample

3. There exists s0 ∈ (0, 1
2 ) such that KX +D + s0B is pseudo-effective.

Now, let 0 6 s < 1/2 be any rational number such that the Q-line bundle KX + D + sB is
pseudoeffective. Up until the very end, the number s will be fixed. By the assumptions on B
above, one knows that for any rational number b > 0, the Q-line bundle KX +D+sB+b(B−D) =
KX + (1− b)D + (b+ s)B is big. Let

∆b,s := (1− b)D + (b+ s)B

The pair (X,∆b,s) is klt and is of log general type whenever b ∈ (0, 1/2). By [EGZ09], (X,∆b,s)
admits a unique Kähler-Einstein metric ωKE,b,s. That is, ωKE,b,s is a closed, positive current in
c1(KX + ∆b,s) with bounded potentials satisfying the Einstein equation

RicωKE,b,s = −ωKE,b,s + [∆b,s]

in the weak sense. Thanks to [BCHM10], ωKE,b,s defines a smooth Kähler metric on the Zariski
open set Amp(KX + ∆b,s)\(D ∪B).

Indeed, thanks to loc. cit., there exists a canonical model (Xcan,b,s,∆can,b,s) of (X,∆b,s) with
klt singularities such that KXcan,b,s

+ ∆can,b,s is ample. Let us consider a resolution Z of the graph
of the birational map φ : X 99K Xcan,b,s as summarized in the diagram below

Z
µ

��

ν

##
X

φ
// Xcan,b,s

Let ∆′b,s := (1 − b)D′ + (b + s)B′ where D′ (resp. B′) is the strict transform of D (resp. B)

by µ. There exist a ν-exceptional Q-divisor E :=
∑d
j=0 ajEj with snc support and coefficients

aj ∈ (−1,+∞) such that

KZ + ∆′b,s = ν∗(KXcan,b,s
+ ∆can,b,s) + E

Moreover, one can assume that Exc(µ) is divisorial and that the support of ∆′b,s + E has simple

normal crossings. Up to setting some aj ’s to zero, one can also assume that Exc(µ) ⊆
⋃d
j=0Ej .

Let us stress here that µ is an isomorphism over the Zariski open set Amp(KX + ∆b,s) given that
φ is defined there and induces an isomorphism onto its image when restricted to that set.

Let A := KXcan,b,s
+ ∆can,b,s and let ωZ be a background Kähler metric on Z. For any t ∈ [0, 1],

the cohomology class c1(ν∗A + t{ωZ}) is semi-positive and big (it is even Kähler if t > 0). Thus,
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it follows from [EGZ09] that there exists a unique singular Kähler-Einstein metric ωt ∈ c1(ν∗A+
t{ωZ}) solving

Ricωt = −ωt + tωZ + [∆′b,s]− [E]

The current ωt is smooth outside Supp(∆′b,s + E) and, moreover, there exists an effective, µ-
exceptional Q-divisor F on Z such that

(4.1) µ∗ωKE,b,s = ω0 + [F ].

In particular, ωKE,b,s is smooth on Amp(KX + ∆b,s)\(D ∪B).

As in the earlier setting, the key point is the following volume estimate

Theorem 4.4. — In the setting 4.1 above, given an ample line bundle H on X, there exists a
constant C depending only on X,D,H, ω –but not b or s– such that∫

Amp(KX+∆b,s)\(D∪B)

trωKE,b,s
ω ·ωmKE,b,s 6 C

(
〈(KX + ∆b,s)

m〉+ b〈(KX + ∆b,s)
m−1·H〉

)
where 〈· 〉 is the movable intersection product, cf [BDPP13, §3] and the references therein. Further-
more, the line bundle KX +D is big.

4.3. Proof of Theorem 4.4. — The strategy of the proof of the volume estimate is similar to that
of Proposition 2.1, but it gets more technical.

Step 1.
In the following, we will keep using the notation introduced in Section 4.2 above. We then consider
for t, ε > 0 the current

ωt,ε = ν∗ωA + tωZ + ddcϕt,ε ∈ c1(ν∗A+ t{ωZ})

solving

(4.2) (ν∗ωA + tωZ + ddcϕt,ε)
m =

∏d
j=0(|tj |2 + ε2)aj

|sD′ |2(1−b)· |sB′ |2(b+s)
· eϕt,εdV

where tj , sD′ , sB′ are respectively sections of OZ(Ej),OZ(D′),OZ(B′) cutting out Ej , D
′, B′ and

the smooth hermitian metrics chosen on the various bundles are such that the following equation
holds.

(4.3) Ricωt,ε = −ωt,ε + tωZ + [∆′b,s]− θEε

where θEε :=
∑d
j=0 aj(ΘhEj

+ ddc log(|tj |2 + ε2)).

In the following, one sets Z◦ := Z\(D′ ∪ B′). By the proof of [GP16, Prop. 2.1], ωt,ε is a Kähler
metric on Z◦ with conical singularities along ∆′b,s, and it is uniformly (in ε) dominated by a Kähler

metric on Z◦\ ∪aj<0 Ej with conic singularities along ∆′b,s +
∑
aj<0(−aj)Ej . In particular, there

exists f ∈ L1(ωmZ ) independent of ε such that

ωZ ∧ ωm−1
t,ε 6 fωmZ

By Lebesgue dominated convergence theorem, one gets

(4.4) ∀t > 0,∀j = 0 . . . d, lim
ε→0

∫
Z◦

ε2

|sEj |2 + ε2
ωZ ∧ ωm−1

t,ε = 0.
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Finally, remember from Ahlfors-Schwarz lemma, cf Lemma 4.1, that the Kähler metric ω̃ :=
(µ|Z◦)∗ω on Z◦ has at most Poincaré singularities along D′ +

∑
Ej . In particular, one has

(4.5) sup
Z◦

|sD′ |2b· d∏
j=0

|sEj |2· trωt,ε ω̃

 < +∞.

Step 2.
Now, we apply Royden’s formula, cf [WY16, Prop. 9] to the Kähler metrics ω̃ and ωt,ε on the set
Z◦. Given the expression of the Ricci curvature of ωt,ε in (4.3) and the estimate (2.6) previously
established, we get

(4.6) ∆ωt,ε log trωt,ε,δ ω̃ > κ· trωt,ε ω̃ − trωt,ε(θ
E
ε + χε ωZ)− 1

where κ := n+1
2n ·κ0 and χε = C

∑d
j=0

ε2

|sEj |2+ε2 for some large C independent of ε. Moreover, one

has

∆ωt,ε

log |s′D|2b +
d∑
j=0

log |sEj |2
 = trωt,ε(dd

c(log |s′D|2b +
d∑
j=0

log |sEj |2))

> −b · trωt,εΘD′ −
d∑
j=0

trωt,εΘEj

where ΘD′ ,ΘEj are the Chern curvature form of the smooth hermitian metrics chosen on the
respective associated line bundles. In the end, one gets the following identity, holding on Z◦

(4.7) ∆ωt,ε

[
log
(
|sD′ |2b·

d∏
j=0

|sEj |2· trωt,ε,δ ω̃
)]

> κ· trωt,ε ω̃−trωt,ε
(
θEε +χε ωZ+bΘD′+

d∑
j=0

ΘEj

)
−1

Step 3.

We set u := |sD′ |2b·
∏d
j=0 |sEj |2· trωt,ε,δ ω̃ and v := trωt,ε

(
θEε + χε ωZ + bΘD′ +

∑d
j=0 ΘEj

)
+ 1 so

that

(4.8) ∆ωt,ε log u > κu− v

on Z◦. Let us pick δ > 0. In the same way that (2.8) led to (2.9), the equation (4.8) above leads
to the following

(4.9) ∆ωt,ε log(u+ δ) > κ· u2

u+ δ
− v· u

u+ δ

By the observation (4.5) above, the summands of the right-hand side of (4.9) are smooth on Z◦

and globally bounded. In particular, the dominated convergence theorem shows that

(4.10)

∫
Z◦

(κu− v)ωmt,ε = lim
δ→0

∫
Z◦

(
κ· u2

u+ δ
− v· u

u+ δ

)
ωmt,ε

Combining (4.9), (4.10) and Lemma 4.5 below, one eventually gets

(4.11)

∫
Z◦
κ trωt,ε ω̃ ω

m
t,ε 6

∫
Z◦

(
trωt,ε

(
θEε + χε ωZ + bΘD′ +

d∑
j=0

ΘEj

)
+ 1
)
ωmt,ε

Lemma 4.5. — Let f, g ∈ L∞(Z◦) ∩ C∞(Z◦) such that

∆ωcf > g on Z◦,
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where ωc is some Kähler metric with conic singularities along ∆′b,s. Then∫
Z◦
g ωmc 6 0.

Proof of Lemma 4.5. — It is well-known that the complex codimension one set D′∪B′ ⊆ Z admits
a family of cut-off functions (ξα)α>0 such that

lim sup
α→0

sup
Z
|ddcξα|ωP

< +∞

where ωP is a metric with Poincaré singularities along D′ +B′, cf e.g. [CGP13, Sect. 9].
By assumption, the function g is integrable with respect to ωmc and by dominated convergence,
one has ∫

Z◦
g ωnc = lim

α→0

∫
Z

ξαg ω
m
c

But that last integral is dominated by∫
Z

ξα·∆ωcf ω
m
c = m·

∫
Z

fddcξα ∧ ωm−1
c

6 C· sup
Z
|f |·VolωP

(Supp(ξα))

where C is such mddcξα ∧ ωm−1
c 6 CωmP . Finally, the right-hand side tends to zero when α

approaches zero. The Lemma is proved.

Step 4.
The right-hand side of (4.11) can be rewritten as

(4.12) m

∫
Z

(θEε + bΘD′ +

d∑
j=0

ΘEj ) ∧ ωm−1
t,ε +m

∫
Z

χε ωZ ∧ ωm−1
t,ε + {ν∗ωA + tωZ}m

The first term is cohomological and coincides with m
(
(E +

∑
Ej + bD′)· ({ν∗ωA + tωZ})m−1

)
,

which is independent of ε. For the second, one has the limit computation (4.4). As
∑
Ej is

ν-exceptional, one gets

(4.13) lim sup
t→0

lim sup
ε→0

∫
Z◦
κ· trωt,ε ω̃ ·ωmt,ε 6 mb(D′· (ν∗A)m−1) + 〈(KX + ∆b,s)

m〉

Finally, let p > 0 such that pH −D is effective. Then, one has

D′· (ν∗A)m−1 6 (µ∗D· (ν∗A)m−1)

6 p (µ∗H· (ν∗A)m−1)

= p 〈H· (KX + ∆b,s)
m−1〉

which ends the proof of the first part of Theorem 4.4.

Step 5. Bigness of KX +D.
As ω is dominated by a metric with Poincaré singularities along D, Skoda-El Mir extension theorem
implies that the current ω on X◦ can be extended to a closed, positive (1, 1)-current on X putting
no mass on D. We still denote it by ω, and set α := {ω}; this is a pseudoeffective class. As ω has
no zero Lelong numbers, Demailly’s regularization theorem shows that α is even nef, but we will
not use this fact. We claim that for any t > 0, one has

(4.14)

∫
Z◦

trωt,ε ω̃ ·ωmt,ε = m({ωm−1
t,ε }·µ∗α)
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Indeed, the integral on the left-hand side can be rewritten as m
∫
Z
ω̃ ∧ ωm−1

t,ε given that ω̃ has
at most Poincaré singularities. Moreover, for any t, ε > 0, the metric ωt,ε has conic singularities
along ∆′b,s and can be regularized into a family of smooth Kähler metrics (ωt,ε,δ)δ>0 in the same

cohomology class {ωt,ε} such that ωt,ε,δ 6 Ct,εωt,ε for some Ct,ε > 0 independent of δ. By Lebesgue
dominated convergence theorem, one deduces that∫

Z

ω̃ ∧ ωm−1
t,ε = lim

δ→0

∫
Z

ω̃ ∧ ωm−1
t,ε,δ .

Now, the total mass on Z of a closed, positive (1, 1)-current with respect to a given Kähler metric
only depends on the cohomology class of that current. From the identity above, one deduces∫

Z

ω̃ ∧ ωm−1
t,ε = {ωm−1

t,ε }· {ω̃}

which prove (4.14).

When t, ε approach zero, the right-hand side of (4.14) converges to m((ν∗A)m−1·µ∗α) which
coincides with the movable intersection product m〈(KX + ∆b,s)

m−1·α〉. As a result, one obtains

〈(KX + ∆b,s)
m−1·α〉 6 bp

κ
〈(KX + ∆b,s)

m−1·H〉+
1

κm
〈(KX + ∆b,s)

m〉

Let us now try to analyze the class α. Because ω is smooth and Kähler on a Zariski open set, α is
big thanks to [Bou02]. In particular, for b small enough, one has an inequality of (1, 1) cohomology
classes

α− bp

κ
H >

1

2
α.

By the increasing and superadditive properties of the movable intersection [BDPP13, Thm. 3.5
(ii)], one has

〈(KX + ∆b,s)
m−1·α〉 − bp

κ
〈(KX + ∆b,s)

m−1·H〉 > 1

2
〈(KX + ∆b,s)

m−1·α〉

and therefore, using the Teissier-Hovanskii inequalities [BDPP13, Thm. 3.5 (iii)], one gets

〈(KX + ∆b,s)
m〉 > κm

2
〈(KX + ∆b,s)

m−1·α〉

>
κm

2
〈(KX + ∆b,s)

m〉1−1/m· 〈αm〉1/m

or equivalently

〈(KX + ∆b,s)
m〉 >

(κm
2

)m
· 〈αm〉

and the right-hand side is positive, independent of both b and s. In conclusion, one gets

(4.15) vol(KX +D + sB) = lim
b→0

vol(KX + ∆b,s) >
(κm

2

)m
· 〈αm〉.

The inequality above holds for any rational number s > 0 such that KX+D+sB is pseudoeffective.
If we can show that KX + D is pseudo-effective, then we are done as (4.15) would show that
KX + D is big. But if KX + D is not pseudoeffective, there exists a real number s∞ > 0 such
that KX + D + s∞B is pseudoeffective but not big. Taking a sequence of rational numbers (sn)

decreasing to s∞, one has that KX +D + snB is big with vol(KX +D + snB) >
(
κm
2

)m
· 〈αm〉.

By continuity of the volume function, one gets vol(KX +D + s∞B) > 0 which is a contradiction.
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4.4. Proof of Theorem B. — Now that Theorem 4.4 has been established, it remains to analyze
the case when ω is bounded.

First, we claim that KX is pseudo-effective. Indeed, observe that if f : P1 → X is a rational
curve whose image hits X◦, then there exists a finite set Σ ⊂ P1 such that f(P1\Σ) ⊆ X◦.
Since ω is bounded above across D and f is defined over the whole P1, the smooth function
trωFS(f∗ω) is bounded above on P1\Σ. Next, one can apply the inequality [Roy80, Prop. 4] to
f : (P1\Σ, ωFS)→ (X◦, ω) to get

∆ωFS
log trωFS

(f∗ω) > κ trωFS
(f∗ω) + 2

where κ := m+1
m ·κ0. In particular, the function log trωFS

(f∗ω) on P1\Σ is subharmonic and

bounded above. Therefore it extends to a subharmonic function on P1, hence it has to be constant
which is a contradiction. This shows that every rational curve on X is contained in D, hence KX

is pseudoeffective by [BDPP13].

From there, one can reproduce almost verbatim the arguments of the proof of Theorem A. The
only difference is in Step 3. as the quantity trωt,εω is no longer smooth across D but merely
bounded. However, the integration by parts technique of Lemma 4.5 still applies as the family (ξα)
of cut-off functions satisfies ±ddcξα∧ωm−1

sm 6 ωmP where ωsm is a smooth Kähler form on X and ωP

is some Kähler form on X\D with Poincaré singularities along D. In particular,
∫
X
|∆ωsm

ξα|ωmsm
converges to 0 as α approaches zero.
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no. 4, p. 629–636.
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