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A DECOMPOSITION THEOREM FOR SMOOTHABLE VARIETIES WITH TRIVIAL
CANONICAL CLASS

STÉPHANE DRUEL AND HENRI GUENANCIA

Abstract. In this paper we show that any smoothable complex projective variety, smooth in codimension
two, with klt singularities and numerically trivial canonical class admits a finite cover, étale in codimension
one, that decomposes as a product of an abelian variety, and singular analogues of irreducible Calabi-Yau
and irreducible symplectic varieties.
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1. Introduction

The Beauville-Bogomolov decomposition theorem asserts that any compact Kähler manifold with nu-
merically trivial canonical bundle admits an étale cover that decomposes into a product of a torus, and
irreducible, simply-connected Calabi-Yau, and symplectic manifolds (see [Bea83]).

With the development of the minimal model program, it became clear that singularities arise as an in-
evitable part of higher dimensional life. If X is any complex projective manifold with Kodaira dimension
κ(X) = 0, standard conjectures of the minimal model program predict the existence of a birational contrac-
tion X 99K Xmin, where Xmin has terminal singularities and KXmin

≡ 0. This makes it imperative to extend
the Beauville-Bogomolov decomposition theorem to the singular setting.

In the singular setting, several notion of irreducible Calabi-Yau varieties or irreducible symplectic varieties
have been proposed but the results of [GKP16] and [GGK17] provide evidence that the following definition
should be the correct one in view of a singular analogue of the Beauville-Bogomolov decomposition theorem.

Definition 1.1. Let X be a normal projective variety with canonical singularities such that KX ∼Z 0.
(1) We call X irreducible Calabi-Yau if h0

(
Y,Ω

[q]
Y

)
= 0 for all numbers 0 < q < dimX and all finite

covers Y → X, étale in codimension one.
(2) We call X irreducible symplectic if there exists a holomorphic symplectic 2-form σ ∈ H0

(
X,Ω

[2]
X

)
such that for all finite étale covers f : Y → X, étale in codimension one, the exterior algebra of global
reflexive forms is generated by f [∗]σ.

Let X be a normal projective variety of dimension at least 2 with KX ≡ 0 and klt singularities. Suppose
moreover that its tangent sheaf is strongly stable in the sense of Definition 2.3. In [GGK17, Theorem C], it is
proved that X admits a finite cover, étale in codimension one, that is either an irreducible Calabi-Yau variety
or an irreducible symplectic variety. That result, given the infinitesimal version of the Beauville-Bogomolov
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2 STÉPHANE DRUEL AND HENRI GUENANCIA

decomposition theorem proved in [GKP16], is a strong indication that the notions of irreducible Calabi-Yau
and symplectic varieties described in Definition 1.1 should be the good ones.

In [Dru16] the first author extends the Beauville-Bogomolov decomposition theorem to complex projective
varieties of dimension at most five with klt singularities and numerically trivial canonical class. The main
result of our paper is the following decomposition theorem for smoothable mildly singular spaces with
numerically trivial canonical class.

Theorem A. Let X be a normal complex projective variety with klt singularities and smooth in codimension
two. Suppose that KX ≡ 0. Suppose furthermore that there exists a flat projective holomorphic map with
connected fibers f : X → ∆ from a normal analytic space X onto the complex open unit disk ∆ such that
X ∼= f−1(0) and such that f−1(t) is smooth for t 6= 0. Then there exists a finite cover Y → X, étale in
codimension one, and a decomposition of Y into a product of an abelian variety and irreducible, Calabi-Yau
and symplectic varieties.

Remark 1.2. The assumptions of Theorem A imply that X does not have any quotient singularity. Indeed,
a theorem of Schlessinger [Sch71, Theorem 2] (see also [Art76, Theorem 10.1]) shows that a germ of a quotient
singularity (X,x) is rigid as soon as codim{x} > 3.

In addition to the smoothability condition, the strategy of proof of Theorem A requires us to assume that
the codim(X r Xreg) > 3. Let us briefly explain why. The idea of the proof is to consider a cover of the
smooth generic fiber that splits off an abelian variety as well as irreducible, simply-connected Calabi-Yau
and symplectic manifolds. A significant part of the paper is devoted to showing that one can take the flat
limits of these irreducible pieces and recover the central fiber as product of those limits.

It is then tempting to believe that the flat limit X of irreducible and simply-connected, Calabi-Yau or
symplectic manifolds admits a finite cover, étale in codimension one, which is an irreducible Calabi-Yau or
symplectic variety. Unfortunately, this turns out to be false in general as we explain in Section 8.3. This
makes it much harder to use the smoothability assumption in order to prove a decomposition theorem in full
generality. However, we are able to prove that TX is stable, see Theorem B below. To conclude the proof of
Theorem A, we show that, in the setting of Theorem A, we must have πét1

(
Xreg

)
= {1} (see Theorem 7.1).

Note that in Theorem A, we do not require X to be Q-Gorenstein as this condition is automatically satisfied,
see Lemma 7.6.

As we explained above, it seems difficult to obtain a full decomposition theorem using our strategy without
further assumptions on the singularities of X. However, we are still able to produce a splitting of some quasi-
étale cover of X where each non-abelian factor has a stable tangent bundle, and possesses the same algebra
of reflexive holomorphic forms as the one of an irreducible, simply-connected, Calabi-Yau or symplectic
manifold of the same dimension.

Theorem B. Let X be a normal complex projective variety with klt singularities. Suppose that KX ≡ 0.
Suppose furthermore that there exists a projective morphism with connected fibers f : X → ∆ from a normal
analytic space X whose canonical divisor KX is Q-Cartier onto the complex open unit disk ∆ such that
X ∼= f−1(0) and such that f−1(t) is smooth for t 6= 0. Then, there exists an abelian variety A as well as a
projective variety X ′ with canonical singularities, a finite cover

A×X ′ → X,

étale in codimension one, and a decomposition

X ′ ∼=
∏
i∈I

Yi ×
∏
j∈J

Zj

of X ′ into normal projective varieties with trivial canonical class, such that the following holds.

(1) The sheaf TYi is stable with respect to any polarization and one has h0
(
Yi,Ω

[q]
Yi

)
= 0 for all numbers

0 < q < dimYi.
(2) The sheaf TZj is stable with respect to any polarization and there exists a reflexive 2-form σ ∈

H0
(
Zj ,Ω

[2]
Zj

)
such that σ is everywhere non-degenerate on the smooth locus of Zj, and such that the

exterior algebra of global reflexive forms is generated by σ.
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Remark 1.3. If π : Z̃j → Zj is a Q-factorial terminalization of the variety Zj from Theorem B, then it
follows from [Nam06, Corollary 2] that Z̃j is a smooth symplectic variety, but not necessarily irreducible,
since the varieties Zj are smoothable by construction (see Section 6). In particular, Zj admits a symplectic
resolution. Note that the existence of π is established in [BCHM10, Corollary 1.4.3].

In fact, a little more can be said about the factors of X ′ in the decomposition given by Theorem B
above. We refer to Section 6.2 for partial results from the point of view of holonomy representation, and
for a proof of Conjecture 1.4 below assuming that a weak analogue of Beauville-Bogomolov decomposition
theorem holds.

Conjecture 1.4. Let X be a normal complex projective variety with klt singularities and KX ≡ 0. Suppose
that TX is stable with respect to some polarization. Then there exists a quasi-étale cover Y → X such that
either Y is an abelian variety, or it splits as a product of copies of a single Calabi-Yau (resp. irreducible
symplectic) variety.

Note that a positive answer to the conjecture above implies that Theorem A holds without the assumption
that X is smooth in codimension 2.

The following result is an immediate consequence of Theorem B.

Corollary C. Let X be a normal complex projective variety with klt singularities and KX ≡ 0. Suppose
that πét1

(
Xreg

)
= {1}. Suppose furthermore that there exists a projective morphism with connected fibers

f : X → ∆ from a normal analytic space X whose canonical divisor KX is Q-Cartier onto the complex
open unit disk ∆ such that X ∼= f−1(0) and such that f−1(t) is smooth for t 6= 0. Then there exists a
decomposition of X into a product of irreducible, Calabi-Yau and symplectic varieties.

Structure of the paper. Section 2 is mainly devoted to setting up the basic notation. We have also
gathered a number of facts and basic results which will later be used in the proofs. Sections 3, 4 and 5
consist of technical preparations. In Section 3, we recall some results on deformations of Kähler-Einstein
metrics on smoothable singular spaces with numerically trivial canonical class. In Section 4, we establish a
structure result for families of mildly singular varieties with trivial canonical class. In Section 5, we use results
from [GGK17] to analyze the stability of the tangent sheaf of smoothable singular spaces with numerically
trivial canonical class. Section 6 is devoted to the proof of Theorem B. In Section 7, we prove Theorem A.
Finally, in Section 8, we give examples of smoothable (irreducible) Calabi-Yau and symplectic varieties. We
have also collected examples which illustrate to what extent our results are sharp.

Acknowledgements. The project started while the authors were visiting the Freiburg Institute for Ad-
vanced Studies. The authors would like to thank this institution for its support and Stefan Kebekus for the
invitation. They would like to thank Benoît Claudon, Daniel Greb, Stefan Kebekus, Mihai Păun, and Song
Sun for interesting discussions concerning the content of this paper.

The first author was partially supported by the project Foliage of Agence Nationale de la Recherche,
under agreement ANR-16-CE40-0008-01.

The second author is partially supported by NSF Grant DMS-1510214.

2. Notation, conventions, and basic facts

2.1. Global Convention. Throughout the paper we work over the field C of complex numbers.
A variety is a reduced and irreducible scheme of finite type over C. An analytic variety is a reduced and

irreducible analytic space. Given a scheme X, we denote by Xan the associated analytic space, equipped
with the Euclidean topology.

Given a scheme or an analytic space X, we denote by Xreg its smooth locus.

2.2. Reflexive differential forms. Given a normal (analytic) variety X, we denote the sheaf of Kähler
differentials by Ω1

X . If 0 6 p 6 dimX is any number, write Ω
[p]
X := (ΩpX)∗∗. The tangent sheaf will be

denoted by TX := (Ω1
X)∗.
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2.3. Quasi-étale covers.

Definition 2.1. A morphism γ : Y → X between normal (analytic) varieties is called a quasi-étale cover if
γ is finite and étale in codimension one.

Remark 2.2. Let γ : Y → X be a quasi-étale cover. By the Nagata-Zariski purity theorem, γ branches only
on the singular set of X. In particular, we have γ−1(Xreg) ⊂ Yreg.

2.4. Stability. The word “stable” will always mean “slope-stable with respect to a given polarization”.

Definition 2.3 ([GKP11, Definition 7.2]). Let X be a normal projective (analytic) variety of dimension n,
and let G be a reflexive coherent sheaf. We call G strongly stable, if for any quasi-étale cover γ : Y → X,
and for any choice of ample divisors H1, . . . ,Hn−1 on Y , the reflexive pull-back γ[∗]G is stable with respect
to (H1, . . . ,Hn−1).

2.5. Smoothings. We will use the following notation.

Notation 2.4. Let f : X → T be a morphism (resp. holomorphic map) of schemes (resp. analytic spaces).
We will denote by Xt the fiber of f over t ∈ T .

Definition 2.5. Let X be a compact analytic space. A smoothing of X is a flat proper holomorphic map
f : X → ∆, where X is an analytic space and ∆ is the complex open unit disk, such that X0

∼= X and
Xt is smooth for any t 6= 0. A smoothing of a proper scheme X is a smoothing of the associated analytic
space Xan. Let f : X → ∆ be a smoothing of a compact analytic space or a proper scheme. We say that
f is a projective smoothing if f is a projective map. If X is normal, then we say that f is a Q-Gorenstein
smoothing if KX /∆ is Q-Cartier.

LetX be a proper scheme. A smoothing of X over an algebraic curve is a flat proper morphism f : X → C,
where X is a scheme and C is a connected algebraic curve, such that Xt0

∼= X for some point t0 on C and
Xt is smooth for any t 6= t0. A smoothing f : X → C of X over an algebraic curve is said to be projective
if f is a projective morphism. If X is normal, then we say that f is a Q-Gorenstein smoothing if KX /C is
Q-Cartier.

The following elementary facts will be used throughout.

Fact 2.6. Let X be an analytic space (resp. a scheme), and let f : X → T be a flat holomorphic map
(resp. morphism) with connected fibers onto a smooth connected analytic (resp. algebraic) curve T . If Xt

is normal for any t ∈ T , then so is X by [Gro65, Corollaire 5.12.7] and [DG67, Théorème 1.2]. In particular,
X is reduced and locally irreducible (resp. reduced and irreducible).

Fact 2.7. Let X be a variety, and let X ⊂X be a Cartier divisor. If X is regular at x, then so is X .

Fact 2.8. In the setup of Fact 2.6, suppose that X is a normal variety, and that KX is Q-Cartier. If Xt

has klt singularities for some point t on C, then X has klt singularities in a neighborhood of Xt by inversion
of adjunction (see [Kol97, Corollary 7.6]). This implies that X has rational singularities in a neighborhood
of Xt (see [KMM87, Theorem 1.3.6]).

Remark 2.9. In the setup of Fact 2.6, suppose that X is a normal variety, and that KX is Q-Cartier. If
Xt0 has lc singularities for some point t0 on C and Xt has canonical singularities for t 6= t0, then X ×C C1

has canonical singularities for any finite morphism C1 → C from a smooth algebraic curve C1 by [Kar00,
Theorem 2.5]. Note that the proof of [Kar00, Theorem 2.5] relies on [BCHM10, Theorem 1.2]. However, we
will not need this stronger statement.

Let X be a normal projective variety. If X admits a projective Q-Gorenstein smoothing over an algebraic
curve then X obviously admits a projective Q-Gorenstein smoothing. The main result of the present section
is a partial converse to this observation. See Lemma 2.10 and Proposition 2.14 for precise statements.

Lemma 2.10. Let X be a normal projective variety with Gorenstein singularities. If X admits a projective
smoothing, then X admits a projective Q-Gorenstein smoothing over an algebraic curve.

Proof. Let f : X → ∆ be a projective smoothing of X. We may assume without loss of generality that
X ⊂ PN ×∆ for some positive integer N . Let ∆→ Hilb(PN )an be the universal holomorphic map, and let
H any irreducible component of Hilb(PN ) such that Han contains the image of ∆. Let also U ⊂ PN × H



A DECOMPOSITION THEOREM FOR SMOOTHABLE VARIETIES WITH TRIVIAL CANONICAL CLASS 5

be the universal family. Note that dimH > 1 and that the generic fiber of the natural morphism U → H is
smooth. Replacing H by a Zariski open neighborhood of [X], if necessary, we may assume that for any t ∈ H,
Ut is normal and Cohen-Macaulay by [Gro66, Théorèmes 12.2.1 et 12.2.4]. Denote by ωU/H the dualizing
sheaf of the Cohen-Macaulay morphism U → H (see [Con00, 3.5]). By [Con00, Theorem 3.5.6], for any
closed point t ∈ H, we have ωU/H |Ut

∼= ωUt where ωUt is the dualizing sheaf of Ut → pt. Set t0 := [X] ∈ H.
Because ωUt0 is invertible by assumption, we see that ωU/H is invertible in a Zariski open neighborhood of
X. By shrinking H if necessary, we may therefore assume that ωU/H is invertible. Let C → H be a smooth
curve passing through [X] and a general point, and set Y := C ×H U . It comes with a natural morphism
g : Y → C. Note that g is a projective smoothing of X over C. By Fact 2.6, we know that Y is normal.
Applying [Con00, Theorem 3.5.6] again, we see that ωY /C is invertible. Moreover, its restriction to the locus
Y ◦reg ⊂ Yreg where g is smooth is ωY ◦reg/H

. On the other hand, ωY ◦reg/H
∼= OY ◦reg

(
KY ◦reg/H

) ∼= OY

(
KY /H

)
|Y ◦reg

.

It follows that ωY /H
∼= OY

(
KY /H

)
since both are reflexive sheaves. Hence KY /H is Cartier, completing

the proof of the lemma. �

The same argument used in the proof of Lemma 2.10 above shows that the following holds.

Lemma 2.11. Let X be a normal projective variety. If X admits a projective smoothing, then X admits a
projective smoothing over an algebraic curve.

The proof of [Laz04, Proposition 1.4.14] apply in the analytic setting to show that the following holds.

Lemma 2.12. Let f : X → T be a projective holomorphic map (resp. morphism) of analytic spaces (resp.
schemes), and let L be a line bundle on X . Suppose furthermore that f is surjective. Then the set of points
t on T such that L|Xt

is not nef is a countable union of analytic subsets.

We end the preparation for the proof of Proposition 2.14 with the following observation.

Lemma 2.13. Let f : X → T be a flat projective holomorphic map (resp. morphism) of analytic spaces
(resp. schemes). Suppose that X is normal, T is smooth, and that Xt is connected with klt singularities
for any point t ∈ T . Suppose furthermore that KX /T is Q-Cartier. If KXt0

≡ 0 for some point t0 ∈ T ,
then there exists a Zariski open cover (Tα)α∈A of T such that KX α/Tα is torsion where X α := f−1(Tα).
In particular, KXt

is torsion for all t ∈ T .

Proof. Let m0 be a positive integer such that m0KX /T is a Cartier divisor. Applying Lemma 2.12 in the
analytic setting or [Laz04, Proposition 1.4.14] in the algebraic setting to ±m0KX /T , we see that the set of
points t ∈ T such that KXt 6≡ 0 is a countable union of proper Zariski closed subsets. If KXt ≡ 0, then KXt

is torsion by [Nak04, Corollary V 4.9]. Note also that we have m0KXt ∼Z m0KX /T |Xt
by the adjunction

formula. Let now m be a positive integer. Because the functions t 7→ h0
(
Xt,OXt

(±mm0KXt
)
)
are upper

semicontinuous in the Zariski topology on T (see [BS76, Chapter III, Theorem 4.12] in the analytic setting
or [Har77, Theorem 12.8] in the algebraic setting), the set of points t on T such that mm0KXt ∼Z 0 is
closed. It follows that there exists a positive integer m1 such that m1m0KXt ∼Z 0 for all t ∈ T . From
[BS76, Chapter III, Theorem 4.12] in the analytic setting or [Har77, Corollary 12.9] in the algebraic setting,
we see that f∗OX (m1m0KX /T ) is a line bundle. Let (Tα)α∈A be a Zariski open affine cover of T such that
f∗OX (m1m0KX /T )|Tα

∼= OTα for all α ∈ A. Set X α := f−1(Tα), and let t ∈ Tα. Because the formation
of f∗OX (m1m0KX /T ) commutes with base change (see loc. cit.), any non-zero section of m1m0KX /T |Xt

extends to a global section of m1m0KX /T |X α that is nowhere vanishing in a neighborhood of Xt. Refining
the cover, if necessary, we conclude thatm1m0KX /T |X α

∼= OX α . This completes the proof of the lemma. �

Proposition 2.14. Let X be a normal projective variety with klt singularities. Suppose that KX ≡ 0. If
X admits a projective Q-Gorenstein smoothing, then there exist a normal projective variety Y , a quasi-étale
cover Y → X, and a projective smoothing Y → C of Y over an algebraic curve such that KY /C ∼Z 0.

Proof. Let f : X → ∆ be a projective smoothing of X. Applying Lemma 2.13, we see that KX /∆ is torsion.
By [KM98, Definition 2.52 and Lemma 2.53], there exists a normal analytic variety Y and a finite cover

γ : Y → X , étale over Xreg, such that KY /∆ ∼Z 0. Note that γt : Yt → Xt is étale for any t 6= 0. In
particular, Yt is smooth if t 6= 0. Note also that Y0 is normal, and that γ0 : Y0 → X0 is a quasi-étale
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cover. Applying [Kol97, Proposition 3.16] to γ0, we see that Y := Y0 has klt singularities. Moreover, by the
adjunction formula, we have KY ∼Z 0.

By Lemma 2.10, Y admits a projective Q-Gorenstein smoothing over an algebraic curve. Arguing as
above, we see that there exist a normal projective variety Y1 as well as a quasi-étale cover γ1 : Y1 → Y , and
a projective smoothing Y1 → C1 of Y1 over an algebraic curve such that KY1/C1

∼Z 0, completing the proof
of the proposition. �

3. Kähler-Einstein metrics on smoothable spaces

In this section, we work in the following setting, referred to later as the analytic setting.

3.1. The analytic setting. Let f : X → ∆ be a projective smoothing of a normal projective (analytic)
variety X such that KX /∆ ∼Z 0. Suppose moreover that X has canonical singularities. Let L be a relatively
ample line bundle on X , and set Lt := L|Xt

. Given t 6= 0, we denote by gt the unique Ricci-flat Kähler
metric on Xt whose fundamental form ωt satisfies [ωt] = [c1(Lt)] ∈ H2(Xt,R). The existence of gt is
established in [Yau78]. We denote by g0 the Ricci-flat Kähler metric on Xreg given by [EGZ09, Theorem
7.5] applied to (X0,L0).

3.2. Smooth convergence on Xreg. In the setting described above, let Φ: Xreg ×∆ → X be a smooth
embedding such that Φ(x, t) ∈Xt for any (x, t) ∈ Xreg ×∆ and Φ|Xreg×{0} = IdXreg

(see [RZ11b, p. 1547]).
Let us write Φt := Φ|Xreg×{t} : Xreg →Xt. If It denotes the complex structure on Xt for t 6= 0, and Xreg for
t = 0, then it is not hard to see that Φ∗t It converges to I0 in the C∞loc(Xreg)-topology. The following theorem
is due to Rong-Zhang (see [RZ11a, Theorem 1.4]).

Theorem 3.1 ([RZ11a]). The family of Riemannian metrics Φ∗t gt converges to g0 when t → 0, in the
C∞loc(Xreg)-topology.

Sketch of proof. We recall the main arguments of the proof for the convenience of the reader.
The first step is to show that ωt and ωFS,t differ by the ddc of an uniformly bounded potential ϕt, that we

can assume to be normalized by
∫
Xt
ϕtω

n
t = 0. Here, ωFS,t = ωFS|Xt

under the embedding X ↪→ PN ×∆

given by sections of L . This is proved in [RZ11a, Lemma 3.1] using Moser iteration given that the Sobolev
and Poincaré constants of (Xt, ωt) are bounded, which in turn is a consequence of the diameter estimate
[RZ11a, Theorems B.1 and 2.1].

The L∞-estimate on ϕt combined with Chern-Lu inequality implies that ωt > C−1ωFS,t for some uniform
C > 0 (see the proof of [RZ11a, Lemma 3.2]). This enables to get estimates at any order on Φ∗tϕt over
compact subsets of Xreg. Therefore, one can extract smooth sequential limits ϕ∞ of Φ∗tϕt over Xreg: ϕ∞
is bounded on the whole Xreg and as Φ∗t It converges to I0, ϕ∞ satisfies the same Monge-Ampère equation
as ϕ0 on Xreg, where ϕ0 is the normalized potential of ω0 with respect to ωFS,0. By the choice of the
normalization, ϕ∞ and ϕ0 coincide, and therefore Φ∗tϕt converges locally smoothly to ϕ0, which concludes
the proof. �

Remark 3.2. An important observation is that if Xt admits another complex structure Jt compatible with
gt (in the sense that Jt is unitary and parallel with respect to gt), then one can extract sequences tj → 0 such
that Φ∗tjJtj converges locally smoothly to a complex structure J0 over Xreg which is compatible with respect
to g0. Indeed, Φ∗tJt is almost g0-unitary and g0-parallel in the sense that the tensors (Φ∗tJt)

∗0(Φ∗tJt)− Id and
∇g0(Φ∗tJt) converge to zero on Xreg, where ∗0 denotes the adjoint with respect to g0. The first property gives
order 0 estimates while the second one enables to get higher order ones. Arzela-Ascoli theorem combined
with a diagonal argument yield the result.

3.3. Identification of the Gromov-Hausdorff limit. One can actually understand the global limit of
(Xt, gt), but this requires considerable more work and will not be used in the following. The next result
is essentially contained in [SSY16, Section 3] (see also [LWX14, Section 4.2]). As the context is slightly
different here since we deal with Calabi-Yau manifolds rather than log-Fano manifolds, we will recall their
main arguments and point out the slight changes to operate.

Theorem 3.3 ([SSY16, LWX14]). In the standard setting, the metric spaces (Xt, ωt) converge in the
Gromov-Hausdorff sense to (X, d) when t → 0 for some metric d on X. Moreover, the convergence is
smooth on Xreg, and the restriction of d to Xreg is induced by the Riemannian metric g0.
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Sketch of proof. The fundamental results of [DS14] give the convergence in the sense of the statement above
to a projective variety endowed with a singular Kähler-Einstein metric, but the key point is to identify that
variety with the central fiber X of our family.

As in the proof of Theorem 3.1, one can write ωt = ωFS,t +ddcϕt with ||ϕt||L∞ 6 C, C being independent
of t ∈ ∆∗. This has been seen to imply the estimate ωt > C−1ωFS,t. Also, it is easy but important to notice
that the bound on the potential remains valid after Veronese re-embeddings (see [SSY16, Lemma 3.3]).

The next step consists in comparing the two different embeddings of Xt into a large PM , one being given
by a Veronese embedding (using a large power of L , say k) and the other one being an embedding by L2

sections of L ⊗kt with respect to ωt. In the following, we may assume that the first re-embedding is the
identity while the second one will be denoted by it. So in PM , we have two isomorphic varieties, namely Xt

and it(Xt). The variety it(Xt) can be obtained from Xt by a transformation gt ∈ PGL(CM+1) that sends
a basis (s0,t, . . . , sM,t) of H0

(
Xt,L

⊗k
t

)
to a L2-orthonormal basis (σ0,t, . . . , σM,t), where the first basis of

sections is obtained by the standard embedding induced by L ⊗k. Then one can prove using the estimates
on ||ϕt||L∞ ,

∫
Xt
ωnt , trωt(ωFS,t) that gt evolves in a compact subset of PGL(CM+1) (see proof of [SSY16,

Theorem 3.1]).
The last step invokes the main result of [DS14] that guarantees in this context that one can choose k

and a sequence tj → 0 such that the re-embedding itj (Xtj ) converges both in the sense of cycle and in the
Gromov-Hausdorff sense to a projective variety W (for some metric on W ). Up to extract a subsequence,
one can assume that gtj converges to g ∈ PGL(CM+1) so that W = g(X) as projective varieties. The rest is
a consequence of [DS14]. �

4. Relative Albanese morphism

The Albanese morphism, that is, the universal morphism to an abelian variety (see [Ser01]), is one
important tool in the study of varieties with trivial canonical divisor. If X is a projective variety with
rational singularities, recall from [Kaw85, Lemma 8.1] that Pic◦(X) is an abelian variety, and that Alb(X) ∼=(
Pic◦(X)

)∨. Moreover, the Albanese morphism aX : X → Alb(X) is induced by the universal line bundle.
In particular, dimAlb(X) = h1(X,OX). The following result of Kawamata describes the Albanese map of
X (see also [Bri10, Section 3]).

Proposition 4.1 ([Kaw85, Proposition 8.3]). Let X be a normal projective variety X with canonical singu-
larities. Assume that KX is numerically trivial. Then KX is torsion, the Albanese map aX : X → Alb(X)
is surjective and has the structure of an étale-trivial fiber bundle. More precisely, the following holds. The
neutral component A of the automorphism group Aut(X) of X is an abelian variety. It acts on Alb(X) by
translation, compatibly with its action on X. The induced morphism A→ Alb(X) is an isogeny and the fiber
product over Alb(X) decomposes as a product

X ×Alb(X) A ∼= F ×A,

where F is a fiber of aX .

In this section we extend Proposition 4.1 to the relative setting.

Proposition 4.2. Let X be a normal variety, and let f : X → C be a flat projective morphism with
connected fibers onto a smooth connected algebraic curve C. Suppose that Xt has klt singularities for any
point t ∈ C. Suppose furthermore that KX /C ∼Z 0.

(1) The neutral component Aut0(Xt) of the automorphism group of Xt is an abelian variety, and the
algebraic groups Aut0(Xt) fit together to form an abelian scheme A over C.

(2) Suppose that f has a section, and consider the morphism

aX /C : X →
(
Pic◦(X /C)

)∨
induced by the universal line bundle. Let 0: C →

(
Pic◦(X /C)

)∨ denotes the neutral section, and
set Y = a−1

X /C(0). Then Y → C is a flat projective morphism with normal connected fibers, and

there exists a relative isogeny A →
(
Pic◦(X /C)

)∨ such that

X ×(
Pic◦(X /C)

)∨ A ∼= Y ×C A .
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Before we give the proof of Proposition 4.2, we need the following auxiliary result.

Lemma 4.3. Let f : X → C be a flat projective morphism with connected fibers from a normal variety X
onto a smooth connected algebraic curve C. Suppose that X has rational singularities. Then hi

(
Xt,OXt

)
is independent of t ∈ C for any integer i > 0.

Proof. Let C be a smooth compactification of C, and let X be a projective compactification of X such that
f extends to a morphism f : X → C. Finally, let ν : X̂ → X be a desingularization of X . Set f̂ := f ◦ ν.
It follows from [Kol86, Corollary 3.9] that the sheaves Rif̂∗OX̂

are torsion free, and hence locally free. The
relative Leray spectral sequence gives Rif̂∗OX̂ |C

∼= Rif∗OX using the assumption that X has rational
singularities. This in turn implies that hi

(
Xt,OXt

)
is independent of t ∈ C by a theorem of Grothendieck

(see [Har77, Theorem 12.11]). �

Proof of Proposition 4.2. Note that Xt has canonical singularities since KXt ∼Z 0 is a Cartier divisor by the
adjunction formula. Write n := dim X − 1. From Lemma 4.3 and Fact 2.8, we see that hn−1

(
Xt,OXt

)
is

independent of t ∈ C. On the other hand, we have hn−1
(
Xt,OXt

)
= h0

(
Xt,Ω

[n−1]
Xt

)
by [GKP11, Proposition

6.9]. It follows that h0
(
Xt, TXt

)
is independent of t ∈ C since Ω

[n−1]
Xt

∼= TXt
. Note that hn−1

(
Xt,OXt

)
=

h1
(
Xt,OXt

)
by Serre duality, so that h0(Xt, TXt

) = h1
(
Xt,OXt

)
. By [GP11, Exposé VIB, Proposition 1.6],

the group scheme Aut(X /C) is then smooth over C. Note that the existence of Aut(X /C) is guarantee by
[Gro95b]. Let t ∈ C, and denote by Aut0(Xt) the neutral component of the automorphism group Aut(Xt) of
Xt. We have dimAut0(Xt) = h0(Xt, TXt

) = h1
(
Xt,OXt

)
. We claim that Aut0(Xt) is an abelian variety. If

not, by a theorem of Chevalley, Aut0(Xt) contains an algebraic subgroup isomorphic either to Ga or to Gm,
and hence, X is uniruled. On the other hand, κ(Xt) = 0 since KXt

∼Z 0 and Xt has canonical singularities,
yielding a contradiction. Now, recall from [GP11, Exposé VIB, Théorème 3.10] that the algebraic groups
Aut0(Xt) fit together to form a group scheme A over C. Note that A is quasi-projective over C (see
[Gro95b]). Applying [Gro66, Corollaire 15.7.11], we see that A is proper, and hence projective over C. In
particular, A is an abelian scheme over C.

Suppose from now on that f has a section s : C →X , and consider the relative Picard scheme Pic(X /C)
whose existence is guaranteed by [Gro95a, Théorème 3.1]. By [Kaw85, Lemma 8.1], Pic◦(Xt) is an abelian
variety for any point t on C. As above, the algebraic groups Pic◦(Xt) fit together to form a group scheme
Pic◦(X /C) over C. Note that Pic◦(X /C) ⊂ Pic(X /C) is an open subscheme, quasi-projective over C by
[BLR90, Theorem 5]. Using [Gro66, Corollaire 15.7.11] again, we conclude that it is projective over C. Let(
Pic◦(X /C)

)∨ be the dual abelian scheme (see [MFK94, Corollary 6.8]), and consider the morphism

aX /C : X →
(
Pic◦(X /C)

)∨
induced by the universal line bundle. Consider also the action ϕ : A ×C X →X , and the second projection
p2 : A ×C X →X . By the rigidity lemma ([MFK94, Proposition 6.1]), there exists a morphism

ψ : A ×C
(
Pic◦(X /C)

)∨ → (
Pic◦(X /C)

)∨
such that the square

A ×C X
ϕ //

(Id×aX /C)
��

X

aX /C

��
A ×C

(
Pic◦(X /C)

)∨
ψ

//
(
Pic◦(X /C)

)∨
is commutative. It follows that A acts on

(
Pic◦(X /C)

)∨ over C. By Proposition 4.1, the induced morphism

A →
(
Pic◦(X /C)

)∨
is a relative isogeny. Let 0: C →

(
Pic◦(X /C)

)∨ denotes the neutral section, and set Y := a−1
X /C(0). Using

Proposition 4.1 again, one readily checks that

X ×(
Pic◦(X /C)

)∨ A ∼= Y ×C A .

The proposition then follows easily. �
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We end this section with an extension result for differential forms. We feel that this result might be of
independent interest.

Proposition 4.4. Let X be a normal variety with rational singularities, and let f : X → C be a flat
projective morphism with connected normal fibers onto a smooth connected algebraic curve C. Let 0 6
p 6 dim X − 1 be an integer, and assume that h0

(
Xt,Ω

[p]
Xt

)
= hp(Xt,OXt) for any point t on C. Given

t0 ∈ C and ω ∈ H0
(
Xt0 ,Ω

[p]
Xt0

)
, and replacing C by an open neighborhood of t0 if necessary, there exists

Ω ∈ H0
(
X ,Ω

[p]
X /C

)
such that Ω|(Xt0

)reg = ω|(Xt0
)reg .

Remark 4.5. In the setup of Proposition 4.4 above, suppose moreover that Xt has klt singularities for any
t ∈ C. Then Hodge symmetry h0

(
Xt,Ω

[p]
Xt

)
= hp(Xt,OXt

) holds by [GKP11, Proposition 6.9].

Proof of Proposition 4.4. Denote by i : Xreg ↪→ X the natural morphism, so that Ω
[p]
X /C

∼= i∗Ω
p
Xreg/C

by

[Har80, Proposition 1.6]. The sheaf Ω
[p]
X /C is torsion free, and hence flat over C. This implies in particular

that f∗Ω
[p]
X /C is locally free of rank h0

(
Xt1 ,Ω

[p]
X /C |Xt1

)
where t1 ∈ C is a general point. On the other hand,

if t1 is general enough, then the sheaf Ω
[p]
X /C |Xt1

is reflexive, and hence Ω
[p]
X /C |Xt1

∼= Ω
[p]
Xt1

.

Given t ∈ C, consider the exact sequence

0→ OXreg(−Xt ∩Xreg)→ OXreg → OXt∩Xreg → 0,

and let jt : Xt ∩Xreg ↪→ Xt denotes the natural morphism. Tensoring the above exact sequence with the
sheaf ΩpXreg/C

and applying i∗ yield an exact sequence

0→ Ω
[p]
X /C ⊗ OX (−Xt)→ Ω

[p]
X /C → (jt)∗

(
ΩpXreg/C |Xt∩Xreg

)
.

Now, by [Gro05, Exposé VIII, Corollaire 2.3], (jt)∗

(
ΩpXreg/C |Xt∩Xreg

)
is a coherent sheaf of OXt

-modules.

On the other hand, the complement of Xt ∩Xreg in Xt has codimension at least 2, and ΩpXreg/C |Xt∩Xreg

is locally free. It follows that (jt)∗

(
ΩpXreg/C |Xt∩Xreg

)
is reflexive, and thus (jt)∗

(
ΩpXreg/C |Xt∩Xreg

)
∼= Ω

[p]
Xt

(see [Har80, Proposition 1.6]). Thus, we obtain an injective morphism of sheaves

Ω
[p]
X /C |Xt

↪→ Ω
[p]
Xt

and hence

(4.1) h0
(
Xt,Ω

[p]
X /C |Xt

)
6 h0

(
Xt,Ω

[p]
Xt

)
.

We claim that the inequality above is an equality, that is,

(4.2) h0
(
Xt,Ω

[p]
X /C |Xt

)
= h0

(
Xt,Ω

[p]
Xt

)
.

Indeed, let us start by observing that as the function t 7→ h0
(
Xt,Ω

[p]
X /C |Xt

)
is upper semicontinuous on C,

we also have for a general point t1 on C

h0
(
Xt,Ω

[p]
X /C |Xt

)
> h0

(
Xt1 ,Ω

[p]
X /C |Xt1

)
= h0

(
Xt1 ,Ω

[p]
Xt1

)
.

Now, recall from Lemma 4.3 that hp
(
Xt,OXt

)
is independent of t ∈ C. This implies that h0

(
Xt,Ω

[p]
Xt

)
is

independent of t ∈ C since h0
(
Xt,Ω

[p]
Xt

)
= hp

(
Xt,OXt

)
by assumption. It follows that

h0
(
Xt,Ω

[p]
X /C |Xt

)
> h0

(
Xt,Ω

[p]
Xt

)
.

Combining this with (4.1), we obtain (4.2) hence the claim. Therefore, the quantity h0
(
Xt,Ω

[p]
X /C |Xt

)
is

independent of t ∈ C. By a theorem of Grauert, it follows that the natural map(
f∗Ω

[p]
X /C

)
⊗ C(t)→ H0

(
Xt,Ω

[p]
X /C |Xt

)
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is an isomorphism (see [Har77, Corollary 12.9]). Finally, observe that the natural map Ω
[p]
X /C |Xt

↪→ Ω
[p]
Xt

induces an isomorphism
H0
(
Xt,Ω

[p]
X /C |Xt

)
∼= H0

(
Xt,Ω

[p]
Xt

)
by (4.2). This ends the proof of the proposition. �

5. Holonomy and stability of the tangent sheaf

In this section, we study the stability of the tangent sheaf of smoothable projective varieties with canonical
singularities and trivial canonical divisor. The proof of Proposition 5.4 relies on results proved in [GGK17],
which we recall first.

5.1. Singular Kähler-Einstein metrics, holonomy and stability. Let X be a normal projective an-
alytic variety with canonical singularities such that KX ∼Z 0, and let H be an ample Cartier divisor. By
[EGZ09, Theorem 7.5], there exists a unique closed positive (1, 1)-current ω with bounded potentials on X
such that [ω] = [c1(H)] ∈ H2(X,R) and such that the restriction of ω to Xreg is a smooth Kähler form
with zero Ricci curvature. Let g be the Riemannian metric associated with ω|Xreg

on Xreg. Given x ∈ Xreg,
we view (TxX, gx) as an euclidian vector space. We denote the holonomy group (resp. restricted holonomy
group) of (Xreg, g) at x by Hol(Xreg, g)x (resp. Hol(Xreg, g)◦x). It comes with a linear representation on TxX.
Recall that Hol(Xreg, g)x is a subgroup of SO(TxX, gx), and that Hol(Xreg, g)◦x is the connected component
of the Lie group Hol(Xreg, g)x. Moreover, the complex structure I on Xreg is parallel with respect to g,
so that the hermitian metric hx on TxXreg induced by gx and Ix enables to realize the holonomy group as
subgroup of U(TxX,hx). We refer to [GGK17, Section 2.2] for more detailed explanations.

Irreducibility of the holonomy representation and stability of the tangent sheaf are related by the following.

Proposition 5.1 ([GGK17, Proposition 1.5]). In the above setting, the tangent sheaf TX is stable (resp.
strongly stable) with respect to any polarization if and only if the holonomy representation Hol(Xreg, g)x 	
TxX (resp. the restricted holonomy representation Hol(Xreg, g)◦x 	 TxX) is irreducible.

5.2. Varieties with strongly stable tangent sheaf. The next result relates varieties strongly stable
tangent sheaf to irreducible Calabi-Yau and irreducible symplectic varieties.

Theorem 5.2 ([GGK17, Proposition 1.4]). In the setting of Proposition 5.1, suppose furthermore that X
has dimension n > 2. If TX is strongly stable, then one of the following two cases holds. In either case, the
action of the restricted holonomy group on TxX is isomorphic to the standard representation.

(1) The group Hol(Xreg, g)◦x is isomorphic to SU(n), and X is Calabi-Yau.
(2) The dimension of X is even, the group Hol(Xreg, g)◦x is isomorphic to Sp(n2 ), and there exists a

quasi-étale cover Y → X such that Y is irreducible symplectic.

One of the crucial tools in the proof of Theorem 5.2 above is the so-called Bochner principle.

Theorem 5.3 (Bochner principle, [GGK17, Theorem A]). In the setting of Proposition 5.1, let p and q be
non-negative integers, and write E :=

(
T⊗pX ⊗ (Ω1

X)⊗q
)∗∗. Then the restriction to x induces a one-to-one

correspondence between global sections of E and Hol(Xreg, g)x-fixed points in Ex.

5.3. Smoothings and holonomy. In the analytic setting 3.1, assume that for t 6= 0, Xt is simply-connected
and either irreducible Calabi-Yau or irreducible symplectic. The following result then says that TX is stable.
If moreover πét1

(
Xreg

)
= {1}, we conclude that TX is strongly stable with respect to any polarization.

Proposition 5.4. In the analytic setting 3.1, assume that for t 6= 0, Xt is simply-connected and either
irreducible Calabi-Yau or irreducible symplectic. We maintain notation of Proposition 5.1, and set G :=
Hol(Xreg, g)x, G◦ := Hol(Xreg, g)◦x, and V := TxX. Then the following holds.

(1) The representation G 	 V is irreducible. Equivalently, TX is stable with respect to any polarization.
(2) G ⊂ SU(V ) if Xt is irreducible Calabi-Yau and G ⊂ Sp(V ) if Xt is irreducible symplectic.
(3) If G◦ is trivial, then there exists a quasi-étale cover A→ X where A is an abelian variety.
(4) If G◦ is nontrivial, then G◦ is isomorphic to SU(r) × · · · × SU(r) or Sp(r) × · · · × Sp(r), for some

positive integer r. In either case, the action of G◦ on V is isomorphic to the corresponding product
of standard representations.
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Proof. Let us start with (2). In both cases, KX is trivial so there exists a non-zero holomorphic n-form on
Xreg. By the Bochner principle (see Theorem 5.3), this implies that G ⊂ SU(V ). In the symplectic case,
Remark 3.2 enables to find two compatible complex structures J0,K0 on (Xreg, g0) satisfying I0J0K0 = −Id
and which are smooth limits of such complex structures on (Xt, gt). In particular, setting σ0(X,Y ) :=
g0(J0X,Y ) + ig0(K0X,Y ) defines a non-degenerate holomorphic 2-form σ0 on Xreg (see [Bes87, Proposition
14.15]). Therefore, we must have G ⊂ Sp(V ) by the Bochner principle again.

Moving on to (1), assume that the representation G 	 V is reducible. Then one can decompose V =⊕
i∈IWi and write G =

∏
i∈I Gi where the action of Gi on Wj is irreducible if j = i and trivial otherwise

(see [Bes87, Theorem 10.38]). Consider the Calabi-Yau case first. We have Gi ⊂ SU(Wi) by (2), which
by the Bochner principle, provides a non-zero reflexive holomorphic form on Xreg of degree dimWi. By
Proposition 4.4 and Remark 4.5, it follows that Wi is either zero or the whole V , which concludes. In the
symplectic case, (2) and an elementary computation shows that Wi is even dimensional and that Gi ⊂
Sp(Wi). In particular, one gets h0

(
X,Ω

[2]
X

)
= #I, and Proposition 4.4 enables to conclude once again.

Finally, the equivalence with stability is a consequence of Proposition 5.1 above.
Finally, let us prove (3) and (4). Set V0 := {v ∈ V,∀g ∈ G◦, g(v) = v}. As G◦ is normal in G, V0 is fixed

by G. By (1), this implies that V0 is either zero or the whole V . Assume V0 = V to start with. Then G◦
is trivial, that is, (Xreg, g) is flat. This implies that TXreg

is holomorphically flat since the (1, 0)-part of the
Chern connection of g is holomorphic. By [GKP16, Corollary 1.16], we get the expected quasi-étale cover
of X from an abelian variety. So one can now assume that V0 = {0}. Therefore G◦ 	 V decomposes as
sum of non-trivial irreducible representations V =

⊕
j∈J Vj along with G◦ =

∏
j∈J G

◦
j . By normality of G◦

in G, each element g ∈ G permutes the Vj . As the representation G 	 V is irreducible, this implies that
the representations G◦j 	 Vj are pairwise isomorphic. Set r = dimVj . By the classification of restricted
holonomy [GGK17, Proposition 5.4], we see that G◦j 	 Vj is isomorphic to the standard representation of
SU(r) or Sp( r2 ), completing the proof of the proposition. �

6. Towards a decomposition theorem

6.1. Reduction to smoothings by simply-connected and irreducible manifolds. The main result
of this section is Proposition 6.1 below. It reduces the proof of Theorem B to the case of a smoothing by
simply-connected, irreducible Calabi-Yau or symplectic manifolds.

Proposition 6.1. Let X be a normal projective variety with klt singularities. Suppose furthermore that
KX ≡ 0, and that X admits a projective Q-Gorenstein smoothing. Then there exists an abelian variety A as
well as a projective variety Y with canonical singularities, a quasi-étale cover

A× Y → X,

and a decomposition
Y ∼=

∏
i∈I

Yi

such that the following holds.
(1) The Yi admit projective Q-Gorenstein smoothings over algebraic curves by irreducible and simply-

connected Calabi-Yau, or symplectic manifolds.
(2) The sheaves TYi are slope-stable with respect to any ample polarization on Y , with trivial determi-

nants.

We first provide technical tools for the proof of our result.

Lemma 6.2. Let X be a normal variety, and let f : X → C be a flat projective morphism with connected
fibers onto a smooth connected curve C. Suppose that KX /C is Q-Cartier. Suppose furthermore that Xt

has klt singularities for any point t on C. Let γ : Y → X be a quasi-étale cover with Y normal. Then Yt
is normal with klt singularities for any point t on C.

Proof. Note first that KY /C is Q-Cartier since we have KY /C ∼Z γ∗KX /C . Moreover, by Fact 2.8, X
has klt singularities. Applying [Kol97, Proposition 3.16] to γ, we see that Y has klt singularities as well.
In particular, Y is Cohen-Macaulay by [KMM87, Theorem 1.3.6], and hence so is Yt for all t ∈ C. By
the Nagata-Zariski purity theorem, γ branches only over the singular set of X . On the other hand, we
know that the smooth locus of Xt is contained in the smooth locus of X . It follows that Yt is smooth in



12 STÉPHANE DRUEL AND HENRI GUENANCIA

codimension one. Now, from Serre’s criterion for normality, we see that Yt is normal for any t ∈ C. Note
also that γt : Yt → Xt is a quasi-étale cover. By [Kol97, Proposition 3.16] applied to γt, we conclude that
Yt has klt singularities. �

Remark 6.3. In the setup of Lemma 6.2, let β : B → C be the Stein factorization of g. Then β is étale,
and γ factors through the étale cover B ×C X →X .

Lemma 6.4. Let f : X → C be a flat projective morphism with connected fibers from a normal variety
X onto a smooth connected curve C. Suppose that KX /C is Q-Cartier. Suppose furthermore that Xt

has klt singularities for any point t on C. Let C◦ ⊂ C be a dense open set, and let g◦ : Y ◦ → C◦ be a
smooth projective morphism with connected fibers. Finally, let γ◦ : Y ◦ → f−1(C◦) be a quasi-étale cover
such that g◦ = f|f−1(C◦) ◦ γ◦. Then there exists a normal variety Y1 as well as a projective morphism
g1 : Y1 → C1 with connected fibers onto a smooth curve C1, a finite morphism π : C1 → C, and a quasi-étale
cover γ1 : Y1 →X ×C C1 such that the following holds. Write C◦1 := π−1(C◦).

(1) We have Y1|C◦1
∼= Y ◦ ×C◦ C◦1 and γ1|g−1

1 (C◦1 ) is induced by γ◦.
(2) Any fiber of g1 has klt singularities.

Proof. Let Y be a reduced and irreducible variety, and let g : Y → C be a projective morphism onto C
such that Y|g−1(C◦)

∼= Y ◦ as varieties over C◦. We may also assume that γ◦ extends to a generically
finite morphism γ : Y →X . By a theorem of Kempf, Knudsen, Mumford, and Saint-Donat ([KKMSD73]),
there exist a smooth curve C1, a finite morphism π : C1 → C, and a birational projective morphism Ŷ1 →
Y ×C C1 from a smooth variety Ŷ1 such that the induced fibration Ŷ1 → C1 is semi-stable. We may also
assume without loss of generality that Ŷ1 → Y ×C C1 induces an isomorphism over C◦1 := π−1(C◦). Write
X1 := X ×C C1, and consider the Stein factorization Ŷ1 → Y1 → X1 of Ŷ1 → X1. We have the following
commutative diagram:

Ŷ1

semi-stable

""

birational

  

// Y ×C C1

''

// Y
γ

��
g

��

Y1

g1

��

γ1, finite // X1 = X ×C C1

f1

��

// X

f

��
C1 C1 π

// C.

Note that γ1|g−1
1 (C◦1 ) is a quasi-étale cover. Since Ŷ1 → C1 has reduced fibers, it follows that γ1 is étale in

codimension one.
We still have to show that fibers of g1 are klt. Note first that X1 is normal by Fact 2.6. This implies

that KX1 is well-defined and Q-Cartier since KX1/C1
is then the pull-back of KX /C under the projection

morphism X1 = X ×C C1 → X . The claim now follows from Lemma 6.2, completing the proof of the
lemma. �

We are now in position to prove Proposition 6.1.

Proof of Proposition 6.1. Wemaintain notation and assumptions of Proposition 6.1. Note that the statement
(2) in Proposition 6.1 is an immediate consequence of (1) together with Proposition 5.4.

By Proposition 2.14, replacing X with a quasi-étale cover, if necessary, we may assume that there exist a
normal variety X and a flat projective morphism with connected fibers f : X → C onto a smooth connected
algebraic curve C such that X ∼= f−1(t0) for some point t0 on C, f−1(t) is smooth for t 6= t0, and such that
KX /C ∼Z 0. Set C◦ := C \ {t0} and X ◦ := X \Xt0 .

Let K be an algebraic closure of the function field of C. Applying the Beauville-Bogomolov decomposition
theorem to XK (see [Bea83]), we see that, replacing C by a finite cover of some open neighborhood of t0, if
necessary, there exists an abelian scheme B◦/C◦, as well as finitely many families (Y ◦i /C

◦)16i6s of projective
manifolds, and a finite étale cover

γ◦ : B◦ ×C◦ Y ◦1 ×C◦ · · · ×C◦ Y ◦s →X ◦

such that the (Y ◦i )K are irreducible and simply-connected Calabi-Yau, or symplectic manifolds. In particular,
we have πét1

(
(Y ◦i )K

)
= {1}. Applying [sga03, Exposé X, Théorème 3.8], we conclude that πét1

(
(Y ◦i )t

)
= {1}
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for any point t on C◦. On the other hand, we have h1
(

(Y ◦i )t,O(Y ◦i )t

)
= 0 by Lemma 4.3 and K(Y ◦i )t ∼Z 0

by the adjunction formula. It follows from [Bea83] that (Y ◦i )t has finite fundamental group for t 6= t0. Hence
(Y ◦i )t is simply-connected. Using [Bea83] and Lemma 4.3 again, we obtain that for any t ∈ C◦, the (Y ◦i )t
are irreducible and simply-connected Calabi-Yau, or symplectic manifolds.

Write Y ◦ := Y ◦1 ×C◦ · · · ×C◦ Y ◦s , and Z ◦ := B◦ ×C◦ Y ◦. By Lemma 6.4, replacing C by a further
cover, if necessary, we may also assume that there exists a normal variety Z as well as a flat morphism
g : Z → C whose fibers have klt singularities, and a quasi-étale cover γ : Z →X such that g−1(C◦) = Z ◦

and γ◦ = γ|g−1(C◦). We may also assume that h◦ : Y ◦ → C◦ has a section. Together with the neutral
section 0◦ : C◦ → B◦, we obtain a section of g|g−1(C◦), and hence a section of g. Moreover, the projection
morphism Z ◦ → B◦ identifies with the natural morphism Z ◦ →

(
Pic◦(Z ◦/C◦)

)∨ induced by the universal
line bundle. By Proposition 4.2, there exists an abelian scheme A → C, as well as a normal variety Y ⊂ Z ,
and a finite étale cover Y ×C A → Z such that the natural map h : Y → C is a flat projective morphism
with connected normal fibers, and such that h−1(C◦) = 0◦ ×C◦ Y ◦ ∼= Y ◦. The situation is summarized in
the following diagram:

A ×C Y
étale

// Z
γ

quasi-étale
// X // C

Z ◦ ∼= B◦ ×C◦ Y ◦

⋃
// X ◦

⋃
// C◦.

⋃

Let L be a relatively ample line bundle on Y . Denote by s◦i : C◦ → Y ◦i the induced section of Y ◦i → C◦,
and consider the embedding Y ◦i ⊂ Y ◦1 ×C◦ · · · ×C◦ Y ◦s

∼= Y ◦ induced by the sections sj for j 6= i. Denote
by p◦i : Y ◦ → Y ◦i the projection morphism. Then, we have

L|Y ◦ ∼= (p◦1)∗(L|Y ◦1 )⊗ · · · ⊗ (p◦s)
∗(L|Y ◦s )

since h1
(

(Y ◦i )t,O(Y ◦i )t

)
= 0 for any point t on C◦.

Suppose now that L is very ample over C, and set Ni := h0
(
(Y ◦i )t,O(Y ◦i )t

)
− 1. Then L|Y ◦i is very

ample over C◦ and induces an embedding Y ◦i ⊂ PNi × C◦. It follows that Y ◦1 ×C◦ · · · ×C◦ Y ◦s embeds
into PN1 × · · · × PNs × C◦. Set N := h0(Y ◦,OY ◦) − 1 = (N1 + 1) · · · (Ns + 1) − 1. Then L embeds Y
into PN × C and the image of Y ◦ agree with the image of Y ◦1 ×C◦ · · · ×C◦ Y ◦s under the Segre embedding
PN1 × · · · × PNs × C◦ ⊂ PN × C◦. Let Yi ⊂ PNi × C be the closure of Y ◦i . Note that Yi → C is flat. Since
the scheme Hilb(PN ) is separated, we conclude that (Y1)t0 × · · · × (Ys)t0 = Yt0 ⊂ PN . This easily implies
that (Yi)t0 is a normal projective variety with klt singularities and trivial canonical divisor, completing the
proof of Proposition 6.1. �

Proof of Theorem B. By Proposition 2.14, we may assume without loss of generality that X admits a pro-
jective Q-Gorenstein smoothing. Theorem B is now an easy consequence of Propositions 6.1 and 5.4. Indeed,
the only thing to check is the assertion concerning the algebra of reflexive forms. Proposition 4.4 settles the
Calabi-Yau case immediately. In the symplectic case, item (2) in Proposition 5.4 together with the Bochner
principle (see Theorem 5.3) yield a reflexive 2-form σ on X, symplectic on Xreg, while Proposition 4.4 shows
that σ generates the algebra of reflexive forms. �

6.2. Irreducible Calabi-Yau and symplectic varieties with stable tangent sheaf. In this section, we
try to analyze a bit further the factors appearing in the decomposition of X ′ in Theorem B. These varieties
have stable tangent sheaf, but that sheaf may not be strongly stable. Such varieties are conjecturally covered
by either an abelian variety or a product of copies of a single irreducible, Calabi-Yau or symplectic variety,
see Conjecture 1.4. Assuming that a weak singular analogue of the Beauville-Bogomolov decomposition
theorem holds, we prove this conjecture.

Proposition 6.5. Suppose that any projective variety X with klt singularities and numerically trivial canon-
ical class admits a quasi-étale cover Y → X that splits as a product of an abelian variety and varieties with
strongly stable tangent sheaves. Then Conjecture 1.4 holds.

Proof. We maintain notation and assumptions of Conjecture 1.4. We know that there exists a quasi-étale
cover Y → X of X such that Y decomposes as a product Y ∼= Y0×Y1×· · ·×Ym of an abelian variety Y0 and
varieties Yi for 1 6 i 6 m with strongly stable tangent sheaves. We may assume without loss of generality



14 STÉPHANE DRUEL AND HENRI GUENANCIA

that dimYi > 2 for 1 6 i 6 m. Let Z → Y be a quasi-étale cover such that the induced quasi-étale cover
Z → X is Galois, with Galois group G.

The decomposition Y ∼= Y0 × Y1 × · · · × Ym induces a decomposition

TZ ∼= E0 ⊕ E1 ⊕ · · · ⊕ Em

of TZ , where the Ei for 1 6 i 6 m are strongly stable sheaves. Observe that the foliation Ei is induced by
the Stein factorization of the projection

πi : Z → Bi := Y0 × · · ·Yi−1 × Yi+1 × · · · × Ym.

Note also that
E0 ⊕ · · · ⊕ Ei−1 ⊕ Ei+1 ⊕ · · · ⊕ Em

induces a flat connection on πi. A classical result of complex analysis then implies that πi is a locally trivial
fibration for the Euclidean topology over the smooth locus of Bi. Denote by Zi a connected component of
general fiber of πi. It comes with a quasi-étale cover Zi → Yi.

Suppose first that dimY0 > 1. Since Ei is strongly stable for 1 6 i 6 m, we have h0(Z,Ei) = 0 for each
1 6 i 6 m. This immediately implies that E0 is stable under G, and thus TZ = E0 since TX is stable. This
shows that Y is an abelian variety.

Suppose from now on that dimY0 = 0. We claim that Ei 6∼= Ej if i 6= j. Indeed, we have Ej |Zi
∼= O

⊕ rankEj
Zi

while
(
Ei|Zi

)∗∗ ∼= TZi and h0(Zi, TZi) = 0 since TZi is strongly stable. Therefore, the group G acts on the
set 1 6 i 6 m of stable summands of TZ , and since TX is stable, this action is transitive. Thus, for any
i ∈ I, there exists gi ∈ G such that Ei ∼= g∗i E1 ⊂ g∗i TZ

∼= TZ . This in turn implies that Zi ∼= Z1, completing
the proof of the proposition. �

To finish this section, let us rephrase some results obtained in Proposition 5.4 with the notations of
Theorem B. We start by fixing on X a singular Ricci-flat Kähler metric, provided by [EGZ09]. It can be
showed (see [GGK17, Proof of Proposition 7.6]) that the induced metric on A × X ′ is actually a product
metric, and that the metric induced on X ′ is also a product metric compatible with the decomposition of
X ′. Up to passing to a further cover and inflating the abelian part, one can assume that the factors of X ′
have non-trivial restricted holonomy. Finally, one can pass to an holonomy cover by [GGK17, Theorem B] to
ensure that the holonomy is connected. Piecing everything together, Proposition 5.4 shows that a quasi-étale
cover of X splits as

A×
∏
i∈I

Yi ×
∏
j∈J

Zj

where A is an abelian variety, and such that the following holds. Let yi ∈ Yi and zj ∈ Zj be smooth points.
(1) For every i ∈ I, there exist ni, ri ∈ N with niri = dimYi such that the holonomy acts on TyiYi by

the standard product representation SU(ni)
×ri 	 CdimYi .

(2) For every j ∈ J , there exist nj , rj ∈ N with 2njrj = dimZj such that the holonomy acts on TzjZj
by the standard product representation Sp(nj)

×rj 	 CdimZj .

7. Proof of Theorem A

In this section we prove Theorem A.

Let X be a (proper) variety, let m be a positive integer, and write A := C[[x1, . . . , xm]] and K :=
C((x1, . . . , xm)). Let also K be an algebraic closure of K. Recall that a deformation of X over A is a flat
morphism of schemes f : X → SpecA such that X ⊗ (A/m) ∼= X, where m denotes the maximal ideal of A.
We say that f is a proper deformation of X over A if f is a proper morphism.

If f is a smooth proper morphism with geometrically connected fibers, then there is an isomorphism of
fundamental groups πét1

(
XK
) ∼= πét1

(
X
)
(see [sga03, Exposé X, Théorème 3.8]). However, it is well-known

that this statement becomes wrong if f is not assumed to be proper. The following will prove to be crucial.

Theorem 7.1. Let X be a normal proper variety with klt singularities, and assume that X is smooth in
codimension two. Write A := C[[x1, . . . , xm]] and K := C((x1, . . . , xm)), and let K be an algebraic closure
of K. Let X be a proper deformation of X over A. Suppose that XK is smooth with πét1

(
XK
)

= {1}. Then
πét1

(
Xreg

)
= {1}.
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The following example shows that Theorem 7.1 is wrong if one relaxes the assumption on the codimension
of the singular locus.

Example 7.2. Let X ⊂ P3 be a cone over a smooth plane cubic curve, and let f : X → P1 be flat family
of cubic surfaces in P3 such that f−1(0) = X and f−1(t) is smooth for a general point t on P1. Then
π1

(
XC(t)

)
= {1} and π1

(
Xreg) ∼= Z⊕ Z.

The same arguments used in the proof of Lemmas [Art76, I.9.1 and I.9.2] show that the following holds.

Lemma 7.3. Let X be a normal variety of dimension at least two, let X◦ ⊂ Xreg be an open subset, and
let A be a local artinian C-algebra. Let i : X◦ ↪→ X be the inclusion map.

(1) Let XA be a deformation of X over A, and suppose that X \X◦ has codimension at least two. Then
the restriction map induces an isomorphism OXA

∼= i∗
(
i−1OXA

)
. Let X1

A and X2
A be deformations of

X over A, and let (X1
A)◦ ⊂ X1

A and (X2
A)◦ ⊂ X2

A be the open subschemes with underlying topological
space X◦. Then any isomorphism (X1

A)◦ ∼= (X2
A)◦ of A-schemes uniquely extends to an isomorphism

X1
A
∼= X2

A of A-schemes.
(2) Suppose that X is affine, that X \X◦ has codimension at least three, and that depthOX,x > 3 for

any point x ∈ X \Xreg. Let X◦A be a deformation of X◦ over A, and set XA := SpecH0(X◦A,OX◦A).
Then XA is a flat deformation of X over A extending X◦A.

Proposition 7.4. Let γ : Y → X be a quasi-étale cover of normal proper varieties. Suppose that X is
smooth in codimension two, and that depthOY,y > 3 for any point y ∈ Y \ Yreg. Let (A,m) be a complete
local noetherian C-algebra with residue field C, and let X be a proper deformation of X over A. Then there
exists a proper deformation Y of Y over A, and a finite morphism Γ: Y → X extending γ. If moreover A is
regular, then Γ is a quasi-étale cover.

Proof. For any non-negative integer m, write Am := A/mm+1, S := SpecA, Sm := SpecAm, and Xm :=

X ×S Sm. We will also denote by X̂ the formal completion of X along X. Note that X̂ is the colimit of the
Xm. Moreover, it comes with a proper morphism onto Ŝ := SpfA.

Let X◦ be the smooth locus of X, and set Y ◦ := γ−1(X◦). By the Nagata-Zariski purity theorem, γ
branches only over the singular set of X, and hence γ|Y ◦ : Y ◦ → X◦ is an étale cover. Note that Y \ Y ◦ has
codimension at least three and that Y ◦ ⊂ Yreg.

Let im : X◦m ⊂ Xm be the open subscheme with underlying topological space X◦. By [Gro67, Théorème
18.1.2], there exists a finite étale cover γ◦m : Y ◦m → X◦m such that Y ◦m ∼= Y ◦m+1×Sm+1

Sm for any integer m > 0.
Set Ym := SpecXm(im ◦γ◦m)∗OY ◦m , and denote by γm : Ym → Xm the natural morphism. Note that Y ◦m can be
identified with the open subscheme of Ym with underlying topological space Y ◦. Applying Lemma 7.3 above,
we see that Ym is flat over Sm, and that γm+1×Sm+1Sm = γm. Moreover, by [Gro05, Exposé VIII, Corollaire
2.3], γm is finite. Let Ŷ denote the colimit of the Ym; Ŷ is a noetherian formal scheme, proper and flat
over Ŝ. It comes with a finite morphism Γ̂ : Ŷ → X̂ . Now, by [Gro61, Proposition 5.4.4], Ŷ is algebraizable.
More precisely, there exists a scheme Y proper over S such that Ŷ identifies with the formal completion of Y
along Y . Moreover, the morphism Γ̂ : Ŷ → X̂ of formal schemes is induced by a finite morphism of schemes
Γ: Y → X (see proof of [Gro61, Proposition 5.4.4]). Note that Y is flat over S by [Bou61, Chapitre III, §5,
Théorème 2 et Proposition 2].

Suppose from now on that A is regular. Let x ∈ X be a codimension one point, not contained in the
special fiber Xm, and suppose that Γ is ramified at x. Then γ must be ramified along {x} ∩ Xm. On the
other hand, {x} ∩ Xm has codimension one in Xm since A is regular. This yields a contradiction, and shows
that Γ is a quasi-étale cover, completing the proof of the proposition. �

Before proving Theorem 7.1 below, we note the following consequence of Proposition 7.4.

Corollary 7.5. Let X be a normal proper variety with klt singularities, and assume that X is smooth in
codimension two. Write A := C[[x1, . . . , xm]], and let X be a proper deformation of X over A. Then the
natural map πét1

(
Xreg

)
→ πét1

(
Xreg

)
is injective.

Proof. Given a finite étale cover γ◦ : Y ◦ → Xreg with Y ◦ connected, we need to show that there exists a
finite étale cover Γ◦ : Y◦ → Xreg such that Y ◦ is a connected component of Y◦|(Γ◦)−1(Xreg) and such that γ◦
is induced by Γ◦.
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Let γ : Y → X be the normalization of X in the function field of Y ◦. Note that γ is a quasi-étale cover.
Applying [Kol97, Proposition 3.16] to γ, we see that Y has klt singularities. It follows that Y is Cohen-
Macaulay by [KMM87, Theorem 1.3.6]. By the Nagata-Zariski purity theorem, γ branches only over the
singular set of X, and hence Y is smooth in codimension two. Combining the previous two assertions, one
sees that the assumption from Proposition 7.4 about the depth of points in Y r Yreg is satisfied. Applying
the aforementioned proposition then proves the corollary. �

Proof of Theorem 7.1. By the semicontinuity theorem, we have h0(XK ,OXK ) = h0(X,OX) = 1, and hence
XK is connected.

Let γ◦ : Y ◦ → Xreg be a finite étale cover with Y ◦ connected, and let γ : Y → X be the normalization
of X in the function field of Y ◦. Note that γ is a quasi-étale cover. The same argument used in the proof
of Corollary 7.5 shows that there exists a deformation Y of Y over A and a quasi-étale cover Γ: Y → X
over A extending γ. By the semicontinuity theorem again, we see that YK is connected. Moreover, by the
Nagata-Zariski purity theorem, the finite morphism γK : YK → XK is étale, and hence an isomorphism since
πét1

(
XK
)

= {1}. This implies that γ is an isomorphism as well, completing the proof of the theorem. �

We will also need the following observation. The proof follows the line of argument given in [KM92,
Corollary 12.1.9].

Lemma 7.6. Let X be a normal projective variety with klt singularities. If X is smooth in codimension
two, then any projective smoothing over an algebraic curve is a Q-Gorenstein smoothing.

Proof. Let X be a normal variety, and let f : X → C be a flat projective morphism with connected fibers
onto a smooth connected curve C such that X ∼= f−1(t0) for some point t0 on C and such that f−1(t) is
smooth for t 6= t0.

By [KMM87, Theorem 1.3.6], we know that X is Cohen-Macaulay. Let m be a positive integer such that
mKX is a Cartier divisor. Set U := X \ (X \Xreg) ⊂Xreg, and denote by j : U ↪→X and i : Xreg = Xt0 ∩
U ↪→ X the natural inclusions. By [Har80, Proposition 1.6], we have j∗

(
OX (mKX /C)|U

) ∼= OX (mKX /C)

and i∗
(
OX (mKX /C)|Xreg

) ∼= i∗
(
OX(mKX)|Xreg

) ∼= OX(mKX). Applying [KM92, Lemma 12.1.8], we see
that OX (mKX /C)|X

∼= OX(mKX). This implies that OX (mKX /C) is a Cartier divisor, proving the
lemma. �

We are now in position to prove our main result.

Proof of Theorem A. We maintain notation and assumptions of Theorem A.
Applying Lemma 2.11 and Lemma 7.6, we see that we may assume without loss of generality that X

admits a projective Q-Gorenstein smoothing f : X → C over an algebraic curve C. Let t0 be a point on
C such that X ∼= f−1(t0). By Proposition 6.1 and Lemma 7.6 again, we may also assume that Xt is an
irreducible and simply-connected Calabi-Yau, or symplectic manifold for any point t 6= t0, and that TX is
slope-stable with respect to any ample polarization on X.

Denote by A the completion of the local ring OC,t0 . Note that A ∼= C[[t]] by a theorem of Cohen. Let
K denotes the field of fractions of A, and let K be an algebraic closure of K. Write S := SpecA, and
X := X ×C S.

Applying [sga03, Exposé X, Théorème 3.8], we see that πét1

(
XK
)

= {1}. It follows from Theorem 7.1
that πét1

(
Xreg

)
= {1}, and hence the tangent sheaf TX is strongly stable. The theorem now follows from

Theorem 5.2. �

Remark 7.7. There is a alternative proof of Theorem A in the case where Xt is irreducible symplectic,
still assuming the X := X0 is smooth in codimension two. Indeed, in that case a theorem of Namikawa
[Nam06, Corollary 2] asserts that if π : Y → X is a Q-factorial terminalization of X, then Y is smooth
and π is a symplectic resolution. Note that Q-factorial terminalizations always exist for varieties with
canonical singularities by [BCHM10, Corollary 1.4.3]. By a result of Kaledin (see [Kal01, Proposition 1.2]),
a symplectic resolution is a semi-small morphism; in particular, 2 codimπ−1(Xsing) > codimXsing, and
therefore codimπ−1(Xsing) > 2. Set Y ◦ := Y rπ−1(Xsing), and note that Y ◦ ∼= Xreg and codim (Y rY ◦) > 2.
In particular, we have π1(Y ◦) ∼= π1(Y ). By [Tak03, Theorem 1.1], we also have π1(Y ) ∼= π1(X), and from
[Kol93, Lemma 5.2.2]), we see that π1(X) = 0. Eventually, Xreg is simply-connected, and as TX is stable by
Proposition 5.4, it is automatically strongly stable.



A DECOMPOSITION THEOREM FOR SMOOTHABLE VARIETIES WITH TRIVIAL CANONICAL CLASS 17

8. Examples

In this section, we first give examples of smoothable (irreducible) Calabi-Yau and symplectic varieties.
We also collect examples which illustrate to what extent our results are sharp. We maintain notation of
Section 5.

8.1. Examples of smoothable Calabi-Yau varieties.

Example 8.1 (Nodal hypersurfaces). Let X be a nodal degree n+ 2 hypersurface in Pn+1 with n > 3. This
means that the singularities of X are isolated and locally analytically isomorphic to the germ at 0 of the
quadric

Q :=

{
z ∈ Cn+1 |

n+1∑
i=1

z2
i = 0

}
.

Then X has canonical Gorenstein singularities, and it is smooth in codimension 2. Moreover, X has triv-
ial canonical bundle and is smoothable by irreducible Calabi-Yau manifolds. By Theorem 7.1, one has
πét1 (Xreg) = {1}. Then, Proposition 4.4 shows that X is an irreducible Calabi-Yau variety.

This applies in particular to

X :=
{

[x0 : · · · : x4] ∈ P4 |x0f + x1g = 0
}

where f and g are general homogeneous polynomials in x0, . . . , x4 of degree 4. Indeed, it is clear that X has
16 (isolated) nodal singularities. In that example, there is an alternative proof that bypasses Theorem 7.1.
Indeed, blowing up the plane S := (x0 = x1 = 0) ⊂ P4 yields a small resolution π : X̃ → X so in particular,
we must have π1(Xreg) ∼= π1

(
X̃ r π−1(S)

) ∼= π1(X̃) since codimπ−1(S) > 2. Applying successively [Tak03,
Theorem 1.1] and the Lefschetz’s hyperplane theorem for fundamental groups, we see that π1(X̃) ∼= π1(X) =
{1}, and hence π1(Xreg) = {1} as claimed.

Example 8.2 (Calabi-Yau threefolds with non-nodal singularities). Let S1 → P1 and S2 → P1 be rational
elliptic surfaces with sections, and let X := S1 ×P1 S2 (see [Sch88]). In [Nam94, Example 5.9], Namikawa
gives conditions on the singular fibers of each fibration under which X is a smoothable Q-factorial 3-fold
with trivial canonical class with one isolated terminal singularity locally analytically isomorphic to the germ
at 0 of the hypersurface

{z ∈ C4 | z2
1 + z2

2 + z3(z3 + z4)(z3 − z4) = 0}.
As in the example above, one concludes that X is an irreducible Calabi-Yau variety.

Example 8.3 (Calabi-Yau threefolds with Q-factorial isolated rational hypersurface singularities). If X
is a projective variety of dimension three with canonical singularities and trivial canonical bundle, then
Namikawa and Steenbrink proved in [NS95, Theorem 1.3] that X admits a flat deformation to a smooth
Calabi-Yau threefold provided that X has only Q-factorial, isolated, rational hypersurface singularities. If
X is singular, then it is an irreducible Calabi-Yau variety. The argument is as follows.

Suppose from now on that X is singular, and let Y → X be any quasi-étale cover. We claim that Y is also
singular. Suppose otherwise, and let Z → Y be a quasi-étale cover such that the induced finite morphism
Z → X is Galois. By the Nagata-Zariski purity theorem, Z → Y is étale, and thus Z is smooth as well.
This in turn implies that X has quotient singularities. On the other hand, any isolated quotient singularity
in dimension at least three is rigid by [Sch71, Theorem 2] (see also Remark 1.2), yielding a contradiction.
By the Nagata-Zariski purity theorem again, we conclude that Y has isolated singularities.

Applying Proposition 6.1, we see that there exist a quasi-étale cover Y → X and a smoothing of Y into
irreducible and simply-connected Calabi-Yau or symplectic manifolds. By Proposition 5.4 and Theorem 7.1,
Y is an irreducible Calabi-Yau variety, and hence so is X.

If the global assumption on Q-factoriality is dropped, [NS95, Theorem 2.4] shows that one can still improve
the singularities of X by deforming it to a variety with only nodal singularities.

Remark 8.4. It should be noted that from our classification point of view, threefolds are completely
understood as they are known to satisfy a singular analogue of the Beauville-Bogomolov decomposition
theorem by [Dru16]. Therefore, Examples 8.2 and 8.3 should be thought as illustrative rather than new.
For instance, [Dru16] can be used along the same lines as in Example 8.3 above to prove that if X is a
smoothable projective variety of dimension three with canonical isolated singularities and trivial canonical
class, then X is an irreducible Calabi-Yau variety.
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8.2. Examples of smoothable symplectic varieties. Let X be a normal variety. Recall that we say that
X is a symplectic variety if X has canonical singularities and there exists ω ∈ H0

(
Xreg,Ω

2
Xreg

)
everywhere

non-degenerate. If π : X̃ → X is a resolution of singularities of X, then ω extends to a holomorphic 2-form
on X̃ by [GKKP11, Theorem 1.4]. Let now π : X̃ → X be a Q-factorial terminalization of X. Recall that
the existence of π is established in [BCHM10, Corollary 1.4.3]. Then [Nam06, Corollary 2] asserts that X
is smoothable if and only if X̃ is smooth. Note that ω automatically extends to a symplectic form on X̃reg

since π is crepant. In particular, if X is smoothable, then X admits a symplectic resolution. Conversely,
if X admits a symplectic resolution, then X is smoothable by [Nam01, Theorem 2.2]. More precisely, any
smoothing Xt of X by symplectic manifolds is a flat deformation of X̃.

Note that Namikawa’s theorem [Nam06, Corollary 2] provides smoothings by Kähler manifolds which are
not projective.

8.3. Examples of smoothable symplectic varieties with stable but not strongly stable tangent
sheaf. Recall from Proposition 5.4 and Theorem 7.1 that if a normal projective variety X with klt singu-
larities and KX ≡ 0 whose tangent sheaf is not strongly stable admits a projective smoothing into simply-
connected irreducible Calabi-Yau, or symplectic manifolds then codim(X rXreg) = 2.

Example 8.5 (Singular Kummer surface). In the following example, we consider a degeneration of K3
surfaces to a singular Kummer surface X. More precisely, let X = A/〈±1〉 where A is a principally polarized
abelian surface. Then the following holds.

• The Kummer surface X admits a Q-Gorenstein projective smoothing f : X → C by K3 surfaces.
• The tangent sheaf TX is not strongly stable.
• Let L be a relatively ample line bundle on X , and denote by g the Ricci-flat Kähler metric on Xreg

given by [EGZ09, Theorem 7.5] applied to (X0,L|X0
). Given x ∈ Xreg, we have

Hol(Xreg, g)x ∼= Z/2Z and Hol◦(Xreg, g)x = {1}.

• We have π1(X) = {1} and π1(Xreg) is an extension of Z4 by Z/2Z.

It is well-known that X can be realized as a singular quartic surface in P3 (see [BL04, Theoremm 4.8.1]).
In particular, it can be seen as the fiber over some point t0 ∈ C of a projective flat family f : X → C of
quartic surfaces over a smooth algebraic curve C such that Xt is smooth if t 6= t0. The total space X is an
hypersurface in C × P3, and hence Q-Gorenstein. For t 6= t0, Xt is a smooth quartic surface, and thus it is
a K3 surface.

The tangent sheaf TX is not strongly stable as X admits a quasi-étale cover γ : A → A/〈±1〉 of degree
two and TA ∼= O⊕2

A is obviously not stable.
By [EGZ09, Theorem 7.5], there exists a unique closed positive (1, 1)-current ω with bounded potentials

on X such that [ω] = [c1(L|X)] ∈ H2(X,R) and such that the restriction of ω to Xreg is a smooth Kähler
form with zero Ricci curvature. Note that g is the Riemannian metric associate with ω|Xreg

on Xreg. We
claim that g is flat, or equivalently that Hol◦(Xreg, g)x = {1}. Indeed, it is known that ω is of orbifold
type, that is, γ∗ω defines a smooth Ricci-flat Kähler metric on A. On the other hand, it is well-known that
any Ricci-flat metric on a torus is flat. Next, we show that Hol(Xreg, g)x ∼= Z/2Z. Note that the natural
surjection π1(Xreg) � Hol(Xreg, g)x/Hol◦(Xreg, g)x together with the fact that (γ|γ−1(Xreg))

∗g is flat yields
a surjective map Z/2Z � Hol(Xreg, g)x. Suppose that Hol(Xreg, g)x is trivial. Then, by Bochner principle,
one would get a non-zero element σ ∈ H0(X,Ω

[1]
X ), and therefore a non-zero global 1-form on A invariant

under the involution a 7→ −a, yielding a contradiction. Thus

Hol(Xreg, g)x ∼= Z/2Z.

As for the fundamental group, X is simply-connected by Lefschetz theorem. Moreover, a degree two étale
cover of Xreg is isomorphic to the complement of 16 points in an abelian surface, therefore the fundamental
group of this cover is Z4.

Example 8.6 (Symmetric square of aK3 surface). This following example was already exhibited in [GKP16,
Example 8.6] as a variety with stable but not strongly stable tangent sheaf. Let S be a K3 surface, and let
X := S × S/〈i〉 where i is the natural involution (s1, s2) 7→ (s2, s1) of S × S. Recall from [Bea83, Section
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6] that the Hilbert scheme S[2] parametrizing length 2 zero-dimensional subschemes on S is an irreducible
symplectic manifold which admits a birational crepant morphism S[2] → X. Then the following holds.

• The variety X admits a Kähler deformation to a smooth irreducible symplectic variety.
• The tangent sheaf X is not strongly stable.
• Let x ∈ Xreg. There exists a Ricci-flat Kähler metric g on Xreg such that

Hol(Xreg, g)x ∼=
(

SU(2)× SU(2)
)
o Z/2Z and Hol◦(Xreg, g)x ∼= SU(2)× SU(2).

• We have π1(X) = {1} and π1(Xreg) ∼= Z/2Z.

The claim on the existence of a smoothing follows from the existence of the symplectic resolution S[2] → X
combined with a theorem of Namikawa [Nam06, Corollary 2] (see also Section 8.2).

The tangent sheaf TX is not strongly stable as X admits a quasi-étale cover γ : S × S → X of degree two
and TS×S is obviously not stable.

Let us consider the two projections pi : S × S → S with i = 1, 2. Given a Ricci-flat Kähler metric gS on
S, p∗1gS + p∗2gS defines a Kähler Ricci-flat metric on S × S that descends to a Ricci-flat Kähler metric g on
Xreg. Let y be a point on S × S such that γ(y) = x. As the restricted holonomy is preserved by passing to
an étale cover, we must have

Hol◦(Xreg, g)x ∼= Hol◦(S × S r ∆, γ∗g)y = SU(2)× SU(2)

where ∆ ⊂ S × S denotes the diagonal.
As in the previous example, we have a surjective map Z/2Z � Hol(Xreg, g)x/Hol◦(Xreg, g)x. Suppose

that Hol(Xreg, g)◦x = Hol(Xreg, g)x. Then, by the Bochner principle, one would get two linearly independent
reflexive 2-forms on X, hence two independent 2-forms on S × S invariant by the involution, yielding a
contradiction. This shows that

Hol(Xreg, g)x ∼=
(

SU(2)× SU(2)
)
o Z/2Z.

By a theorem of Armstrong (see [Arm82]), we have π1(X) = {1}. As for Xreg, it admits a degree two
cover from S × S r ∆. Since codim∆ = 2 and S × S is simply-connected, we conclude that S × S r ∆ is
simply-connected as well, and hence π1(Xreg) ∼= Z/2Z.

Remark 8.7. As already mentioned, Namikawa’s theorem [Nam06, Corollary 2] provides smoothings by
Kähler manifolds which are not projective. We do not know whether X admits a projective smoothing by
irreducible symplectic varieties.
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