Kähler-Einstein metrics with mixed Poincaré and cone singularities along a normal crossing divisor
Henri Guenancia

To cite this version:

HAL Id: hal-01878992
https://hal.science/hal-01878992
Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
KÄHLER-EINSTEIN METRICS WITH MIXED POINCARÉ AND CONE SINGULARITIES ALONG A NORMAL CROSSING DIVISOR

by

Henri Guenancia

Abstract. — Let X be a compact Kähler manifold and Δ be a \mathbb{R}-divisor with simple normal crossing support and coefficients between $1/2$ and 1. Assuming that $K_X + \Delta$ is ample, we prove the existence and uniqueness of a negatively curved Kähler-Einstein metric on $X \setminus \text{Supp}(\Delta)$ having mixed Poincaré and cone singularities according to the coefficients of Δ. As an application we prove a vanishing theorem for certain holomorphic tensor fields attached to the pair (X, Δ).

Contents

Introduction ... 2
Acknowledgments .. 4
1. Preliminaries .. 4
 1.1. Notations and definitions .. 4
 1.2. Kähler-Einstein metrics for pairs 5
 1.3. The logarithmic case .. 6
 1.4. A priori estimates .. 8
2. Uniqueness of the Kähler-Einstein metric 9
 2.1. Energy classes for quasi-psh functions 9
 2.2. From Kähler-Einstein metrics to Monge-Ampère equations 10
3. Statement of the main result ... 12
4. Proof of the main result .. 13
 4.1. The approximation process 13
 4.2. Establishing estimates for φ_ε 14
 4.2.1. A precise expression of the metric 14
 4.2.2. Bounding the curvature from below 16
 4.2.3. Bounding the ω_ε-Laplacian of F_ε 19
 4.3. End of the proof .. 21
 4.4. Remarks ... 22
5. A vanishing theorem for holomorphic tensor fields 22
References .. 29
Introduction

Let X be a compact Kähler manifold of dimension n, and $\Delta = \sum a_i \Delta_i$ an effective \mathbb{R}-divisor with simple normal crossing support such that the a_i's satisfy the following inequality: $0 < a_i \leq 1$. We write $X_0 = X \setminus \text{Supp}(\Delta)$.

Our local model is given by the product $X_{\text{mod}} = \left(\mathbb{D}^* \right)^r \times \left(\mathbb{D}^* \right)^s \times \mathbb{D}^{n-(s+r)}$ where \mathbb{D} (resp. \mathbb{D}^*) is the disc (resp. punctured disc) of radius $1/2$ in \mathbb{C}, the divisor being $D_{\text{mod}} = d_1[z_1 = 0] + \cdots + d_r[z_r = 0] + [z_{r+1} = 0] + \cdots + [z_{r+s} = 0]$, with $d_i < 1$. We will say that a metric ω on X_{mod} has mixed Poincaré and cone growth (or singularities) along the divisor D_{mod} if there exists $C > 0$ such that

$$C^{-1} \omega_{\text{mod}} \leq \omega \leq C \omega_{\text{mod}}$$

where

$$\omega_{\text{mod}} := \sum_{j=1}^{r} \frac{\partial z_j \wedge \partial \bar{z}_j}{|z_j|^2 \log^2 |z_j|^2} + \sum_{j=r+1}^{s} \frac{\partial z_j \wedge \partial \bar{z}_j}{|z_j|^2} + \sum_{j=r+s+1}^{n} \partial z_j \wedge \partial \bar{z}_j$$

is simply the product metric of the standard cone metric on $(\mathbb{D}^*)^r$, the Poincaré metric on $(\mathbb{D}^*)^s$, and the euclidian metric on $\mathbb{D}^{n-(s+r)}$.

This notion makes sense for global (Kähler) metrics ω on the manifold X_0; indeed, we can require that on each trivializing chart of X where the pair (X, Δ) becomes $(X_{\text{mod}}, D_{\text{mod}})$ (those charts cover X), ω is equivalent to ω_{mod} just like above, and this does not depend on the chosen chart.

Our goal will then be to find, whenever this is possible, Kähler metrics on X_0 having constant Ricci curvature and mixed Poincaré and cone growth along Δ. Those metrics will naturally be called Kähler-Einstein metrics. For reasons which will appear in section 1.2 and more precisely in Remark 1.3, we will restrict ourselves to looking for Kähler-Einstein metrics with negative curvature.

The existence of Kähler-Einstein metrics (in the previously specified sense) has already been studied in various contexts and for multiple motivations. The logarithmic case (all coefficients of Δ are equal to 1) has been solved when $K_X + \Delta$ is assumed to be ample by R. Kobayashi [Kob84] and G. Tian-S.T. Yau [TY87], the latter considering also orbifold coefficients for the fractional part $\Delta_{\text{orb}} = \sum_{(a_i < 1)} a_i \Delta_i$ of Δ, that is of the form $1 - \frac{1}{m}$ for some integers $m > 1$. Our main result extends this when the coefficients of Δ_{orb} are no longer orbifold coefficients, but are any real numbers $a_i \geq 1/2$ (condition which is realized if a_i is of orbifold type):

Theorem A. — Let X be a compact Kähler manifold and $\Delta = \sum a_i \Delta_i$, a \mathbb{R}-divisor with simple normal crossing support such that $K_X + \Delta$ is ample. We assume furthermore that the coefficients of Δ satisfy the following inequalities:

$$1/2 < a_i \leq 1.$$

Then $X \setminus \text{Supp}(\Delta)$ carries a unique Kähler-Einstein metric ω_{KE} with curvature -1 having mixed Poincaré and cone singularities along Δ.

The conic case, i.e. when the coefficients of Δ are strictly less than 1, under the assumption that $K_X + \Delta$ is positive or zero, has been studied by R. Mazzeo [Maz99], T. Jeffres [Jef00] and recently resolved independently by S. Brendle [Bre11] and R. Mazzeo, T. Jeffres, Y. Rubinstein [JMR11] in the case of an (irreducible) smooth divisor, and by [CGP11] in the general case of a simple normal crossing divisor (having though all its coefficients greater than $1/2$). In the
conic case where $K_X + \Delta < 0$, some interesting existence results were obtained by R. Berman in [Ber11] and T. Jeffres, R. Mazzeo and Y. Rubinstein in [JMR11]. Let us finally mention that in [JMR11], it is proved that the potential of the Kähler-Einstein metric has polyhomogeneous expansion, which is much stronger than the assertion on the cone singularities of this metric.

Let us now give a sketch of the proof by detailing the organization of the paper.

The first step is, as usual, to relate the existence of Kähler-Einstein metrics to some particular Monge-Ampère equations. We explain this link in Proposition 2.5. The idea is that any negatively curved Kähler-Einstein metric on X_0 with appropriate boundary conditions extends to a Kähler current of finite energy in $c_1(K_X + \Delta)$ satisfying on X a Monge-Ampère equation of the type $\omega^n_e = e^\varphi - r^a \omega^n$ where ω is a Kähler form on X, and $\varphi_\Delta = \sum a_i \log |s_i|^2 + (\text{smooth terms})$. One may observe that as soon as some a_i equals 1, the measure $e^{-\varphi} \omega^n$ has infinite mass.

The uniqueness of the solution metric will then follow from the so-called comparison principle established by V. Guedj and A. Zeriahi in [GZ07] for this class of finite energy currents.

We are then reduced to solving some singular Monge-Ampère equation. The strategy consists in working on the open manifold $X_{lc} := X \setminus \Delta_{lc}$, and we are led to the following equation: $\omega^n_{lc} = e^\varphi - r^a \omega^n$ where this time ω is a Kähler form on X_{lc} with Poincaré singularities along Δ_{lc}, and $\varphi_{lc} = \sum_{i<j} a_i \log |s_i|^2 + (\text{smooth terms})$. If φ_{lc} were smooth, one could simply apply the results of Kobayashi and Tian-Yau. As it is not the case, we adapt the strategy of Campana-Guenancia-Păun to this setting:

We start in section 4.1 by regularizing φ_{lc} into a smooth function (on X_{lc}) $\varphi_{lc,\epsilon}$ and introducing smooth approximations ω_ϵ of the cone metric on X_{lc}, having Poincaré singularities along Δ_{lc}. Then we consider the regularized equation $\omega^n_{lc,\epsilon} = e^{\varphi_\epsilon} - r^a \omega^n$ which we can solve for every $\epsilon > 0$ (we are in the logarithmic case). The point is to construct our desired solution φ as the limit of $(\varphi_\epsilon)_\epsilon$; this is made possible by controlling (among other things) the curvature of ω_ϵ, and applying appropriate a priori laplacian estimates which we briefly explain in section 1.4. The final step is standard: it consists in invoking Evans-Krylov $C^{2,\alpha}$ interior estimates, and concluding that φ is smooth on X_0 using Schauder estimates.

In the last part of the paper, and as in [CGP11], we try to use the Kähler-Einstein metric constructed in the previous sections to obtain the vanishing of some particular holomorphic tensors attached to a pair (X, Δ), Δ being still a \mathbb{R}-divisor with simple normal crossing support and having coefficients in $[0, 1]$. This specific class consists in the holomorphic tensors which are the global sections of the locally free sheaf $T^*_s(X|\Delta)$ introduced by Campana in [Cam10]: they are holomorphic tensors with prescribed zeros or poles along Δ. Thanks to their realization as bounded tensors with respect to some (or equivalently, any) twisted metric g with mixed cone and Poincaré singularities along Δ (cf. Proposition 5.3), we can use Theorem A to prove the following:

Theorem B. — Let (X, Δ) be a pair satisfying the assumptions of Theorem A. Then, there is no non-zero holomorphic tensor of type (r, s) whenever $r \geq s + 1$:

\[H^0(X, T^*_s(X|\Delta)) = 0. \]

The proof of this results follows closely the one of its analogue in [CGP11]: we use a Bochner formula applied to the truncated holomorphic tensors, and the key point is to control the error
term. However, a new difficulty pops up here, namely we have to deal with an additional term coming from the curvature of the line bundle $O_X([\Delta])$; fortunately, it has the right sign.

Acknowledgments

I am very grateful to Sébastien Boucksom for his patient and careful reading of the preliminary versions, and his several highly valuable comments and suggestions to improve both the organization and the content of this paper. I would like to also thank warmly Mihai Păun for the precious help he gave me to elaborate the last section of this article.

1. Preliminaries

In this first section devoted to the preliminaries, we intend to fix the notations and the scope of this paper. We also recall some useful objects introduced in [Kob84] and [TY87] within the framework of the logarithmic case; finally, we explain briefly some a priori estimates which are going to be essential tools in the proof of the main theorem.

1.1. Notations and definitions. — All along this work, X will be a compact Kähler manifold of complex dimension n. We will consider effective \mathbb{R}-divisors $\Delta = \sum a_i \Delta_i$ with simple normal crossing support, and such that their coefficients a_i belong to $[0, 1]$. It will be practical to separate the hypersurfaces Δ_i appearing with coefficient 1 in Δ from the other ones. For this, we write:

$$\Delta = \sum_{\{a_i < 1\}} a_i \Delta_i + \sum_{\{a_i = 1\}} \Delta_i = \Delta_{\text{klt}} + \Delta_{\text{lc}}$$

These notations come from the framework of the pairs in birational geometry; klt stands for Kawamata log-terminal whereas lc means log-canonical. In this language, (X, Δ) is called a log-smooth lc pair, and (X, Δ_{klt}) is a log-smooth klt pair. Apart from these practical notations, we will not use this terminology.

We will denote by s_i a section of $O_X(\Delta_i)$ whose zero locus is the (smooth) hypersurface Δ_i, and, omitting the dependence in the metric, we write $\Theta(\Delta_i)$ the curvature form of $(O_X(\Delta_i), h_i)$ for some hermitian metric on $O_X(\Delta_i)$. Up to scaling the h_i’s, one can assume that $[s_i] \leq e^{-1}$, and we will make this assumption all along the paper. Finally, we set $X_0 := X \setminus \text{Supp}(\Delta)$ and $X_{\text{lc}} := X \setminus \text{Supp}(\Delta_{\text{lc}})$.

In the introduction, we mentioned a natural class of growth of Kähler metrics near the divisor Δ which we called metrics with mixed Poincaré and cone singularities along Δ. They are the Kähler metrics locally equivalent to the model metric $\omega_{\text{mod}} = \sum_{j=1}^r \frac{i dz_j \wedge d\bar{z}_j}{|z_j|^2} + \sum_{j=r+1}^s \frac{i dz_j \wedge d\bar{z}_j}{|z_j|^2 \log^2 |z_j|^2} + \sum_{j=r+s+1}^n idz_j \wedge d\bar{z}_j$ whenever the pair (X, Δ) is locally isomorphic to $(X_{\text{mod}}, D_{\text{mod}})$ with $X_{\text{mod}} = (\mathbb{D}^*)^r \times (\mathbb{D}^*)^s \times \mathbb{D}^{n-(r+s)}$ and $D_{\text{mod}} = d_1[z_1 = 0] + \cdots + d_r[z_r = 0] + [z_{r+1} = 0] + \cdots + [z_{r+s} = 0]$, with $d_i < 1$.

The following elementary lemma ensures that given a pair (X, Δ) as above, Kähler metrics with mixed Poincaré and cone singularities along Δ always exist:
Lemma 1.1. — The following $(1,1)$-form
\[\omega_\Delta := \omega_0 + \sum_{\{a_i < 1\}} dd^c |s_i|^{2(1-a_i)} - \sum_{\{a_i = 1\}} dd^c \log \log \frac{1}{|s_i|^2} \]
defines a Kähler form on X_0 as soon as ω_0 is a sufficiently positive Kähler metric on X_0. Moreover, it has mixed Poincaré and cone singularities along Δ.

Proof. — This can be seen by a simple computation: combine e.g. [Cla08, Proposition 2.1] with [CG72, Proposition 2.1] or [Gri76, Proposition 2.17].

Before we end this paragraph, we would like to emphasize the different role played by the Δ_i’s whether they appear in Δ with coefficient 1 or strictly less than 1. Here is some explanation: let $0 < \alpha < 1$ be a real number, and $\omega_\alpha = (1-\alpha)^2 idz \wedge d\bar{z} \frac{|z|^2}{|z|^2 \log \frac{1}{|z|^2}}$; its curvature is constant equal to $-\frac{1}{\alpha}$ on the punctured disc \mathbb{D}^*, and it has a cone singularity along the divisor $\alpha[z = 0]$. Then, when α goes to 1, ω_α converges pointwise to the Poincaré metric $\omega_P = idz \wedge d\bar{z} \frac{|z|^2 \log}{|z|^2}$.

In the following, any pair (X, Δ) will be implicitly assumed to be composed of a compact Kähler manifold X and a \mathbb{R}-divisor Δ on X having simple normal crossing support and coefficients belonging to $[0,1]$.

1.2. Kähler-Einstein metrics for pairs. — As explained in the introduction, the goal of this paper is to find a Kähler metric on X_0 with constant Ricci curvature, and having mixed Poincaré and cone singularities along the given divisor Δ. The second condition is essential and as important as the first one; the proof of the vanishing theorem for holomorphic tensors in the last section will render an account of this and shall surely convince the reader. Let us state properly the definition:

Definition 1.2. — A Kähler-Einstein metric for a pair (X, Δ) is defined to be a Kähler metric ω on X_0 satisfying the following properties:

- $\text{Ric} \omega = \mu \omega$ for some real number μ;
- ω has mixed Poincaré and cone singularities along Δ.

Remark 1.3. — Unlike cone singularities, Poincaré singularities are intrinsically related to negative curvature geometry:

- The Bonnet-Myers Theorem tells us that in the case where $\Delta_{klt} = 0$ (so that we work with complete metrics), there cannot exist Kähler-Einstein metrics in the previous sense with $\mu > 0$. However, if $\Delta_{lc} = 0$, there may exist Kähler-Einstein metrics with positive curvature, and the question of their existence is often a difficult question (see e.g. [BBE+11] or [Ber11]).

- As for the Ricci-flat case ($\mu = 0$), it also has to be excluded. Indeed, there cannot be any Ricci-flat metric on the punctured disc \mathbb{D}^* with Poincaré singularity at 0; to see this, we write $\omega = \frac{1}{2}e^{2u}dz \wedge d\bar{z}$ such a metric, and then u has to satisfy the following properties: u is harmonic on \mathbb{D}^* and e^{2u} behaves like $\frac{1}{|z|^2 \log |z|^2}$ near 0, up to constants. But it is well-known that any harmonic function u on Δ^* can be written $u = \text{Re}(f) + c \log |z|$ for some holomorphic function f on \mathbb{D}^* and some constant $c \in \mathbb{R}$. Clearly, f cannot have an essential singularity at 0; moreover, because of the logarithmic term in the Poincaré metric, f can neither be bounded, nor have a pole at 0. This ends to show that in general (and
for local reasons), there does not exist Ricci-flat Kähler-Einstein metric in the sense of the previous definition (whenever \(\Delta_k \neq 0 \)).

For these reasons, we will focus in the following on the case of negative curvature, which we will normalize by taking \(\mu = -1 \).

1.3. The logarithmic case. — For the sake of completeness, we will briefly recall in this section the proof of the main result (Theorem 3.1) in the logarithmic case, namely when \(\Delta = \Delta_{lc} \), i.e. when \(\Delta_{klk} = 0 \). As we already explained, this was achieved by Kobayashi [Kob84] and Tian-Yau [TY87] in a very similar way. In this section, we will assume that \((X, \Delta)\) is logarithmic, so that \(X_0 = X_{lc} \).

We will use the following terminology which is convenient for the following:

Definition 1.4. We say that a Kähler metric \(\omega \) on \(X_0 \) is of Carlson-Griffiths type if there exists a Kähler form \(\omega_0 \) on \(X \) such that \(\omega = \omega_0 - \sum K \cdot \log \log \frac{1}{|v|^2} \).

As observed in Lemma 1.1, such a metric always exists, and it has Poincaré singularities along \(\Delta \). In [CG72], Carlson and Griffiths introduced such a metric for some \(\omega_0 \in c_1(K_X + \Delta) \). The reason why we exhibit this particular class of Kähler metric on \(X_0 \) having Poincaré singularities along \(\Delta \) is that we have an exact knowledge on its behaviour along \(\Delta \), much more precise that its membership of the previously cited class. For example, Lemma 1.6 mirrors this fact.

We start from a compact Kähler manifold \(X \) with a simple normal crossing divisor \(\Delta = \sum \Delta_k \) such that \(K_X + \Delta \) is ample. We want to find a Kähler metric \(\omega_{KE} \) on \(X_0 = X \setminus \Delta \) with \(-\text{Ric} \omega_{KE} = \omega_{KE} \), and having Poincaré singularities along \(\Delta \). If we temporarily forget the boundary condition, the problem amounts to solve the following Monge-Ampère equation on \(X_0 \):

\[
(\omega + dd^c \varphi)^n = e^{\varphi + F} \omega^n
\]

where \(\omega \) is a Kähler metric on \(X_0 \) of Carlson-Griffiths type (cf. Definition 1.4), and \(F = -\log (\prod |s_k|^2 \log |s_k|^2 \cdot \omega^n / \omega_0^n) + (\text{smooth terms on } X) \) for some Kähler metric \(\omega_0 \) on \(X \).

The key point is that \((X_0, \omega)\) has bounded geometry at any order. Let us get a bit more into the details. To simplify the notations, we will assume that \(\Delta \) is irreducible, so that locally near a point of \(\Delta \), \(X_0 \) is biholomorphic to \(\mathbb{D}^* \times \mathbb{D}^{n-1} \), where \(\mathbb{D} \) (resp. \(\mathbb{D}^* \)) is the unit disc (resp. punctured disc) of \(\mathbb{C} \). We want to show that, roughly speaking, the components of \(\omega \) in some appropriate coordinates have bounded derivatives at any order. The right way to formalize it consists in introducing quasi-coordinates: they are maps from an open subset \(V \subset \mathbb{C}^n \) to \(X_0 \) having maximal rank everywhere. So they are just locally invertible, but these maps are not injective in general.

To construct such quasi-coordinates on \(X_0 \), we start from the universal covering map \(\pi : \mathbb{D} \to \mathbb{D}^* \), given by \(\pi(w) = e^{\frac{w+\bar{w}}{1+\bar{w}}} \). Formally, it sends 1 to 0. The idea is to restrict \(\pi \) to some fixed ball \(B(0, R) \) with \(1/2 < R < 1 \), and compose it (at the source) with a biholomorphism \(\Phi_\eta \) of \(\mathbb{D} \) sending 0 to \(\eta \), where \(\eta \) is a real parameter which we will take close to 1. If one wants to write a formula, we set \(\Phi_\eta(w) = \frac{\frac{w+\bar{w}}{1+\bar{w}}}{1+\bar{\eta}w} \), so that the quasi-coordinate maps are given by \(\Psi_\eta = \pi \circ \Phi_\eta \times \text{Id}_{\mathbb{D}^{n-1}} : V = B(0, R) \times \mathbb{D}^{n-1} \to \mathbb{D}^* \), with \(\Psi_\eta(v, v_2, \ldots, v_n) = (e^{\frac{1+\bar{\eta} v_1+1}{1+\eta v_1}}, v_2, \ldots, v_n) \).

Once we have said this, it is easy to see that \(X_0 \) is covered by the images \(\Psi_\eta(V) \) when \(\eta \) goes to 1, and for all the trivializing charts for \(X \), which are in finite number. Now, an easy computation shows that the derivatives of the components of \(\omega \) with respect to the \(v_i \)'s are bounded uniformly in \(\eta \). This can be thought as a consequence of the fact that the Poincaré metric is invariant by
any biholomorphism of the disc.

At this point, it is natural to introduce the Hölder space of $\mathcal{C}^{k,\alpha}_{qc}$-functions on X_0 using the previously introduced quasi-coordinates:

Definition 1.5. — For a non-negative integer k, a real number $\alpha \in [0,1]$, we define:

$$\mathcal{C}^{k,\alpha}_{qc}(X_0) = \{ u \in \mathcal{C}^k(X_0); \sup_{V,\eta} \| u \circ \Psi_\eta \|_{k,\alpha} < +\infty \}$$

where the supremum is taken over all our quasi-coordinate maps V (which cover X_0). Here $\| \cdot \|_{k,\alpha}$ denotes the standard $\mathcal{C}^{k,\alpha}_{qc}$-norm for functions defined on a open subset of \mathbb{C}^n.

The following fact, though easy, is very important for our matter:

Lemma 1.6. — Let ω be a Carlson-Griffiths type metric on X_0, and ω_0 some Kähler metric on X. Then

$$F_0 := \log \left(\prod |s_k|^2 \log^2 |s_k|^2 \cdot \omega^n / \omega_0^n \right)$$

belongs to the space $\mathcal{C}^{k,\alpha}_{qc}(X_0)$ for every k and α.

Proof. — The first remark is that F_0 is bounded (cf. [Kob84, Lemma 1.(ii)] or the beginning of section 4.2.3), and $F_0 \in \mathcal{C}^{k,\alpha}_{qc}(X_0)$ if and only if $e^{F_0} \in \mathcal{C}^{k,\alpha}_{qc}(X_0)$. So in the following, we will deal with e^{F_0}.

Then, as the (elementary) computations of Lemma 4.3 show, it is enough to check that the functions on \mathbb{D}^* (say with radius 1/2) defined by $z \mapsto \frac{1-|z|}{1+|z|}, z \mapsto |z|^2 \log |z|^2$ and $z \mapsto |z|^2 \log^2 |z|^2$ are in $\mathcal{C}^{k,\alpha}_{qc}(\mathbb{D}^*)$. But in the quasi-coordinates given by Φ_η, $\frac{1}{\log |z|} = \frac{1-\eta}{1+\eta} |z|^{\frac{1}{1-\eta} - 1}$ and $|z|^2 \log^2 |z|^2 = \left(\frac{1}{2} - \frac{1+\eta}{1-\eta} \right) \alpha e^{2 \frac{1+\eta}{1-\eta} |z|^2} - 1$, for $v \in B(0,R)$ with $R < 1$, and where $\alpha \in \mathbb{R}$. Now there is no difficulty in seeing that these two functions of v are bounded when η goes to 0 (actually this property does not depend on the chosen coordinates), and so are their derivatives (still with respect to v); this is obvious for the first function, and for the second one, it relies on the fact that $x^m e^{-x}$ goes to 0 as $x \to +\infty$, for all $m \in \mathbb{Z}$.

The end of the proof consists in showing that the Monge–Ampère equation $(\omega + dd^c \varphi)^n = e^{\varphi + F} \omega^n$ has a unique solution $\varphi \in \mathcal{C}^{k,\alpha}_{qc}(X_0)$ for all functions $f \in \mathcal{C}^{k,\alpha}_{qc}(X_0)$ with $k \geq 3$. This can be done using the continuity method in the quasi-coordinates. In particular, applying this to $f = F := - \log \left(\prod |s_k|^2 \log^2 |s_k|^2 \cdot \omega^n / \omega_0^n \right) +$ (smooth terms on X) (cf. beginning of the section), which the previous lemma allows to do, this will prove the existence of a negatively curved Kähler-Einstein metric, which is equivalent to ω (in the strong sense: $\varphi \in \mathcal{C}^{k,\alpha}_{qc}(X_0)$ for all k, α).

To summarize, the theorem of Kobayashi and Tian-Yau is the following:

Theorem 1.7 ([Kob84, TY87]). — Let (X, Δ) be a logarithmic pair, ω a Kähler form of Carlson-Griffiths type on X_0, and $F \in \mathcal{C}^{k,\alpha}_{qc}(X_0)$ for some $k \geq 3$. Then there exists $\varphi \in \mathcal{C}^{k,\alpha}_{qc}(X_0)$ solution to the following equation:

$$(\omega + dd^c \varphi)^n = e^{\varphi + F} \omega^n$$

In particular if $K_X + \Delta$ is ample, then there exists a (unique) Kähler-Einstein metric of curvature -1 equivalent to ω.
1.4. A priori estimates. — In this section, we recall the classical estimates valid for a large class of complete Kähler manifolds; they are derived from the classical estimates over compact manifolds using the generalized maximum principle of Yau [Yau78]. We will use them in an essential manner in the course of the proof of our main theorem. Indeed, our proof is based upon a regularization process, and in order to guarantee the existence of the limiting object, we need to have a control on the \mathcal{C}^k norms.

Theorem 1.8. — Let X be a complete Riemannian manifold with Ricci curvature bounded from below. Let f be a \mathcal{C}^2 function which is bounded from below on M. Then for every $\varepsilon > 0$, there exists $x \in X$ such that at x,

$$\|\nabla f\| < \varepsilon, \quad \Delta f > -\varepsilon, \quad f(x) < \inf_X f + \varepsilon.$$

From this, we easily deduce the following result, stated in [CY80, Proposition 4.1].

Proposition 1.9. — Let (X, ω) be an n-dimensional complete Kähler manifold, and $F \in \mathcal{C}^2(X)$ a bounded function. We assume that we are given $u \in \mathcal{C}^2(X)$ satisfying $\omega + dd^c u > 0$ and

$$(\omega + dd^c u)^n = e^{u+F} \omega^n$$

Suppose that the bisectional curvature of (X, ω) is bounded below by some constant, and that u is a bounded function. Then

$$\sup_X |u| \leq \sup_X |F|.$$

We emphasize the fact that the previous estimate does not depend on the lower bound for the bisectional curvature of (X, ω).

As for the Laplacian estimate, we have the following (we could also have used [CY80, Proposition 4.2]):

Proposition 1.10. — Suppose that the bisectional curvature of (X, ω) is bounded below by some constant $-B, B > 0$, and that u as well as its Laplacian Δu are bounded functions on X. If $\omega + dd^c u$ defines a complete Kähler metric on X with Ricci curvature bounded from below, then

$$\sup_X (n + \Delta u) \leq C$$

where $C > 0$ only depends on $\sup |F|$, $\inf \Delta F$, B and n.

Sketch of the proof. — We set $\omega' = \omega + dd^c u$, and Δ' is defined to be the Laplacian with respect to ω'. Using [CGP11, Lemma 2.2], we obtain $\Delta'(\text{tr}_{\omega'} \omega') \geq \frac{\Delta F}{\text{tr}_{\omega'} \omega} - B \text{tr}_{\omega} \omega$, and from this we may deduce that

$$\Delta'(\text{tr}_{\omega'} \omega' - (C_1 + 1)u) \geq \text{tr}_{\omega'} \omega - C_2$$

where C_1, C_2 are constant depending only B, $\inf \Delta F$ and n. The assumptions allow us to use the generalized maximum principle stated as Theorem 1.8 to show that $\sup \text{tr}_{\omega} \omega \leq C_3$. As $\omega' = e^{F+u} \omega$, and as we have at our disposal uniform estimates on $\sup |u|$ thanks to 1.9, the usual arguments work here to give a uniform bound $\sup (n + \Delta u) \leq C$. We refer e.g. to [CGP11, section 2] for more details.
2. Uniqueness of the Kähler-Einstein metric

In this section, we begin to investigate the questions raised in the introduction concerning the existence of Kähler-Einstein metrics for pairs \((X, \Delta)\). The first thing to do is, as usual, to relate the existence of these metrics to the existence of solutions for some Monge-Ampère equations. We will be in a singular case, so we have to specify the class of \(\omega\)-psh functions to which we are going to apply the Monge-Ampère operator. This is the aim of the few following lines, where we will recall some recent (but relatively basic) results of pluripotential theory. We refer to [GZ07] or [BEGZ] for a detailed treatment.

2.1. Energy classes for quasi-psh functions. — Let \(\omega\) be a Kähler metric on \(X\); the class \(E(X, \omega)\) is defined to be composed of \(\omega\)-psh functions \(\varphi\) such that their non-pluripolar Monge-Ampère \((\omega + dd^c \varphi)^n\) has full mass \(\int_X \omega^n\) (cf. [GZ07], [BEGZ]). An alternate way to apprehend those functions is to see them as the largest class where one can define \((\omega + dd^c \varphi)^n\) as a measure which does not charge pluripolar sets. Those functions satisfy the so-called comparison principle, which we are going to use in an essential manner for the uniqueness of our Kähler-Einstein metric:

Proposition 2.1 (Comparison Principle, [GZ07]). — Let \(\varphi, \psi \in \mathcal{E}(X, \omega)\). Then we have:

\[
\int_{\{\varphi < \psi\}} (\omega + dd^c \psi)^n \leq \int_{\{\varphi < \psi\}} (\omega + dd^c \varphi)^n.
\]

An important subset of \(\mathcal{E}(X, \omega)\) is the class \(\mathcal{E}^1(X, \omega)\) of functions in the class \(\mathcal{E}(X, \omega)\) having finite \(\mathcal{E}^1\)-energy, namely \(\mathcal{E}^1(\varphi) := \int_X |\varphi|(\omega + dd^c \varphi)^n < +\infty\). Every smooth (or even bounded) \(\omega\)-psh function belongs to this class. In order to state an useful result for us, we recall the notion of capacity attached to a compact Kähler manifold \((X, \omega)\), as introduced in [GZ05], generalizing the usual capacity of Bedford-Taylor ([BT82]): for every Borel subset \(K\) of \(X\), we set:

\[
\text{Cap}_\omega(K) := \sup \left\{ \int_K \omega^n \varphi; \varphi \in \text{PSH}(X, \omega), 0 \leq \varphi \leq 1 \right\}
\]

There is an useful criteria to show that some \(\omega\)-psh function belongs to the class \(\mathcal{E}^1(X, \omega)\) without checking that it has full Monge-Ampère mass, but only using the capacity decay of the sublevel sets. It appears in different papers, among which [GZ07, Lemma 5.1], [BGZ08, Proposition 2.2], [BBGZ09, Lemma 2.9]:

Lemma 2.2. — Let \(\varphi \in \text{PSH}(X, \omega)\). If

\[
\int_{t=0}^{+\infty} t^n \text{Cap}_\omega\{\varphi < -t\} \, dt < +\infty
\]

then \(\varphi \in \mathcal{E}^1(X, \omega)\).

Now we have enough background about these objects to state and prove the result we will use in the next section. Let us first fix the notations.

Let \((X, \omega_0)\) be a Kähler manifold, and \(\Delta = \sum_{k \in K} \Delta_k\) a simple normal crossing divisor. We choose sections \(s_k\) of \(\mathcal{O}_X(\Delta_k)\) whose divisor is precisely \(\Delta_k\), and we fix some smooth hermitian metrics on those line bundles. We can assume that \(|s_k| \leq e^{-1}\), and we know that, up to scaling the metrics, one may assume that \(\omega_0 - \sum_k dd^c \log \frac{1}{|s_k|^2}\) is positive on \(X_0\), and defines a Kähler current on \(X\).
Proposition 2.3. — The function
\[\varphi_0 = - \sum_{k \in K} \log \log \frac{1}{|s_k|^2} \]
belongs to the class \(\mathcal{E}^1(X, \omega_0) \).

Proof. — We want to apply Lemma 2.2. To compute the global capacity as defined above, or at least know the capacity decay of the sublevel sets, it is convenient to use the Bedford-Taylor capacity. But a result due to Kołodziej [Kol01] (see also [GZ05, Proposition 2.10]), states that up to universal multiplicative constants, the capacity can be computed by the local Bedford-Taylor capacities on the trivializing charts of \(X \).

Therefore, we are led to bound from above \(\text{Cap}_{BT} \{ u < -t \} \) in the unit polydisc of \(\mathbb{C}^n \), where \(u = \sum_{i=1}^p - \log(- \log |z_i|^2) \) for some \(p \leq n \). As
\[\{ u < -t \} \subset \bigcup_{i=1}^p \left\{ - \log(- \log |z_i|^2) < -\frac{t}{p} \right\} \]
one can now assume that \(p = 1 \). But \(\text{Cap}_{BT} \{ \log |z|^2 < -t \} = 2t \) (see e.g [Dem, Example 13.10]), whence \(\text{Cap}_{BT} \{ - \log(- \log |z|^2) < -t \} = 2e^{-t} \). The result follows. \(\square \)

Remark 2.4. — An alternate way to proceed is to show that the smooth approximations \(\varphi_\varepsilon := - \sum_{k \in K} \log \log \frac{1}{|s_k|^2} + \varepsilon \) of \(\varphi_0 \) have (uniformly) bounded \(\mathcal{E}^1 \)-energy, which also allows to conclude that \(\varphi_0 \in \mathcal{E}^1(X, \omega_0) \) thanks to [BEGZ, Proposition 2.10 & 2.11].

2.2. From Kähler-Einstein metrics to Monge-Ampère equations. — The following proposition explains how to relate Kähler-Einstein metrics for a pair \((X, \Delta) \) and some Monge-Ampère equations, the difficulty being here that we have to deal with singular weights/potentials for which the definitions and properties of the Monge-Ampère operators are more complicated than in the smooth case. Note that this result generalizes [Ber11, Proposition 5.1]:

Proposition 2.5. — Let \(X \) be a compact Kähler manifold, and \(\Delta = \sum a_j \Delta_j \) an effective \(\mathbb{R} \)-divisor with simple normal crossing support, such that \(a_j \leq 1 \) for all \(j \). We assume that \(K_X + \Delta \) is ample, and we choose a Kähler metric \(\omega_0 \in c_1(K_X + \Delta) \). Then any Kähler metric \(\omega \) on \(X_0 \) satisfying:

- \(-\text{Ric} \omega = \omega \) on \(X_0 \);
- There exists \(C > 0 \) such that:
\[C^{-1} \omega^n \leq \prod_{\{u_i < 1\}} |s_i|^{2a_i} \prod_{\{u_i = 1\}} |s_i|^2 \log^2 |s_i|^2 \leq C \omega^n \]

extends to a Kähler current \(\omega = \omega_0 + dd^c \varphi \) on \(X \) where \(\varphi \in \mathcal{E}^1(X, \omega_0) \) is a solution of
\[(\omega_0 + dd^c \varphi)^n = e^{\varphi - \varphi^c} \omega_0^n \]
and \(\varphi^c = - \sum_{c \in \mathcal{J} \cup \mathcal{K}} a_c \log |s_c|^2 + f \) for some \(f \in \mathcal{C}^\infty(X) \). Furthermore there exists at most one such metric \(\omega \) on \(X_0 \).

Remark 2.6. — One can observe that although \(e^{\varphi - \varphi^c} \omega_0^n \) has finite mass, \(e^{-\varphi^c} \omega_0^n \) does not (as soon as \(\Delta_{lc} \neq 0 \)).
Proof. — We recall that \(\Theta(\Delta_i) \) denotes the curvature of \((\mathcal{O}_X(\Delta_i), h_i)\), and we write \(\Theta(\Delta_{klt}) = \sum_{(a_i < 1)} a_i \Theta(\Delta_i), \) \(\Theta(\Delta_{lc}) = \sum_{(a_i = 1)} \Theta(\Delta_i) \) and \(\Theta(\Delta) = \Theta(\Delta_{klt}) + \Theta(\Delta_{lc}). \) All those forms are smooth on \(X. \)

Let us define a smooth function \(\psi \) on \(X_0 \) by:

\[
\psi_0 := \log \left(\prod_{j \in J} |s_j|^{2a_j} \prod_{k \in K} |s_k|^2 \log^2 |s_k|^2 \omega_0^n \right)
\]

By assumption, \(\psi_0 \) is bounded on \(X_0 \), so that \(\psi := \psi_0 - \sum_k \log \log^2 \frac{1}{|s_k|} \) is bounded above on \(X_0 \). On this set, we have

\[
dd \psi = \omega + \text{Ric} \omega_0^n + \Theta(\Delta)
\]

so that \(\psi \) is \(M\omega_0 \)-psh for some \(M > 0 \) big enough. As it is bounded above, it extends to a (unique) \(M\omega_0 \)-psh function on the whole \(X \), which we will also denote by \(\psi \). Let now \(f \) be a smooth potential on \(X \) of \(\text{Ric} \omega_0^n + \omega_0 - \Theta(\Delta) \). It is easily shown that \(\varphi := \psi - f \) satisfies \(\omega_0 + dd^c \varphi = \omega \) on \(X_0 \).

From the definition of \(\varphi \), we see that \(\varphi = 2(\log f + O(1)) \), where \(\varphi_0 = -\sum_{k \in K} \log \log^2 \frac{1}{|s_k|} \). Therefore, Proposition 2.3 ensures that \(\varphi \in \mathcal{E}^1(X, \omega_0) \), so that its non-pluripolar Monge-Ampère \((\omega_0 + dd^c \varphi)^n \) satisfies the equation

\[
(\omega_0 + dd^c \varphi)^n = \frac{e^{f-\varphi} \omega_0^n}{\prod_{r \in J \cup K} |s_r|^{2a_r}} = \frac{e^{f-\varphi} \omega_0^n}{e^{f-\varphi} \omega_0^n}
\]

on the whole \(X \), with the notations of the statement. By the comparison principle (Proposition 2.1), if the previous equation had two solutions \(\varphi, \psi \in \mathcal{E}^1(X, \omega_0) \), then on the set \(A = \{ \varphi < \psi \} \), we would have

\[
\int_A e^{\psi-\varphi} \omega_0^n \leq \int_A e^{f-\varphi} \omega_0^n
\]

but on \(A, e^{\psi} > e^f \) so that \(A \) has zero measure with respect to the measure \(e^{-\varphi} \omega_0^n \), so it has zero measure with respect to \(\omega_0^n \). We can do the same for \(B = \{ \psi < \varphi \} \), so that \(\{ \varphi = \psi \} \) has full measure with respect to \(\omega_0^n \). As \(\varphi, \psi \) are \(\omega_0 \)-psh, they are determined by their data almost everywhere, so they are equal on \(X \). This finishes to conclude that our \(\varphi \) is unique, so that the proposition is proved.

\(\blacksquare \)

Remark 2.7. — In the logarithmic case \((\Delta = \Delta_{lc}) \), the metrics at stake are complete, so that their uniqueness follow from the generalized maximum principle of Yau (cf. [Kob84], [TY87] e.g.). In the conic case, Kołodziej’s theorem [Kol98] ensures that the potentials we are dealing with are continuous, and the unicity follows from the classical comparison principle established in [BT82, Theorem 4.1].

As Kähler metrics with mixed Poincaré and cone singularities clearly satisfy the second condition of the proposition, we deduce that any negatively curved normalized Kähler-Einstein metric must be obtained by solving the global equation \((\omega_0 + dd^c \varphi)^n = e^{f-\varphi} \omega_0^n \) on \(X \), for \(\varphi \in \mathcal{E}^1(X, \omega_0) \), and \(\varphi_{\Delta} = \sum_{r \in J \cup K} a_r \log |s_r|^2 + f \) for some \(f \in \mathcal{C}^\infty(X) \). We will now show how to solve the previous equation, and derive from this the existence of negatively curved Kähler-Einstein metrics and their zero-th order asymptotic along \(\Delta \).
3. Statement of the main result

Here is a result which encompasses the previous results of [CGP11], Kobayashi ([Kob84]) and Tian-Yau ([TY87]). This provides a (positive) partial answer to a question raised in [CGP11, section 10].

Theorem 3.1. — Let X be a compact Kähler manifold, and $\Delta = \sum a_i \Delta_i$ an effective \mathbb{R}-divisor with simple normal crossing support such that its coefficients satisfy the inequalities:

$$\frac{1}{2} \leq a_i \leq 1.$$

Then for any Kähler form ω on X_{lc} of Carlson-Griffiths type and any function $f \in \mathcal{C}^{k,\alpha}(X_{lc})$ with $k \geq 3$, there exists a Kähler metric $\omega_\infty = \omega + dd^c \varphi$ on X_0 solution to the following equation:

$$(\omega + dd^c \varphi)^n = e^{\varphi + f} \prod_{\{a_i < 1\}} |s_i|^{2a_i} \omega^n$$

such that ω_∞ has mixed Poincaré and cone singularities along Δ.

We refer to section 1.3 and more precisely to Definition 1.5 for the definition of the space $\mathcal{C}^{k,\alpha}(X_{lc})$; one important class of functions belonging to $\mathcal{C}^{k,\alpha}(X_{lc})$ is pointed out in Lemma 1.6, and we will use it for proving the following result.

Corollary 3.2. — Let (X, Δ) be a pair such that $\Delta = \sum a_i \Delta_i$ is a divisor with simple normal crossing support whose coefficients satisfy the inequalities

$$\frac{1}{2} \leq a_i \leq 1.$$

If $K_X + \Delta$ is ample, then X_0 carries a unique Kähler-Einstein metric ω_{KE} of curvature -1 having mixed Poincaré and cone singularities along Δ.

Here, by ample, we mean that $c_1(K_X + \Delta)$ contains a Kähler metric, or equivalently that $K_X + \Delta$ is a positive combination of ample \mathbb{Q}-divisors.

Proof. — We choose (h_i) and h_{K_X} some smooth hermitian metrics on the line bundles $\mathcal{O}_X(\Delta_i)$ and $\mathcal{O}_X(K_X)$ respectively such that the product metric h on $K_X + \Delta$ has positive curvature ω_0, and up to renormalizing the metrics h_k, one can assume that $\omega := \omega_0 - \sum \{a_k = 1\} dd^c \log \frac{1}{|s_k|^2}$ defines a Kähler metric on X_{lc} with Poincaré singularities along Δ_{lc}; more precisely it is of Carlson-Griffiths type.

Lemma 1.6 shows that one can write

$$\omega^n = \prod |s_k|^2 \log^2 |s_k|^2$$

with Ψ the smooth volume form on X attached to h_{K_X} (in particular $-\text{Ric} \Psi = \Theta_{h_{K_X}}(K_X)$, the curvature of $(\mathcal{O}_X(K_X), h_{K_X})$), and $B \in \mathcal{C}^{k,\alpha}(X \setminus \Delta_{lc})$ for all k and α.

Now we use Theorem 3.1 with $f = B$, and ω as reference metric. We then get a Kähler metric $\omega_{KE} := \omega + dd^c \varphi$ on $X \setminus \text{Supp}(\Delta)$ with mixed Poincaré and cone singularities along Δ satisfying

$$(\omega + dd^c \varphi)^n = \prod_{j \in J} |s_j|^{2a_j} \omega^n.$$
Therefore,
\[-\operatorname{Ric}(\omega_{\text{KE}}) = dd^c(\varphi + B) - dd^c B + \Theta_{h_{K_X}}(K_X) - \sum_{k \in K} \left(dd^c \log |s_k|^2 - dd^c \log \frac{1}{|s_k|^2}\right)\]
\[- \sum_{j \in J} dd^c \log |s_j|^{2a_j}\]
\[= dd^c \varphi + \Theta(K_X) + \Theta(\Delta_{lc}) + \Theta(\Delta_{klt}) - \sum_{k \in K} dd^c \log \frac{1}{|s_k|^2} - \sum_{j \in J} dd^c \log |s_j|^2 a_j = dd^c \varphi + \Theta(K_X) + \Theta(\Delta_{lc}) + \Theta(\Delta_{klt}) - \sum_{k \in K} dd^c \log \log \frac{1}{|s_k|^2} - \sum_{j \in J} dd^c \log |s_j|^2 a_j = \omega_{\text{KE}}.\]
Moreover, \(\omega_{\text{KE}}\) has mixed Poincaré and cone singularities along \(\Delta\), so it is a Kähler-Einstein metric for the pair \((X, \Delta)\).
As for the uniqueness of \(\omega_{\text{KE}}\), it follows directly from Proposition 2.5. □

4. Proof of the main result

As we explained in the introduction, the natural strategy is to combine the approaches of [CGP11] and Kobayashi ([Kob84]). More precisely we will produce a sequence of Kähler metrics \((\omega_\varepsilon)\) on \(X \setminus \Delta_{lc}\) having Poincaré singularities along \(\Delta_{lc}\) and acquiring cone singularities along \(\Delta_{klt}\) at the end of the process when \(\varepsilon = 0\).

4.1. The approximation process. — We keep the notation of Theorem 3.1, so that \(\omega\) is a Kähler form on \(X_{lc}\) of Carlson-Griffiths type; in particular it has Poincaré singularities along \(\Delta_{lc}\).
We define, for any sufficiently small \(\varepsilon > 0\), a Kähler form \(\omega_\varepsilon\) on \(X_{lc}\) by

\[\omega_\varepsilon := \omega + dd^c \psi_\varepsilon\]

where \(\psi_\varepsilon = \frac{1}{N} \sum_{\{a_j < 1\}} \chi_{j, \varepsilon}(\varepsilon^2 + |s_j|^2)\) for \(\chi_{j, \varepsilon}\) functions defined by:

\[\chi_{j, \varepsilon}(\varepsilon^2 + t) = \frac{1}{\tau_j} \int_0^t \left(\varepsilon^2 + r\right)^{\tau_j} - \varepsilon^{2\tau_j} \frac{dr}{r}\]

for any \(t \geq 0\). The important facts to remember about this construction are the following ones, extracted from [CGP11, section 3]:

- For \(N\) big enough, \(\omega_\varepsilon\) dominates (as a current) a Kähler form on \(X\) because \(\omega\) already does;
- \(\psi_\varepsilon\) is uniformly bounded (on \(X\)) in \(\varepsilon\);
- When \(\varepsilon\) goes to 0, \(\omega_\varepsilon\) converges on \(X_{lc}\) to \(\omega_\Delta\) having mixed Poincaré and cone singularities along \(\Delta\).

As \(\omega_\varepsilon\) is a Kähler metric on \(X_{lc}\) with Poincaré singularities along \(\Delta_{lc}\), the case \(J = \emptyset\) treated by Kobayashi ([Kob84]) and Tian-Yau ([TY87]), cf section 1.3, Theorem 1.7, enables us to find a smooth \(\omega_\varepsilon\)-psh function \(\varphi_\varepsilon\) on \(X_{lc}\) satisfying:

\[(\omega_\varepsilon + dd^c \varphi_\varepsilon)^n = e^{\varphi_\varepsilon + F_\varepsilon} \omega_\varepsilon^n\]

where

\[F_\varepsilon = f + \psi_\varepsilon + \log \left(\prod_{j \in J} |s_j|^2 + \varepsilon^2 a_j \omega^n\right)\]
belongs to $\mathcal{C}^{k,\alpha}(X_{\ell_0})$ thanks to Lemma 1.6 and the assumptions on f. We may insist on the fact that the relation $F_{\varepsilon} \in C^{k,\alpha}(X_{\ell_0})$ is only qualitative in the sense that we a priori don’t have uniform estimates on $\|F_{\varepsilon}\|_{k,\alpha}$. Besides, $\varphi_{\varepsilon} \in C^{k,\alpha}(X_{\ell_0})$ (cf. [Kob84, section 3]) so that in particular, it is bounded on X_{ℓ_0}, $\omega_{\varepsilon} + dd^c\varphi_{\varepsilon}$ defines a complete Kähler metric on X_{ℓ_0}, and the Ricci curvature of $\omega_{\varepsilon} + dd^c\varphi_{\varepsilon}$ bounded (from below) if and only if the one of ω_{ε} is bounded (from below). Note that the bounds may a priori not be uniform in ε - however we will show that this is the case.

Once observed that ω_{ε} converges to a Kähler metric with mixed Poincaré and cone singularities along Δ, and that equation (1) is equivalent to

\[
(\omega + dd^c(\varphi_{\varepsilon} + \psi_{\varepsilon}))^n = e^{f + (\varphi_{\varepsilon} + \psi_{\varepsilon})} \prod_{s \in J}|s|^2 + \varepsilon^2|^{a_s} \omega^n
\]

the proof of our theorem boils down to showing that one can extract a subsequence of $(\varphi_{\varepsilon})_{\varepsilon}$ converging to φ, smooth outside Δ, and such that $\omega + dd^c\varphi$ has the expected singularities along Δ.

4.2. Establishing estimates for φ_{ε}.

In view of the a priori estimates of section 1.4, we first need to find a bound $\sup |\varphi_{\varepsilon}| \leq C$. We will see at the beginning of section 4.2.3 that $\sup_{x \in X} |F_{\varepsilon}|$ is finite. Therefore, using 1.9 with ω_{ε} as reference metric, we have the desired C^0 estimate: $\sup |\varphi_{\varepsilon}| \leq \sup_{x \in X} |F_{\varepsilon}|$. So it remains to check that (here uniformly means "uniformly in ε”):

(i) The bisectional curvature of $(X_{\ell_0}, \omega_{\varepsilon})$ is uniformly bounded from below;

(ii) F_{ε} is uniformly bounded;

(iii) The Laplacian of F_{ε} with respect to ω_{ε}, $\Delta_{\omega_{\varepsilon}} F_{\varepsilon}$, is uniformly bounded.

Once we will have shown that conditions (i) – (iii) hold, we will get the existence of $C > 0$ such that for all $\varepsilon > 0$, $\text{tr}_{\omega_{\varepsilon}}(\omega_{\varepsilon} + dd^c \varphi_{\varepsilon}) \leq C$ (by the remarks above, $\omega_{\varepsilon} + dd^c \varphi_{\varepsilon}$ is complete and will have Ricci curvature bounded from below so that the assumptions of Proposition 1.10 are fulfilled). Therefore, we will have $\omega_{\varepsilon} + dd^c \varphi_{\varepsilon} \leq C \omega_{\varepsilon}$. Furthermore, as φ_{ε} and F_{ε} will be bounded, the identity $(\omega_{\varepsilon} + dd^c \varphi_{\varepsilon})^n = e^{\varphi_{\varepsilon} + F_{\varepsilon}} \omega^n$ joint with the basic inequality $\det(\omega_{\varepsilon} + dd^c \varphi_{\varepsilon}) \cdot \text{tr}_{\omega_{\varepsilon}}(\omega_{\varepsilon} + dd^c \varphi_{\varepsilon}) \leq (\text{tr}_{\omega_{\varepsilon}}(\omega_{\varepsilon} + dd^c \varphi_{\varepsilon}))^{n-1}$ (which amounts to saying that $\sum_{|I|=n-1} \prod_{i \in I} \lambda_i \leq (\sum_{i=1}^n \lambda_i)^{n-1}$) will imply that, up to increasing C, $\text{tr}_{\omega_{\varepsilon}} + dd^c \varphi_{\varepsilon}(\omega_{\varepsilon}) \leq C$. Therefore,

\[
C^{-1} \omega_{\varepsilon} \leq \omega_{\varepsilon} + dd^c \varphi_{\varepsilon} \leq C \omega_{\varepsilon}
\]

and passing to the limit (after choosing a subsequence so that $(\varphi_{\varepsilon})_{\varepsilon}$ converges to φ smooth outside $\text{Supp}(\Delta)$ - we skip some important details here, cf. section 4.3) our solution $\omega_{\varepsilon} + dd^c \varphi_{\varepsilon}$ will have mixed Poincaré and cone singularities along Δ.

4.2.1. A precise expression of the metric.

Before we go any further, we have to give the explicit local expressions of ω_{ε}. We recall that $\Delta = \sum_{j \in J} a_j \Delta_j + \sum_{k \in K} \Delta_k$ for some disjoint sets $J, K \subset \mathbb{N}$, such that for all $j \in J$, $a_j < 1$. In the following, an index j (resp. k) will always be assumed to belong to J (resp. K). First of all, pick some point $p_0 \in X$ sitting on $\text{Supp}(\Delta)$. We choose a neighborhood U of p_0 trivializing X and such that $\text{Supp}(\Delta) \cap U = \{ \prod_{j \in J} z_j, \prod_{k \in K} z_k = 0 \}$ for some $J_U \subset J$ and $K_U \subset K$. Then if $\ell \notin J_U \cup K_U$, Δ_{ℓ} does not meet U. To simplify the notations, one may suppose that $J_U = \{ 1, \ldots, r \}$ and $K_U = \{ r+1, \ldots, d \}$. Finally, we stress the point that although $p_0 \in \text{Supp}(\Delta)$, all our computations will be done on $U \cap X_{\ell_0} = U \setminus \text{Supp}(\Delta_{\ell_0})$.
So as to simplify the computations, we will use the following (more or less basic) lemma, extracted from [CGP11, Lemma 4.1]:

Lemma 4.1. — Let \((L_1, h_1), \ldots, (L_d, h_d)\) be a set of hermitian line bundles on a compact Kähler manifold \(X\), and for each index \(j = 1, \ldots, d\), let \(s_j\) be a section of \(L_j\); we assume that the hypersurfaces

\[Y_j := (s_j = 0) \]

are smooth, and that they have strictly normal intersections. Let \(p_0 \in \bigcap Y_j\); then there exist a constant \(C > 0\) and an open set \(V \subset X\) centered at \(p_0\), such that for any point \(p \in V\) there exists a coordinate system \(z = (z_1, \ldots, z_n)\) at \(p\) and a trivialization \(\theta_j\) for \(L_j\) such that:

(i) For \(j = 1, \ldots, d\), we have \(Y_j \cap V = (z_j = 0)\);

(ii) With respect to the trivialization \(\theta_j\), the metric \(h_j\) has the weight \(\varphi_j\), such that

\[\varphi_j(p) = 0, \quad d\varphi_j(p) = 0, \quad \left| \frac{\partial^{|\alpha|+|\beta|} \varphi_j}{\partial z_\alpha \partial z_\beta} (p) \right| \leq C_{\alpha, \beta} \]

for all multi indexes \(\alpha, \beta\).

Up to shrinking the neighborhood \(V\), we may assume that each coordinate system \((z_1, \ldots, z_n)\) for \(V\), as given in Lemma 4.1, satisfies \(\sum_i |z_i|^2 < 1/2\). Moreover, in order to make the notations clearer, we define, for \(i \in \{1, \ldots, n\}\), a non-negative function on \(V\) (depending on \(\epsilon\)) by

\[A(i) = \begin{cases}
(\epsilon^2)^{1/2} & \text{if } i \in \{1, \ldots, r\}; \\
|z_i| \log \frac{1}{|z_i|^2} & \text{if } i \in \{r+1, \ldots, d\}; \\
1 & \text{if } i = d.
\end{cases} \]

Now, for \(i, j, k, l \in \{1, \ldots, n\}\), we simply set \(A(i, j, k, l) := A(i)A(j)A(k)A(l)\).

We first want to check that the holomorphic bisectional curvature of \(\omega_\epsilon\) is bounded from below, that is

\[\Theta_{\omega_\epsilon}(T_X) \geq -C\omega_\epsilon \otimes \text{Id}_{T_X} \]

for some \(C > 0\) independent of \(\epsilon\), and where \(\Theta_{\omega_\epsilon}(T_X)\) denotes the curvature tensor of the holomorphic tangent bundle of \((X_{\omega_\epsilon}, \omega_\epsilon)\). It is useful for the following to reformulate the (intrinsic) condition (2) in terms of local coordinates. Namely, the inequality in (2) amounts to saying that the following inequality holds:

\[\sum_{p, q, r, s} R_{pqrs}(z)v_p \overline{w}_q w_r \overline{w}_s \geq -C|v|_{\omega_\epsilon}^2 |w|_{\omega_\epsilon}^2 \]

for any vector fields \(v = \sum_p v_p \partial / \partial z_p\) and \(w = \sum_r w_r \partial / \partial z_r\).

The notation in the above relations is as follows: in local coordinates, we write

\[\omega_\epsilon = \frac{i}{2} \sum_{p, q} g_{pq} dz_p \wedge d\overline{z}_q; \]

(so that the \(g_{pq}\)’s actually depend on \(\epsilon\), but we choose not to let it appear in the notations so as to make them a bit lighter) and the corresponding components of the curvature tensor are

\[R_{pqrs} := -\frac{\partial^2 g_{pq}}{\partial z_r \partial \overline{z}_s} + \sum_{k, l} g_{kl} \frac{\partial^2 g_{pq}}{\partial z_r \partial \overline{z}_s} \frac{\partial g_{kl}}{\partial z_s} \]
Looking at the local expression of \(\omega_c \) makes it clear that there exists \(C \) greater than zero independent of \(\varepsilon \) such that on \(V \), \(C^{-1}\omega_{\Delta, c} \leq \omega_c \leq C\omega_{\Delta, c} \), where

\[
\omega_{\Delta, c} := \sum_{j=1}^{r} \frac{idz_j \wedge d\bar{z}_j}{(|z_j|^2 + \varepsilon^2)^{a_j}} + \sum_{k=r+1}^{d} \frac{idz_k \wedge d\bar{z}_k}{|z_k|^2 \log^2 |z_k|^2} + \sum_{l=d}^{n} idz_l \wedge d\bar{z}_l
\]

Therefore, if \(v = \sum_p v_p \frac{\partial}{\partial z_p} \) satisfies \(|v|_{\omega_c} = 1 \), then for each \(p \), \(|v_p| \leq A(p) \). We are now going to show the following two facts, which will ensure that the holomorphic bisectional curvature of \(\omega_c \) is bounded from below:

(i) For every four-tuple \((p, q, r, s)\) with \#\{\(p, q, r, s\)\} \(\geq 2 \), we have \(A(p, q, r, s)|R_{pqrs}(z)| \leq C \);

(ii) For every \(p \), and every \(\omega_c \)-unitary vector fields \(v, w_i \), \(|v_p|^2_{\omega_c} R_{pqqp} \geq -C \).

In order to prove (i) – (ii), we have to give a precise expression of the metric \(\omega_c \) in some coordinate chart. We will use the coordinates given by Lemma 4.1, which will simplify the computations a lot. We remind that \(\omega_c = \omega + \varepsilon \partial \bar{\partial} \psi_c \), and according to [CGP11, equation (21)] and Definition 1.4 (or [Gri76, pp. 50-51]), the components \(g_{pq} \) of \(\omega_c \) are given by:

\[
g_{pq} = u_{pq} + \delta_{pq, p} e^{-\varphi_p} \left(\frac{|z_j|^2 \varepsilon e^{-\varphi_p} + \varepsilon^2}{|z_j|^2 e^{-\varphi_p} + \varepsilon^2} \right)\frac{\partial \varphi_p}{\partial z_j} e^{-\varphi_p} + \delta_{q, p} e^{-\varphi_p} \frac{\partial \varphi_q}{\partial z_j} + \frac{\partial^2 \varphi_j}{\partial z_p \partial z_q}
\]

\[
+ \sum_{j \in J} \frac{|z_j|^2 \beta_{pqj} e^{-\varphi_j} + \varepsilon^2}{|z_j|^2 e^{-\varphi_j} + \varepsilon^2} \alpha_j (|z_j|^2 e^{-\varphi_j} + \varepsilon^2)^{a_j} - \varepsilon (1 - a_j)} \frac{\partial^2 \varphi_j}{\partial z_p \partial z_q} \]

where \(u_{pq}, \alpha_{pq}, \beta_{pqj}, \lambda_p, \mu_q, \nu_k \) are smooth functions on \(X \) (more precisely on the whole neighborhood \(V \) of \(X \) given by Lemma 4.1). Moreover, \(\alpha, \lambda, \mu \) (resp. \(\beta \)) are functions of the partial derivatives of the \(\varphi_j \)'s; in particular, they vanish at the given point \(p \) at order at least \(1 \) (resp. \(2 \)). Finally, we use the notation \(\delta_{p, j} = \delta_{p, e, j} \) and \(\delta_{pq, j} = \delta_{pq, e, j} \) (idem for \(K \) instead of \(J \)).

4.2.2. Bounding the curvature from below. — First of all, using (4), and remembering that \(\alpha, \lambda, \mu, \beta \) vanish at \(p \), on can give a precise 0-order estimate on the metric (more precisely on the inverse matrix of the metric), which is a straightforward generalization of [CGP11, Lemma 4.2]:

Lemma 4.2. — In our setting, and for \(|z|^2 + \varepsilon^2 \) sufficiently small, we have at the previously chosen point \(p \):

(i) For all \(i \in \{1, \ldots, n\} \), \(g^{ii} = A(i)^2 (1 + O(A(i)^2)) \);

(ii) For all \(j, k \in \{1, \ldots, n\} \) such that \(j \neq k \), \(g^{jk} = O(A(j, k)^2) \).

We insist on the fact that the \(O \) symbol refers to the expression \(|z|^2 + \varepsilon^2 = |z_1|^2 + \cdots + |z_n|^2 + \varepsilon^2 \) going to zero.

To bound the curvature, we will essentially have to deal with the Poincaré part of \(\omega_c \), the other cone part being almost already treated in [CGP11]. We could use the fact that \((X_{ic}, \omega) \) has bounded geometry at any order (cf section 1.3), but as mixed terms involving the (regularized) cone metric will appear – which is not known to be of bounded geometry – we prefer to give the explicit computations for more clarity.
For λ and µ any smooth functions on V, there exist smooth functions λ₁, λ₂, ..., µ₁, µ₂, ... such that for any k ∈ K:

\[\frac{\partial}{\partial z_k} \left(\frac{\lambda}{z_k \log^2 |z_k|^2} \right) = \frac{\lambda_1}{z_k^2 \log^2 |z_k|^2} + \frac{\lambda_2}{z_k \log^2 |z_k|^2} + \frac{\lambda_3}{z_k \log |z_k|^2} = O \left(\frac{1}{|z_k|^2 \log^2 |z_k|^2} \right) \]

\[\frac{\partial}{\partial \overline{z}_k} \left(\frac{\lambda}{z_k \log^2 |z_k|^2} \right) = \frac{\lambda_4}{z_k^2 \log^2 |z_k|^2} + \frac{\lambda_5}{z_k \log^2 |z_k|^2} = O \left(\frac{1}{|z_k|^2 \log^4 |z_k|^2} \right) \]

\[\frac{\partial^2}{\partial z_k \partial \overline{z}_k} \left(\frac{\lambda}{z_k \log^2 |z_k|^2} \right) = \frac{\lambda_6}{z_k^2 \log^2 |z_k|^2} + \frac{\lambda_7}{z_k \log^2 |z_k|^2} + \frac{\lambda_8}{z_k \log |z_k|^2} + \frac{\lambda_9}{z_k \log^2 |z_k|^2} + \frac{\lambda_{10}}{z_k \log^4 |z_k|^2} + \frac{\lambda_{11}}{z_k^2 \log^4 |z_k|^2} \]

\[= O \left(\frac{1}{|z_k|^3 \log^4 |z_k|^2} \right) \]

\[\frac{\partial}{\partial z_k} \left(\frac{\mu}{\log |z_k|^2} \right) = \frac{\mu_1}{\log |z_k|^2} + \frac{\mu_2}{z_k \log^2 |z_k|^2} = O \left(\frac{1}{z_k^2 \log^2 |z_k|^2} \right) \]

\[\frac{\partial}{\partial \overline{z}_k} \left(\frac{\mu}{\log |z_k|^2} \right) = \frac{\mu_3}{\log |z_k|^2} + \frac{\mu_4}{z_k \log^2 |z_k|^2} = O \left(\frac{1}{z_k \log^2 |z_k|^2} \right) \]

\[\frac{\partial^2}{\partial z_k \partial \overline{z}_k} \left(\frac{\mu}{\log |z_k|^2} \right) = \frac{\mu_5}{\log |z_k|^2} + \frac{\mu_6}{z_k \log^2 |z_k|^2} + \frac{\mu_7}{z_k^2 \log^2 |z_k|^2} + \frac{\mu_8}{z_k \log^2 |z_k|^2} + \frac{\mu_9}{z_k^2 \log^2 |z_k|^2} + \frac{\mu_{10}}{z_k \log^2 |z_k|^2} + \frac{\mu_{11}}{z_k \log^4 |z_k|^2} \]

\[= O \left(\frac{1}{|z_k|^3 \log^2 |z_k|^2} \right) \]

\[\frac{\partial}{\partial z_k} \left(\frac{1}{|z_k|^2 \log^2 |z_k|^2} \right) = -\frac{1}{z_k^2 \log^2 |z_k|^2} - \frac{2}{z_k^2 \log^2 |z_k|^2} = O \left(\frac{1}{|z_k|^3 \log^2 |z_k|^2} \right) \]

\[\frac{\partial^2}{\partial z_k \partial \overline{z}_k} \left(\frac{1}{|z_k|^2 \log^2 |z_k|^2} \right) = \frac{1}{z_k} \log^2 |z_k|^2 + \frac{4}{z_k^2 \log^3 |z_k|^2} + \frac{6}{z_k^4 \log^4 |z_k|^2} \]

As we are mostly interested in the Poincaré part of the metric g, we will write \(g = g^{(P)} + g^{(C)} \) its decomposition into the Poincaré and the cone part (cf. the expression (4)). Moreover, we write \(g^{(P)} = \gamma^0 + \gamma \) where \(\gamma^0 = \sum_{k \in K} \frac{i \partial \overline{z}_k}{z_k \log^2 |z_k|^2} \). Therefore, if \(k \neq l \), \(g^{(P)}_{kl} = \gamma_{kl} \), and the computations above lead to (for every \(k, l, r, s \in K \)):

\[\frac{\partial g^{(P)}_{kl}}{\partial z_k} = O \left(\frac{1}{A(k)^2 A(l)} \right) \text{ if } k \neq l \]

\[\frac{\partial^2 g^{(P)}_{kl}}{\partial z_k \partial \overline{z}_r} = O \left(\frac{1}{A(k)^2 A(r, l)} \right) \text{ if } k \neq l \]

\[\frac{\partial g^{(P)}_{kl}}{\partial z_l} = O \left(\frac{1}{A(k, l, r)} \right) \]

\[\frac{\partial^2 g^{(P)}_{kl}}{\partial z_r \partial \overline{z}_s} = O \left(\frac{1}{A(k, l, r, s)} \right) \]

Furthermore, we may note that if \(\{p, q, r, s\} \cap J = \emptyset \), then we can see from the expression (4) that \(\frac{\partial g_{pq}}{\partial z_r} = \frac{\partial g^{(P)}_{pq}}{\partial z_r} + O(1) \) as well as \(\frac{\partial^2 g_{pq}}{\partial z_r \partial \overline{z}_s} = \frac{\partial^2 g^{(P)}_{pq}}{\partial z_r \partial \overline{z}_s} + O(1) \). From this, (5)-(6) and Lemma 4.2, we deduce that for every \(p, q, r, s \in K \) such that \(p \neq q \), the expression \(A(p, q, r, s) R_{pqrs}(z) \) is
uniformly bounded in $z \in V \cap X_{lc}$.

So it remains to study the terms of the form R_{pqrs} for $p, r, s \in K$. And as mentioned in the last paragraph, the terms in the curvature tensor coming from the cone part (or the smooth part) do not play any role here, so we have:

$$R_{pqrs} = -\frac{\partial^2 g_{pp}}{\partial z_p \partial z_p} + \sum_{1 \leq i, j \leq n} g^{jk} \frac{\partial g_{pi}}{\partial z_i} \frac{\partial g_{pj}}{\partial z_j}$$

$$= -\frac{\partial^2}{\partial z_r \partial z_s} \left(\frac{1}{|z_p|^2 \log^2 |z_p|^2} \right) - \frac{\partial^2 \gamma_{pp}}{\partial z_r \partial z_s} + \sum_{1 \leq i, j \leq n} g^{jk} \frac{\partial g_{pi}^{(P)}}{\partial z_i} \frac{\partial g_{pj}^{(P)}}{\partial z_j} + O(1)$$

Using (5)-(8) and Lemma 4.2, we see that the only possibly unbounded terms (when multiplied by $A(p)^2 A(r, s)$) appearing in the expansion of R_{pqrs} are coming from γ_0. More precisely, these are the following ones, appearing in R_{pppp} only:

$$R_{pppp} = -\frac{\partial^2}{\partial z_p \partial z_p} \left(\frac{1}{|z_p|^2 \log^2 |z_p|^2} \right) + \sum_{p \in \{k, l\}} g^{kl} \frac{\partial g_{pp}^{(P)}}{\partial z_p} \frac{\partial g_{kl}^{(P)}}{\partial z_p}$$

Let us now expand the terms under the sum:

$$\frac{\partial g_{pp}^{(P)}}{\partial z_p} = O \left(\frac{1}{|z_p|^2 \log^2 |z_p|^2} \right) \text{ if } k \neq p$$

$$\frac{\partial g_{pp}^{(P)}}{\partial z_p} = \frac{-1}{z_p |z_p|^2 \log^2 |z_p|^2} + \frac{-2}{z_p |z_p|^2 \log^4 |z_p|^2} + O \left(\frac{1}{|z_k|^2 \log^4 |z_k|^2} \right)$$

$$2 \left| \frac{\partial g_{pp}^{(P)}}{\partial z_p} \right|^2 = \frac{1}{|z_p|^6 \log^4 |z_p|^2} \left(1 + \frac{4}{\log |z_k|^2} + \frac{4}{\log^2 |z_k|^2} + O(1) \right)$$

Now, if we combine Lemma 4.2 with (10)-(11), we see that the remaining possibly unbounded terms (after multiplying by $A(p)^4$) appearing in (9) are

$$-\frac{\partial^2}{\partial z_p \partial z_p} \left(\frac{1}{|z_p|^2 \log^2 |z_p|^2} \right) + g^{pp} \frac{\partial g_{pp}^{(P)}}{\partial z_p} \frac{\partial g_{pp}^{(P)}}{\partial z_p}$$

which finishes to prove that for every $p, q, r, s \in K$, the expression $A(p, q, r, s) R_{pqrs}(z)$ is uniformly bounded in $z \in V \cap X_{lc}$.

Now we may look at the terms R_{pqrs} where $p, q \in K$ but $r, s \notin K$. If $r, s \notin J$, then $A(p, q, r, s) R_{pqrs}(z) = A(p, q) R_{pqrs}(z)$ is uniformly bounded in $z \in V \cap X_{lc}$ as we can see by looking at the expression of the metric (4). So now we may suppose that r or s belongs to J. The only term in the metric which may cause trouble is

$$\sum_{j \in J} \frac{|z_j|^2 \partial g_{pq}}{|(z_j)^2 e^{-\gamma_j} + \varepsilon^2} + (|z_j|^2 e^{-\gamma_j} + \varepsilon^2(1 - a_j)) \frac{\partial^2 \gamma_j}{\partial z_j^2}.$$}

But Lemma 4.2 enables us to use the computations of [CGP11, section 4.3] word for word, so as to show that $A(p, q, r, s) R_{pqrs}(z)$ is uniformly bounded in $z \in V \cap X_{lc}$.
The next step in bounding the curvature of ω_ε from below consists now in looking at the terms R_{pqrs} for $p, q \in J$. Then the terms in g_{pq} coming from the Poincaré part are of the form $\sum_{k} \frac{\nu_k}{\log |z_k|^2}$ as (4) shows. These terms are uniformly bounded in $V \cap X_{lc}$, as well as their derivatives with respect to the variables z_v, \bar{z}_s as long as $r, s \notin K$; in that case [CGP11, sections 4.3-4.4] gives us the expected lower bound for $A(p, q, r, s) R_{pqrs}$. If now $r \in K$, then we saw earlier that $A(r) \frac{\partial}{\partial z_v} \left(\frac{\nu_v}{\log |z_v|^2} \right)$, $A(s) \frac{\partial}{\partial z_s} \left(\frac{\nu_s}{\log |z_s|^2} \right)$, $A(r)^2 \frac{\partial^2}{\partial z_v \partial z_s} \left(\frac{\nu_v}{\log |z_v|^2} \right)$ are bounded functions in $V \cap X_{lc}$, so that, using Lemma 4.2, the boundedness of $A(p, q, r, s) R_{pqrs}$ is equivalent to the one of $A(p, q, r, s) R_{pqrs}^{(C)}$ whenever $p, q \in J$. And by [CGP11, section 4.3], we know the existence of this bound (which is an upper and lower bound, as $\# \{p, q, r, s\} \geq 2$).

Finally, for the last step, we need to look at mixed terms R_{pqrs} for $p \in K$ and $q \in J$ (or one of those not belonging to $J \cup K$). As $p \neq q$, the operators $A(r) \frac{\partial}{\partial z_v}$, $A(s) \frac{\partial}{\partial z_s}$ and $A(r, s) \frac{\partial^2}{\partial z_v \partial z_s}$ map g_{pq} to a bounded function, as can be checked separately for $g^{(P)}$ (cf. the previous computations) and $g^{(C)}$ (cf. [CGP11, section 4.3]).

So we are done: ω_ε has holomorphic bisectional curvature uniformly bounded from below on X_{lc}.

4.2.3. Bounding the ω_ε-Laplacian of F_ε. — Remember that

$$F_\varepsilon = f + \psi_\varepsilon + \log \left(\prod_{j \in J} (|s_j|^2 + \varepsilon^2)^{\alpha_j} \omega_\varepsilon^n \right)$$

At the point x (which is point p of Lemma 4.1), the (p, \bar{q}) component of $\omega_\varepsilon(x)$ is

$$g_{pq}(x) = u_{pq}(x) + \frac{\delta_{pq,J}}{|z_p|^2} \left(|z_p|^2 + \varepsilon^2 \right)^{\alpha_p} + \sum_{j \in J} \left(|z_j|^2 + \varepsilon^2 \right)^{1-\alpha_j} \log |z_k|^2 + \sum_{k=r+1}^{d} \frac{\nu_k}{|z_k|^2}$$

whereas the (p, \bar{q}) component of $\omega(x)$ is

$$g^{(P)}_{pq}(x) = u_{pq}(x) + \frac{\delta_{pq,K}}{|z_p|^2} \left(|z_p|^2 + \varepsilon^2 \right)^{\alpha_p} + \sum_{k=r+1}^{d} \frac{\nu_k}{|z_k|^2}$$

Expanding the determinant of those metrics makes it clear that there exists $C > 0$ such that

$$C^{-1} \leq \prod_{j \in J} (|s_j|^2 + \varepsilon^2)^{\alpha_j} \omega_\varepsilon^n \leq C$$

so that F_ε is bounded on X_{lc}.

Let us now get to bounding $\Delta_\omega F_\varepsilon$. Actually we will show that $\pm dd^c F_\varepsilon \leq C \omega_\varepsilon$ for some uniform $C > 0$, which is stronger than just bounding the ω_ε-Laplacian of F_ε, but we need this strengthened bound if we want to produce Kähler-Einstein metrics by resolving our Monge-Ampère equation. There are three terms in F_ε, namely f, ψ_ε and $\log f_\varepsilon$ where

$$f_\varepsilon = \prod_{j \in J} (|s_j|^2 + \varepsilon^2)^{\alpha_j} \omega_\varepsilon^n$$

The first two terms are easy to deal with: indeed, there exists $C > 0$ (independent of ε) such that $\omega_\varepsilon \geq C^{-1} \omega$ on X_{lc}. Therefore, if one chooses M such that $M \omega \pm dd^c f > 0$ (the assumptions on f give the existence of such an M), then $dd^c f \leq CM \omega_\varepsilon$. Moreover, $\omega_\varepsilon = \omega + dd^c \psi_\varepsilon > 0$ so that $\pm dd^c \psi_\varepsilon \leq \max(C,1) \omega_\varepsilon$. Therefore it only remains to bound $dd^c \log f_\varepsilon$ now.
We will use the following basic identities, holding for any smooth functions $f > 0$ and u, v on some open subset of $U \subset X$:

\begin{align}
(13) \quad dd^c \log f &= \frac{1}{f} dd^c f + \frac{1}{f^2} df \wedge d^c f \\
(14) \quad dd^c \left(\frac{1}{f} \right) &= -\frac{1}{f^2} dd^c f + \frac{2}{f^3} df \wedge d^c f \\
(15) \quad dd^c (uv) &= u dd^c v + v dd^c u + du \wedge d^c v - d^c u \wedge dv \\
(16) \quad \nabla (uv) &= (\nabla u) v + u (\nabla v)
\end{align}

We just saw that f_ε is bounded below by some fixed constant $C^{-1} > 0$ on X_{ε}, so that by (13), $\pm dd^c \log f_\varepsilon$ will be dominated by some fixed multiple of ω_ε if we show that both $\pm dd^c f_\varepsilon \leq C \omega_{\varepsilon}$ and $|\nabla \varepsilon f_\varepsilon|_{\omega} \leq C$ for some uniform $C > 0$ (the last term denotes the norm computed with respect to the ω_ε-gradient of f_ε, defined as usual by $df_\varepsilon(X) = \omega_\varepsilon(\nabla_\varepsilon f_\varepsilon, X)$ for every vector field X). For convenience, we will split the computation by writing

\begin{equation}
(17) \quad f_\varepsilon = \left(\prod_{j \in J} (|s_j|^2 + \varepsilon^2)^{a_j} \cdot \prod_{k \in K} |s_k|^2 \log^2 |s_k|^2 \cdot \omega_\varepsilon \right)^{-1} \cdot \left(\prod_{k \in K} |s_k|^2 \log^2 |s_k|^2 \cdot \omega^n \right)
\end{equation}

By (14)-(15), we only need to check that the gradient ∇_ε of the terms inside the parenthesis is bounded, and that their $\pm dd^c$ is dominated by some fixed multiple of ω_ε. Let us begin with the second one, which is simpler:

Lemma 4.3. Let ω be a Kähler form of Carlson-Griffiths type on X_{ε}, and let ω_0 be some smooth Kähler form on X. We set

$$V = \left(\prod_{k \in K} |s_k|^2 \log^2 |s_k|^2 \right) \cdot \frac{\omega^n}{\omega_0^n}$$

Then there exists $C > 0$ such that $\pm V$ is C_ω-psh on X_{ε}.

Proof. We write, with our usual coordinates (cf Lemma 4.1):

\begin{equation}
(18) \quad \omega^n = \prod_{k \in K} \frac{1}{|z_k|^2 \log^2 |z_k|^2} \left(1 + \sum_{K_i \subset K} A_i \prod_{k_i \in K_i} \frac{1}{\log |z_{k_i}|^2} \right) + \sum_{K_j, K_l, K_m, K_p \subset K} \frac{A_{jlm}}{K} \prod_{k_j \in K_j} \frac{1}{|z_{k_j}|^2 \log^2 |z_{k_j}|^2} \cdot \prod_{k_l \in K_l} \frac{1}{\log |z_{k_l}|^2} \cdot \prod_{k_m \in K_m} \frac{1}{|z_{k_m}|^2 \log^2 |z_{k_m}|^2} \cdot \prod_{k_p \in K_p} \frac{1}{\log |z_{k_p}|^2} \cdot \Omega
\end{equation}

for Ω some smooth volume form on X and where the second sum is taken over the subsets K_j, K_l, K_m, K_p of K that are disjoint, and where A_i, A_{jlm} are smooth functions on the whole X. Let us apply the operators $A(i, j) \frac{\partial}{\partial z_j} \frac{\partial}{\partial \bar{z}_j}$ and $g^{ij} \frac{\partial}{\partial z_i} \frac{\partial}{\partial \bar{z}_j}$ to $\log |z_k|^2$, z_k, $|z_k|^2 \log |z_k|^2$, and $|z_k|^2 \log^2 |z_k|^2$, and check that we obtain bounded functions. We already did it for the first term,
so only have to compute:

\[
\begin{align*}
\frac{\partial}{\partial z_k}(|z_k|^2 \log |z_k|^2) &= \tilde{z}_k \log |z_k|^2 + \tilde{z}_k = O(1) \\
\frac{\partial^2}{\partial z_k \partial \bar{z}_k}(|z_k|^2 \log |z_k|^2) &= \log |z_k|^2 + 2 = O \left(\frac{1}{|z_k|^2 \log |z_k|^2} \right) \\
\frac{\partial}{\partial z_k}(|z_k|^2 \log^2 |z_k|^2) &= \tilde{z}_k \log^2 |z_k|^2 + 2 \tilde{z}_k \log |z_k|^2 = O(1) \\
\frac{\partial^2}{\partial z_k \partial \bar{z}_k}(|z_k|^2 \log^2 |z_k|^2) &= \log^2 |z_k|^2 + 4 \log |z_k|^2 + 2 = O \left(\frac{1}{|z_k|^2 \log^2 |z_k|^2} \right)
\end{align*}
\]

This shows that the ω_c-gradient of these factors (denote them generically κ) is bounded. As for $dd^c \kappa$, the previous computations show that in coordinates, its (i,j)-th term is uniformly bounded by $C A(i,j)$ for every i, j (this is actually stronger than saying that it becomes bounded when multiplied by g^{ij}, condition which would however be sufficient to show that the ω_c-Laplacian is bounded). Therefore, as the matrix of ω_c can be written diag$(A(1)^2, \ldots, A(n)^2) + O(1)$ in coordinates, and using the Cauchy-Schwarz inequality, one easily obtains $C > 0$ such that $\pm dd^c \kappa \leq C \omega_c$.

In fact, once we we saw that the only singular terms were $\frac{1}{\log |z|^2}, |z|^2 \log |z|^2$ and $|z|^2 \log^2 |z|^2$, we could have used the usual quasi-coordinates as in 1.6 to conclude. \quad \Box

Let us now get to the term inside the first parenthesis of (17). For this, notice that in the expansion of ω_c^n, we find the terms of (18) multiplied by terms of the form

\[
C(z) + \sum_{I \subseteq J} A_I(z) \prod_{i \in I} (|z_i|^2 e^{-\varphi_i} + \varepsilon^2)^{\alpha_i}
\]

where $C(z)$ and $A_I(z)$ are sums of terms of the form

\[
B(z) \prod_{j \in J_1} \left[(|z_j|^2 e^{-\varphi_j} + \varepsilon^2)^{1-\alpha_{J_1}} - \varepsilon^2(1-\alpha_{J_1}) \right] \prod_{j \in J_2} \frac{z_{jk} \alpha_{jk}}{(|z_j|^2 e^{-\varphi_j} + \varepsilon^2)^{\lambda_{jk} \alpha_{jk}}} \ldots
\]

\[
\ldots \prod_{j \in J_m} \frac{z_{jm} \alpha_{jm}}{(|z_j|^2 e^{-\varphi_j} + \varepsilon^2)^{\lambda_{jm} \alpha_{jm}}} \prod_{j \in J_p} \frac{|z_{jp}|^2 \beta_{jp}}{(|z_j|^2 e^{-\varphi_j} + \varepsilon^2)^{\lambda_{jp} \alpha_{jp}}}
\]

where I, J_1, J_m, J_p are disjoint subsets of J, and where $B(z)$ is smooth independent of ε, α_j is smooth and vanishes at x, β_j is smooth and vanishes at order at least 2 at p, and $\lambda_j \in \{0, 1/2\}$. And now, using Lemma 4.2 and [CGP11, section 4.5] (we must slightly change the argument therein as said above to control the dd^c with respect to ω_c and not only Δ_{ω_c}), we can conclude that the appropriate dd^c (resp. gradients) of those quantities are dominated by C_{ω_c} (resp. bounded). Combining this with the previous computations, we deduce that $\Delta_{\omega_c} F_c$ is bounded on the whole X_{ε_c}.

4.3. End of the proof. — Remember that we wish to extract from the sequence of smooth metrics $\omega_c + dd^c \varphi_c$ on X_{ε_c} some subsequence converging to a smooth metric on $X \setminus \text{Supp}(\Delta)$. In order to do this, we need to have a priori C^{k} estimates for all k. The usual bootstrapping argument for the Monge-Ampère equation allows us to deduce those estimates from the $C^{2,\alpha}$ ones for some $\alpha \in [0, 1]$. The crucial fact here is that we have at our disposal the following local result, taken from [GT77] (see also [Siu87], [Blo11, Theorem 5.1]), which gives interior estimates. It is a consequence of Evans-Krylov’s theory:
Theorem 4.4. — Let u be a smooth psh function in an open set $\Omega \subset \mathbb{C}^n$ such that $f := \det(u_{ij}) > 0$. Then for any $\Omega' \subset \Omega$, there exists $\alpha \in [0,1]$ depending only on n and on upper bounds for $\|u\|_{C^0(\Omega)}$, $\sup_{\Omega} \Delta \varphi$, $\|f\|_{C^0(\Omega)}, 1/\inf_{\Omega} f$, and $C > 0$ depending in addition on a lower bound for $d(\Omega', \partial \Omega)$ such that:

$$\|u\|_{C^{2,\alpha}(\Omega')} \leq C.$$

In our case, we choose some point p outside the support of the divisor Δ, and consider two coordinate open sets $\Omega' \subset \Omega$ containing p, but not intersecting $\text{Supp}(\Delta)$. In that case, we may find a smooth Kähler metric ω_p on Ω such that on Ω', the covariant derivatives at any order of ω are uniformly bounded (in ε) with respect to ω_p. Then one may take $u = \varphi_\varepsilon$ in the previous theorem, and one can easily check that there are common upper bounds (i.e. independent of ε) for all the quantities involved in the statement. This finishes to show the existence of uniform *a priori* $C^{2,\alpha}(\Omega')$ estimates for φ_ε.

As we mentioned earlier, the ellipticity of the Monge-Ampère operator automatically gives us local *a priori* C^k estimates for φ_ε, which ends to provide a smooth function φ on $X \setminus \text{Supp}(\Delta)$ (extracted from the sequence $(\varphi_\varepsilon)_\varepsilon$) such that $\omega_\infty = \omega + dd^c \varphi$ defines a smooth metric outside $\text{Supp}(\Delta)$ satisfying

$$(\omega + dd^c \varphi)^n = e^{\varphi + f} \prod_{j \in J} |s_j|^{2a_j} \omega^n.$$

Moreover, the strategy explained at the beginning of the previous section 4.2 and set up all along the section shows that this metric φ has mixed Poincaré and cone singularities along Δ, so this finishes the proof of the main theorem.

4.4. Remarks. — It could also be interesting to study the following equation:

$$(\omega + dd^c \varphi)^n = \frac{e^f}{\prod_{j \in J} |s_j|^{2a_j}} \omega^n$$

where ω is of Carlson-Griffith’s type, and asked whether its eventual solutions have mixed Poincaré and cone singularities. This equation has been recently studied and solved by H. Auvray in [Auv11, Theorem 4] in the case where $\Delta_{\text{lt}} = 0$ (the "logarithmic case"), and for f vanishing at some order along Δ. To adapt his results, one would need to show that one can make a choice of ψ_ε so that F_ε vanishes along Δ_{lc} at some fixed order, what we have been unable to do so far.

However, adapting some recent results of pluripotential theory, we are able to prove the existence (and uniqueness) of solutions to following equation:

$$(\omega_0 + dd^c \varphi)^n = \frac{e^f}{\prod_{r \in J \cup K} |s_r|^{2a_r}} \omega_0^n$$

where ω_0 is a Kähler form on X. We can’t say much about the regularity of φ; so far we only know that $\varphi \in \mathcal{E}^1(X, \omega_0)$.

5. A vanishing theorem for holomorphic tensor fields

Given a pair (X, Δ), where X is a compact Kähler manifold and $\Delta = \sum a_i \Delta_i$ a \mathbb{R}-divisor with simple normal crossing support such that $0 \leq a_i \leq 1$, there are many natural ways to construct holomorphic tensors attached to (X, Δ).
To begin with, one defines the tensor fields on a manifold M, which are contravariant of degree r and covariant of degree s as follows

\begin{equation}
T^r_s M := (\otimes^r T_M) \otimes (\otimes^s T^\ast_M).
\end{equation}

In our present context, we consider $M := X_0$, that is to say the Zariski open set $X \setminus \text{Supp}(\Delta)$. Let us recall the definition of the orbifold tensors introduced by F. Campana [Cam09]. To avoid a possible confusion with the standard orbifold situation (i.e. when $a_i = 1 - \frac{1}{m}$ for some integer m), we will not use his terminology and refer to these tensors as Δ-holomorphic tensors.

Let $x \in X$ be a point; since the hypersurfaces (Δ_i) have strictly normal intersections, there exist a small open set $\Omega \subset X$ centered at x such that $\Delta_i \cap \Omega = \{z_i = 0\}$ for $i = 1, \ldots, d$ and $\Delta_i \cap \Omega = \emptyset$ for the others indexes. We define the locally free sheaf $T^r_s(X|\Delta)$ generated as an \mathcal{O}_X-module by the tensors

\begin{equation}
z^{[(h_I - h_J) \cdot a]} \frac{\partial}{\partial z_I} \otimes dz^J
\end{equation}

where the notations are as follows:

1. I (resp. J) is a collection of positive integers in $\{1, \ldots, n\}$ of cardinal r (resp. s) (we notice that we may have repetitions among the elements of I and J, and we count each element according to its multiplicity).
2. For each $1 \leq i \leq n$, we denote by $h_I(i)$ the multiplicity of i as element of the collection I.
3. For each $i = 1, \ldots, d$ we have $a_i := 1 - \tau_i$, and $a_i = 0$ for $i \geq d + 1$.
4. We have

\begin{equation}
z^{[(h_I - h_J) \cdot a]} := \prod_i (z^i)^{[(h_I(i) - h_J(i)) \cdot a_i]}
\end{equation}

5. If $I = (i_1, \ldots, i_r)$, then we have

\begin{equation}
\frac{\partial}{\partial z_I} := \frac{\partial}{\partial z_{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial z_{i_r}}
\end{equation}

and we use similar notations for dz^J.

Hence the holomorphic tensors we are considering here have prescribed zeros/poles near $X \setminus X_0$, according to the multiplicities of Δ. In the cone case ($\Delta_{lc} = 0$), those tensors have a nice interpretation ([CGP11, Lemma 8.2]):

\textbf{Lemma 5.1. —} Assume $\Delta_{lc} = 0$, and let u be a smooth section of the bundle $T^r_s(X_0)$. Then u corresponds to a holomorphic section of $T^r_s(X|D)$ if and only if $\bar{\partial} u = 0$ and u is bounded with respect to some metric with cone singularities along Δ.

In [CGP11], the vanishing and parallelism theorems are proved using the classical Bochner formula with an appropriate cut-off function for the space of bounded (for the cone metric) holomorphic sections of $T^r_s(X_0)$, and the lemma above enables to transfer this property to Δ-holomorphic tensors.

Unfortunately, there is no such simple correspondence in the general log-canonical case. For example, if Δ has only one component (with coefficient 1) of local equation $z = 0$, then $\frac{dz}{z}$ is a local section of $T^1_1(X|\Delta)$ but it is not bounded with respect to any metric having Poincaré singularities along Δ.

The idea is to force Δ-holomorphic tensors to be bounded by twisting them with the trivial line bundle $L = \mathcal{O}_X$ equipped with the singular hermitian metric

$$h_L = e^{-2s} \sum_{k \in K} \log J_{|s_k|^2} = \prod_{k \in K} \frac{1}{\log^2 |s_k|^2}$$

where the $(s_k)_{k \in K}$ are the sections of the divisors Δ_k appearing in $\Delta_{lc} = [\Delta]$. In more elementary terms, we just change the reference metric measuring those tensors. Then, using a twisted Bochner formula, we will be able to carry on the computations done in [CGP11] to obtain the vanishing. It will be practical for the following to introduce the following notation:

Definition 5.2. Let (X, Δ) be a pair such that Δ has simple normal crossing support and coefficients in $[0, 1]$. The space of bounded holomorphic tensors of type (r, s) for (X, Δ) is defined by

$$\mathcal{H}^{r,s}_B(X|\Delta) = \{u \in \mathcal{E}^\infty(X_0, T^*_s(X_0)) : \exists C : |u|^2_C \leq C \text{ and } \partial u = 0\}$$

where $h = g_{r,s} \otimes h_L$ is a metric on $T^*_s(X_0)$ induced by h_L and a metric g on X_0 having mixed Poincaré and cone singularities along Δ.

Of course, this definition does not depend on the choice of the metric g having Poincaré and cone singularities along Δ; it coincides with the one introduced in [CGP11] for klt pairs. The main point about this definition, which legitimates it, consists in the following proposition giving the expected identification between bounded and Δ-holomorphic tensors:

Proposition 5.3. With the previous notations, we have a natural identification:

$$\mathcal{H}^{r,s}_B(X|\Delta) = H^0(X, T^*_s(X|\Delta)).$$

Proof. We only need to check it locally on $\Omega = (D^*)^p \times (D^*)^q \times D^{n-(k+l)}$, where the boundary divisor restricted to Ω is given by $\sum_{k=1}^p d_k \sum_{i=0}^l z_i = 0$, and we choose g to be the model metric ω_{Δ} given in the introduction.

Let us begin with the inclusion $\mathcal{H}^{r,s}_B(X|\Delta) \subset H^0(X, T^*_s(X|\Delta))$. By orthogonality of the different $\frac{\partial}{\partial z^j} \otimes dz^j$, we only have to consider $u = v \frac{\partial}{\partial z^j} \otimes dz^j$ for some (holomorphic) function v satisfying:

$$\frac{|v|}{\prod_{k=1}^p |z^i|^{h_{j_k}(k) - h_{j_k}(k)} h_{j_k}(k) \left(\log \frac{1}{|z^i|} \right)^{s+h_{j_k}(k) - h_{j_k}(k)}} \leq C$$

Consider now the function

$$w := \frac{v}{\prod_{k=1}^p |z^i|^{h_{j_k}(k) - h_{j_k}(k)} h_{j_k}(k) \left(\log \frac{1}{|z^i|} \right)^{s+h_{j_k}(k) - h_{j_k}(k)}}$$

whose modulus $|w|$ can also be rewritten in the form

$$\frac{|v|}{\prod_{k=1}^p |z^i|^{h_{j_k}(k) - h_{j_k}(k)} h_{j_k}(k) \left(\log \frac{1}{|z^i|} \right)^{s+h_{j_k}(k) - h_{j_k}(k)}} \prod_{k=p+1}^{p+q} |z_k|^{h_{j_k}(k) - h_{j_k}(k)} \left(\log \frac{1}{|z_k|} \right)^{s+h_{j_k}(k) - h_{j_k}(k)}$$

The first factor is bounded; moreover, using the fact that $0 \leq |x| - x < 1$ for every real number x and that $(\log \frac{1}{|x|})^\alpha$ is integrable at 0 for every real number α, we conclude that the second factor is also L^2. This finishes to prove that w is L^2, so in particular it extends across the support of
our divisor, and therefore, \(u \in H^0(\Omega, T^r_\chi(\Omega|\Delta)) \).

For the reverse inclusion, every "irreducible" \(\Delta \)-holomorphic tensor \(u \in H^0(\Omega, T^r_\chi(\Omega|\Delta)) \) can be written

\[
 u = \prod_{k=1}^{p+q} z_k^{h_j(k)-h_J(k)a_k} \prod_{k=p+1}^{p+q} z_k^{h_j(k)-h_J(k)} v_1 \frac{\partial}{\partial z_j} \otimes dz^j
\]

for some holomorphic function \(v \), and some \(J \in \{1, \ldots, n\}^r \), \(J \in \{1, \ldots, n\}^s \). So for \(g \) the metric on \(X_0 \) attached to \(\omega_\Delta \), and setting \(h = g_{e,s} \otimes h_L \) as in Definition 5.2, we have:

\[
 |u|_h = |v| \prod_{k=1}^{p+q} |z_k|^{[(h_j(k)-h_J(k)a_k)-(h_\gamma(k)-h_J(k)a_k]}
 \prod_{k=p+1}^{p+q} \left(\log \frac{1}{|z_k|} \right)^{s+h_\gamma(k)-h_J(k)}
\]

which is clearly bounded near the divisor since \(s + h_\gamma(k) - h_J(k) \geq 0 \) for all \(k \).

Now we can state the main result of this section, which is a partial generalization of [CGP11, Theorem C]:

Theorem 5.4. — Let \((X, \Delta) \) be a pair such that \(\Delta = \sum a_i \Delta_i \) has simple normal crossing support, with coefficients satisfying: \(1/2 \leq a_i \leq 1 \) for all \(i \).
If \(K_X + \Delta \) is ample, then there is no non-zero \(\Delta \)-holomorphic tensor of type \((r, s) \) whenever \(r \geq s + 1 \):

\[
 H^0(X, T^r_\chi(\Delta)) = 0.
\]

Proof of Theorem 5.4. — Proposition 5.3 allows us to reduce the vanishing of the \(\Delta \)-holomorphic tensors to the one of bounded tensors as defined in 5.2. The proof of this result is similar to the one of [CGP11, Theorem C], the two main new features being the existence of a Kähler-Einstein metric with mixed Poincaré and cone singularities along \(\Delta \) (cf. Theorem A), and the use of a twisted Bochner formula. For this reason, we will give a relatively sketchy proof, and we will refer to [CGP11] for the details we skip.

To fix the notations, we write \(\Delta = \sum_{j \in J} a_j \Delta_j + \sum_{k \in K} \Delta_k \) where for all \(j \in J \), we have \(a_j < 1 \). In the following, any index \(j \) (resp. \(k \)) will be implicitly assumed to belong to \(J \) (resp. \(K \)), whereas the index \(i \) will vary in \(J \cup K \).

As \(K_X + \Delta \) is ample, Theorem A guarantees the existence of a Kähler metric \(\omega_{\infty} \) on \(X_0 \) such that \(-\text{Ric} \omega_{\infty} = \omega_{\infty} \), and having mixed Poincaré and cone singularities along \(\Delta \). We choose now an element \(u \in \mathcal{H}^r_\chi(X|\Delta) \) with \(r \geq s + 1 \), and we want to use a Bochner formula to show that \(u = 0 \).

To do this, we need to perform a cut-off procedure, and control the error term so that one can pass to the limit in the cut-off process. Let us now get a bit more into the details.

Step 1: The cut-off procedure

We define \(\rho : X \to [\infty, +\infty] \) by the formula

\[
 \rho(x) := \log \left(\frac{1}{\prod_i |s_i(x)|^2} \right).
\]

For each \(\varepsilon > 0 \), let \(\chi_\varepsilon : [0, +\infty] \to [0, 1] \) be a smooth function which is equal to zero on the interval \([0, 1/\varepsilon] \), and which is equal to 1 on the interval \([1 + 1/\varepsilon, +\infty] \). One may for example define \(\chi_\varepsilon(x) = \chi_1(x - 1/\varepsilon) \), so that

\[
 \sup_{\varepsilon > 0, t \in \mathbb{R}_+} |\chi'_\varepsilon(t)| \leq C < \infty,
\]
and we define \(\theta_\varepsilon : X \to [0, 1] \) by the expression
\[
\theta_\varepsilon(x) = 1 - \chi_\varepsilon(\rho(x)).
\]
We assume from the beginning that we have
\[
\prod_i |s_i|^2 \leq e^{-2}
\]
at each point of \(X \), and then it is clear that we have
\[
\theta_\varepsilon = 1 \iff \prod_i |s_i|^2 \geq e^{-e^{1/\varepsilon}}
\]
and also
\[
\theta_\varepsilon = 0 \iff \prod_i |s_i|^2 \leq e^{-e^{1+1/\varepsilon}}.
\]
We evaluate next the norm of the \((0,1)\)-form \(\bar{\partial} \theta_\varepsilon \); we have
\[
\bar{\partial} \theta_\varepsilon(x) = \frac{1}{\log \prod_i |s_i|^{2(1-a_i)}} \sum_i \langle s_i, D' s_i \rangle |s_i|^2 (x).
\]
As \(\omega_\infty \) has mixed Poincaré and cone singularities along \(\Delta \), we have:
\[
|\bar{\partial} \theta_\varepsilon|_{\omega_\infty}^2 \leq \frac{C|\chi_\varepsilon'(\rho)|^2}{\log^2 \prod_i |s_i|^{2(1-a_i)}} \left(\sum_i \frac{1}{|s_i|^2} + \sum_k \log^2 |s_k|^2 \right)
\]
at each point of \(X_0 \). Indeed, this is a consequence of the fact that the norm of the \((1,1)\)-forms
\[
i\langle D' s_j, D' s_j \rangle |s_j|^{2a_j} \quad \text{and} \quad i\langle D' s_k, D' s_k \rangle |s_k|^{2} \log^2 |s_k|^2
\]
with respect to \(\omega_\infty \) are bounded from above by a constant.

Let \(\varepsilon > 0 \) be a real number; we consider the tensor
\[
u_\varepsilon := \theta_\varepsilon u.
\]
It has compact support, hence by the (twisted) Bochner formula (see e.g. [Dem95, Lemma 14.2]), we infer
\[
\int_{X_0} |\bar{\partial}(\#u_\varepsilon)|_h^2 dV_{\omega_\infty} = \int_{X_0} |\bar{\partial}u_\varepsilon|^2_h dV_{\omega_\infty} + \int_{X_0} \langle \mathcal{R}(u_\varepsilon), u_\varepsilon \rangle_h + \gamma |u_\varepsilon|^2_h dV_{\omega_\infty}
\]
where:
- \(\mathcal{R} \) is a zero-order operator such that in our case \((-\text{Ric } \omega_\infty = \omega_\infty)\), we have
\[
R_{ji} = -\delta_{ji},
\]
and therefore the linear term \(\langle \mathcal{R}(u_\varepsilon), u_\varepsilon \rangle \) becomes simply \((s - r)|u_\varepsilon|^2_h\);
- \(h = \omega_{\infty,*} \otimes h_L \), where \(\omega_{\infty,*} \) denotes the canonical extension of \(\omega_{\infty} \) to the appropriate tensor fields (which are respectively \(T^r(X_0) \otimes \Omega^{0,1}(X_0) \), \(T^r(X_0) \otimes \Omega^{0,1}(X_0) \) and \(T^r_s(X_0) \));
- \(\gamma = \text{tr}_{\omega_\inftyature}^{\omega_\infty}(\Theta_h(L)) \) is the trace with respect to \(\omega_\infty \) of the curvature of \((L, h) \).
Here we need to be cautious because of the singularities of the metric h_L on Δ. Indeed, the Bochner formula applies to smooth hermitian metrics; however one can consider here some metric $h_{L,\varepsilon}$ which would coincide with h_L whenever $\theta_\varepsilon > 0$ and which is a smooth metric near Δ. For example, on can set $h_{L,\varepsilon} = \theta_{\varepsilon/2} h_L + (1 - \theta_{\varepsilon/2})$. Then for each $\varepsilon < 1$, there exists an open set $U_\varepsilon \ni \{\theta_\varepsilon > 0\}$ on which $h_{L,\varepsilon} = h_L$ so that in particular, in the formula (21), one can replace h_L by $h_{L,\varepsilon}$ without affecting anything.

There remains two steps to achieve now: the first one consists in evaluating the correction term γ induced by the curvature of L, and the second one is to show that the integration by part is valid in the Poincaré-cone setting; more precisely we have to prove that the error term $\int_{X_0} |\partial u_\varepsilon|^2_{h} dV_{\omega_\infty}$ converges to 0 as ε goes to 0.

Step 2: Dealing with the curvature of (L,h)

We work on local charts where Δ_{lc} is given by $\{\prod_{k \in K} z_k = 0\}$.

To begin with, we know that there exists $A > 0$ such that $\omega_{\infty} \leq A (\omega_{\text{kit}} + \sum_k \frac{idz_k \wedge d\bar{z}_k}{|z_k|^2 \log^2 |z_k|^2})$ where ω_{kit} is some smooth metric on $X \setminus \text{Supp}(\Delta_{\text{kit}})$ having cone singularities along Δ_{kit}. It will be useful to introduce the notation $\omega_{lc} := \omega_{\text{kit}} + \sum_k \frac{idz_k \wedge d\bar{z}_k}{|z_k|^2 \log^2 |z_k|^2}$. Moreover, the usual computations (see e.g.\cite[Kob84, Lemma 1]{Kob}) show that there exists a smooth $(1,1)$-form α on our chart satisfying

$$-\sum_{k \in K} dd^c \log \log \frac{1}{|z_k|^2} \geq \sum_{k \in K} \frac{idz_k \wedge d\bar{z}_k}{|z_k|^2 \log^2 |z_k|^2} + \frac{1}{B} \alpha$$

where B is a constant which can be taken as large as wanted up to scaling the (smooth) metrics on the Δ_k’s, which does not affect their curvature. Therefore, the curvature $\Theta_{h_{lc}} (L)$ of L satisfies:

$$\text{tr}_{\omega_{\infty}} (-\Theta_{h_{lc}} (L)) \geq A^{-1} \text{tr}_{\omega_{lc}} (-\Theta_{h_{lc}} (L)) \geq 2sA^{-1} \text{tr}_{\omega_{lc}} \left(\sum_{k \in K} \frac{idz_k \wedge d\bar{z}_k}{|z_k|^2 \log^2 |z_k|^2} + \frac{1}{B} \alpha \right) \geq 2s|K|A^{-1} + 2s(AB)^{-1} \text{tr}_{\omega_{lc}} \alpha$$

As ω_{lc} dominates some smooth form on X, the quantity $\text{tr}_{\omega_{lc}} \alpha$ is bounded on X_0 so that $2s(AB)^{-1} \text{tr}_{\omega_{lc}} \alpha$ can be made as small as we want by scaling the metrics on the divisors as explained above. Therefore one has

$$\gamma = \text{tr}_{\omega_{lc}} (\Theta_{h_{lc}} (L)) \lesssim \frac{1}{2}$$

on X_0.

Step 3: Controlling the error term

Let us get now to the last step in showing that the term

$$\int_{X_0} |\partial u_{\varepsilon}|^2_{h} dV_{\omega_\infty}$$

tends to zero as $\varepsilon \to 0$. Since u is holomorphic, we have

$$\partial u_{\varepsilon} = u \otimes \partial \theta_{\varepsilon}$$

we recall now that $u \in \mathcal{H}_B^{r,s} (X|\Delta)$, so we have
By inequality (20) above we infer
\[
\int_{X_0} |\partial u_{\varepsilon}|^2_h dV_{\omega_\infty} \leq C \int_{X_0} \frac{|\chi'_\varepsilon(p)|^2}{\log^2 \prod_i |s_i|^2} \left(\sum_j \frac{1}{|s_j|^{2(1-a_j)}} + \sum_k \log^2 |s_k|^2 \right) dV_{\omega_\infty}.
\]
As \(\omega_\infty\) as mixed Poincaré and cone singularities along \(\Delta\), we have:
\[
\int_{X_0} |\partial u_{\varepsilon}|^2_h dV_{\omega_\infty} \leq C \int_{X_0} \frac{|\chi'_\varepsilon(p)|^2}{\prod_j |s_j|^{2a_j} \prod_k |s_k|^2} \log^2 |s_k|^2 \cdot \log^2 \prod_i |s_i|^2 dV_{\omega}.
\]
for some constant \(C > 0\) independent of \(\varepsilon\); here we denote by \(\omega\) a smooth hermitian metric on \(X\). We remark that the support of the function \(\chi'_\varepsilon(p)\) is contained in the set
\[
e^{-e^{1+1/\varepsilon}} \leq \prod_i |s_i|^2 \leq e^{-e^{1/\varepsilon}}
\]
so in particular we have
\[
\frac{|\chi'_\varepsilon(p)|^2}{\log^2 \prod_i |s_i|^2} \leq Ce^{-\frac{1}{2\varepsilon}}.
\]
We also notice that for each indexes \(j_0 \in J\) and \(k_0 \in K\) we have respectively:
\[
\int_{X_0} \frac{dV_{\omega}}{|s_{j_0}|^2 \log^{3/2} \left(\frac{1}{\prod_i |s_i|^2} \right) \prod_{j \neq j_0} |s_j|^{2a_j} \prod_k |s_k|^2 \log^2 |s_k|^2}
\leq C \int_{X_0} \frac{dV_{\omega}}{|s_{j_0}|^2 \log^{3/2} \left(\frac{1}{|s_{j_0}|^2} \right) \prod_{j \neq j_0} |s_j|^{2a_j} \prod_k |s_k|^2 \log^2 |s_k|^2}
\]
and
\[
\int_{X_0} \frac{dV_{\omega}}{|s_{k_0}|^2 \log^{3/2} \left(\frac{1}{\prod_i |s_i|^2} \right) \prod_j |s_j|^{2a_j} \prod_{k \neq k_0} |s_k|^2 \log^2 |s_k|^2}
\leq C \int_{X_0} \frac{dV_{\omega}}{|s_{k_0}|^2 \log^{3/2} \left(\frac{1}{|s_{k_0}|^2} \right) \prod_j |s_j|^{2a_j} \prod_{k \neq k_0} |s_k|^2 \log^2 |s_k|^2}
\]
and the integral in the right hand sides are convergent, given that the hypersurfaces \((\Delta_i)\) have strictly normal intersections.
Finally we combine the inequalities (25)-(26), and we get
\[
\int_{X_0} |\partial u_{\varepsilon}|^2 dV_{\omega_\infty} \leq Ce^{-\frac{1}{\varepsilon}}.
\]
Step 4: Conclusion
As we can see, the relations (21) and (27) combined with the fact, coming from (22), that
\[
\langle \mathcal{R}(u_{\varepsilon}), u_{\varepsilon} \rangle_h + \gamma |u_{\varepsilon}|^2_h \leq \left(\frac{1}{2} + s - r \right) |u_{\varepsilon}|^2_h
\]
(which tends to \((\frac{1}{2} + s - r)|u_0|^2_h\)) will give a contradiction if \(u\) is not identically zero on \(X_0\) (we recall that by hypothesis we have \(r \geq s + 1\)).
References

