
HAL Id: hal-01878981
https://hal.science/hal-01878981

Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toric plurisubharmonic functions and analytic adjoint
ideal sheaves
Henri Guenancia

To cite this version:
Henri Guenancia. Toric plurisubharmonic functions and analytic adjoint ideal sheaves. Mathematische
Zeitschrift, 2012, 271 (3-4), pp.1011 - 1035. �10.1007/s00209-011-0900-0�. �hal-01878981�

https://hal.science/hal-01878981
https://hal.archives-ouvertes.fr


ar
X

iv
:1

01
1.

31
62

v2
  [

m
at

h.
C

V
] 

 1
2 

M
ay

 2
01

1

TORIC PLURISUBHARMONIC FUNCTIONS AND ANALYTIC

ADJOINT IDEAL SHEAVES

by

Henri Guenancia

Abstract. — In the first part of this paper, we study the properties of some particular plurisubhar-

monic functions, namely the toric ones. The main result of this part is a precise description of their

multiplier ideal sheaves, which generalizes the algebraic case studied by Howald. In the second part,

almost entirely independent of the first one, we generalize the notion of the adjoint ideal sheaf used in

algebraic geometry to the analytic setting. This enables us to give an analogue of Howald’s theorem

for adjoint ideals attached to monomial ideals. Finally, using the local Ohsawa-Takegoshi-Manivel

theorem, we prove the existence of the so-called generalized adjunction exact sequence, which enables

us to recover a weak version of the global extension theorem of Manivel, for compact Kähler manifolds.

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1. Toric plurisubharmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1. Multiplier ideal sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Integrability of the exponential of a concave function . . . . . . . . . . . . . . . . 5

1.3. Toric plurisubharmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4. Valuative interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5. An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. The analytic adjoint ideal sheaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Adjoint ideal attached to a plurisubharmonic function . . . . . . . . . . . . . . . . 15

2.3. Adjoint ideal of a monomial ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4. The adjunction exact sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5. Back to the sheaf Adj0H(ϕ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

http://arxiv.org/abs/1011.3162v2


2 HENRI GUENANCIA

Introduction

Multiplier ideal sheaves are a fundamental tool in complex analytic geometry, for example
through Nadel’s vanishing theorem: attached to a plurisubharmonic (psh) function ϕ on a complex
manifold X by J (ϕ)x = {f ∈ OX,x; ||f ||ϕ = |f |e−ϕ ∈ L2

loc(Leb)}, they measure the singularity of
ϕ.
Lazarsfeld introduced their algebraic analogue for an ideal a using a log-resolution of a; of course
both ideals coincide whenever ϕ is attached to a (this means that ϕ = 1

2 log(|f1|2+ · · ·+ |fr|2)+O(1)
if a = (f1, . . . , fr) locally), but the conceptual gap between the analytic and algebraic definitions
suggests that both approaches may be useful, and in some sense complementary to each others.

In the first part of this paper, we give a different analytic approach of Howald’s theorem, that
extends to plurisubharmonic functions.
More precisely, Howald’s theorem states that the multiplier ideal J (a) attached to a monomial

ideal a = (zα1 , . . . , zαr) ⊂ C[z1, . . . zr] is generated by monomials zα satisfying α+1 ∈ ˚̄
P (a), where

P (a) is the Newton polyhedron attached to the αi’s. Extending the notion of Newton polyhedron
attached to a monomial ideal to any toric psh function ϕ – by a toric psh function we mean a
psh function that is pointwise invariant under the compact unit torus Tn – and using integrability
properties for concave functions, we prove the generalization of Howald’s theorem concerning the
description of I (ϕ):

Theorem A. — Let ϕ be a toric psh function on some polydisk of Cn centered at 0, and let us set
1 = (1, . . . , 1). Then I (ϕ) is a monomial ideal, and we have:

zα = zα1
1 · · · zαn

n ∈ I(ϕ) ⇐⇒ α+ 1 ∈
˚̆

P (ϕ).

This shows in passing that the (generalized) openness conjecture stated in [DK01] holds for
toric psh functions. Finally, we give one example of usual psh function for which we use this result
to characterize very precisely the multiplier ideal.
Let us notice that J. McNeal and Y. Zeytuncu recently gave a new proof of Howald’s theorem in
[MZ10] using basic analytic techniques. We will use a more systematic approach which points out
the crucial role of convexity in this matter.

In the second part of this paper, we focus on another ideal sheaf, related to the multiplier ideal
sheaf, namely the adjoint ideal sheaf attached to a smooth hypersurface, say H . This ideal, well-
known in complex algebraic geometry, is a subsheaf of the multiplier ideal sheaf which measures
how largely the restricted ideal J (a)|H contains J (a|H), as expressed in [Laz04].

Our goal is to define an analytic analogue AdjH(ϕ) attached to any psh function on a smooth
complex manifold X . In view of the Ohsawa-Takegoshi-Manivel theorem, the natural candidate for
AdjH(ϕ) would be defined by its stalks

Adj0H(ϕ)x =
{
f ∈ OX,x ; ||f ||ϕ ∈ L2

loc(PoinH)
}

where PoinH is the standard Poincaré volume form attached to H ; namely if H is locally given by
{h = 0}, then PoinH = 1

|h|2 log2 |h|
Leb.

Unfortunately, the ideal Adj0H(ϕ) doesn’t coincide in general with the algebraic adjoint: indeed,
even in the algebraic case, Adj0H(ϕ) fails to satisfy the expected openness property (in general,
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Adj0H((1 + ǫ)ϕ) 6= Adj0H(ϕ) for any ǫ > 0). So we have to perturb a bit this ideal by setting

AdjH(ϕ) =
⋃

ǫ>0

Adj0H((1 + ǫ)ϕ).

Once we have introduced our ideal, we need to make sure that it coincides with the algebraic adjoint
ideal whenever ϕ is associated to an ideal a = (f1, . . . , fr), namely ϕ = 1

2 log(|f1|2+· · ·+|fr|2)+O(1)
where the fi’s are polynomials (or even holomorphic functions).
This new point of view allows us to show an analogue of Howald’s theorem for (algebraic) adjoint
ideals:

Theorem B. — Let a = (zα1 , . . . , zαk) ⊂ C[z1, . . . , zn] be a monomial ideal, H = {z1 = 0} such
that a * (z1). We denote by ri(F1) the relative interior of the (infinite) face of P (a) contained in

{x1 = 0} and we set 1̃ = (0, 1, . . . , 1). Then for every c > 0, Adj(ac, H) is a monomial ideal and

zβ ∈ Adj(ac, H) ⇐⇒ β + 1̃ ∈ c · ˚̄
P (a) ∪ c · ri(F1).

We then prove that the fundamental adjunction exact sequence appearing during the proof of
Theorem 9.5.1 in [Laz04] extends to our setting, under the additional hypothesis that eϕ is Hölder
continuous:

Theorem C. — Let X be a complex manifold, H ⊂ X a smooth hypersurface, and ϕ a psh function
on X, ϕ|H 6= −∞, such that eϕ is locally Hölder continuous. Then the natural restriction map
induces the following exact sequence:

0 −→ I+(ϕ)⊗OX(−H) −→ AdjH(ϕ) −→ I+(ϕ|H) −→ 0

We deduce from this result that the adjoint ideal is coherent whenever eϕ is locally Hölder
continuous, and we then show how to recover a qualitative version of the Manivel global extension
theorem on compact Kähler manifolds.

Finally, we give some properties of the sheaf Adj0H(ϕ), and explain what can be expected of it.
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1. Toric plurisubharmonic functions

1.1. Multiplier ideal sheaves. — In this section, we recall the notion of multiplier ideal sheaves,
introduced by Nadel, and which measures the singularity of a psh function. Their definition is rather
simple:

Definition 1.1. — Let X be a complex manifold, ϕ a psh function on X . The multiplier ideal
sheaf attached to ϕ, I (ϕ), consists in the germs of holomorphic functions f ∈ OX,x such that
|f |2e−2ϕ is integrable with respect to the Lebesgue measure in any local coordinates chart near x.

Let’s recall the following fundamental result, even if we won’t use it directly (for a proof, see e.g
[DBIP96]):
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Theorem 1.2 (Nadel, 1989). — For every psh function ϕ on X, the sheaf I (ϕ) is a coherent
ideal sheaf on X.

Now we would like to get briefly onto the openness conjecture. We need to recall the definition
of a right-regularized version of the multiplier ideal sheaf I(ϕ), and introduced in [DEL00]:

Definition 1.3. — Let X be a complex manifold, and ϕ a psh function on X . We define

I+(ϕ) =
⋃

ǫ>0

I ((1 + ǫ)ϕ)

Remark 1.4. — By the strong noetherian property for coherent sheaves, for all Ω ⋐ X , there
exists ǫϕ,Ω > 0 such that for all 0 < ǫ 6 ǫϕ,Ω, we have I+(ϕ)|Ω = I ((1+ǫ)ϕ)|Ω = I ((1+ǫϕ,Ω)ϕ)|Ω.

The famous openness conjecture expressed in [DK01] admits a natural generalization in terms
of these right-regularized multiplier ideals:

Conjecture 1.5 (Strong openness conjecture). — Let ϕ be a plurisubharmonic function on
X, the the following equality of sheaves holds:

I+(ϕ) = I(ϕ).

The only non-trivial case where this conjecture is known is the 2-dimensional one, as C. Favre
and M. Jonsson proved it in their paper [FJ05], using the so-called valuation tree.
We now seize the opportunity to discuss briefly the valuative point of view concerning multiplier
ideals of psh functions. This approach has been widely developed in [FJ05] in the two-variable
case, and in [BFJ08] in higher dimensions. We will only evoke one important result.

We consider a psh germ with isolated singularities at 0 ∈ Cn, and we want to describe I(ϕ) or
I+(ϕ) in terms of valuations. Let us denote by Vm the space of monomial valuations, or equivalently
Kiselman numbers vw for w ∈ Rn+, defined by:

vw(ϕ) = sup

ß
γ > 0, ϕ(z) 6 γmax

i

Å
1

wi
log |zi|

ã
+ O
z→0

(1)

™
.

For example, vw(z
α) := vw(log |zα|) = 〈w,α〉 =∑wiαi. Note that the thinness of those valuations

is: A(vw) = |w| =∑wi. The following characterization of the multiplier ideal is given in [BFJ08]:

f ∈ I(ϕ) =⇒ ∀v ∈ Vm ,
v(ϕ)

v(f) +A(v)
< 1.

If we consider now the quasi-monomial valuations v ∈ Vqm (this means monomial valuations on
some birational model of (Cn, 0)), one can also define their thinness, and get a full description of
I+(ϕ):

Theorem 1.6 ([BFJ08]). — Let ϕ be a psh germ at 0 ∈ Cn. Then

f ∈ I+(ϕ) ⇐⇒ sup
v∈Vqm

v(ϕ)

v(f) +A(v)
< 1.
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1.2. Integrability of the exponential of a concave function. — In the next section, we are
going to focus on a very particular type of functions, the toric psh functions. The results we will
state about them involve convergence properties for integrals of the form

∫
D
eg where D = Rn+ is

the first orthant, and g is any concave function on D. So this part is devoted to the study of such
integrals.
The key-object appears in the following definition:

Definition 1.7. — Let g be a concave function on D = {(x1, . . . , xn) ∈ Rn, ∀i, xi > 0}. The
Newton convex body P (g) is:

P (g) = {λ ∈ Rn; g − 〈λ, · 〉 6 O(1)} .

Remark 1.8. — The set P (g) is the domain of the Legendre transform g∗(y) = supx(g(x)−〈y, x〉).

It is clear that for any real number c > 0, P (cg) = c · P (g). Moreover, it is important to no-
tice that P (g) is a convex set, which is in general neither open nor closed (take g(x) = −1

x+1 and

g(x) = log(x+ 1) respectively).

Before going into the important results of this section, let us fix some convenient notations:

1. We define a partial ordering on Rn by

(x1, . . . , xn) � (y1, . . . , yn) ⇐⇒ ∀i ∈ {1, . . . , n}, xi 6 yi.

In the same way we define

(x1, . . . , xn) ≺ (y1, . . . , yn) ⇐⇒ ∀i ∈ {1, . . . , n}, xi < yi.

2. We set D = Rn+ and 1 := (1, . . . , 1) ∈ Rn.

3. We know that the set E of points v ∈ D such that g is differentiable at v has full measure in
D (see [RV73] e.g.).

4. We set Gr(g) := Conv
({

∇g(v) + µ; (v, µ) ∈ E × (R∗
+)
n
})

.

Now take some λ = ∇g(v) + µ with (v, µ) ∈ E × (R∗
+)

n. Then for every x ∈ D, we have

g(x) − g(v) 6 〈∇g(v), x − v〉 so that λ ∈ ˚̄
P (g). By convexity of

˚̄
P (g), we thus have Gr(g) ⊂ ˚̄

P (g).
The crucial result of this section is given in the next proposition:

Proposition 1.9. — Let g be a concave function on D. Then:

∫

D

eg < +∞ ⇐⇒ 0 ∈ ˚̄
P (g).
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Proof. — The direction ⇐ is easy: there exists ǫ > 0 and some constant C > 0 such that for all
x, g(x) + 〈ǫ1, x〉 6 C. Therefore we have:

∫

D

eg 6 C′

∫

D

e−ǫ
∑

i
xidx1 · · · dxn

= C′
n∏

i=1

∫

D

e−ǫxidxi

< +∞.

As for the other direction, we suppose that the integral
∫
D
eg converges. If 0 /∈ ˚̄

P (g), by Hahn-

Banach’s theorem we can find some vector w ∈ Rn such that for all u ∈ ˚̄
P (g), we have 〈u,w〉 > 0

(this implies that w has positive coordinates since P (g) contains a translated of Rn+). By Fubini’s
theorem we may find a ∈ D such that g is differentiable at almost every point of the rayR = a+R+w
and

∫
R
eg < +∞. As g is a 1-variable concave function on R, it is easy to see that Dgx(w) (Gâteaux-

derivative along w at x) decreases to some ℓ ∈ R ∪ {−∞} when x ∈ R tends to infinity. Then
the integrability of eg along R shows that ℓ < 0, so that there exists some x ∈ R, at which g
is differentiable, and which satisfies 〈∇g(x), w〉 = Dgx(w) < 0. Thus we can find ǫ > 0 with

〈∇g(x) + ǫ1, w〉 < 0; this is absurd because ∇g(x) + ǫ1 ∈ Gr(g) ⊂ ˚̄
P (g) and the linear form 〈· , w〉

is non-negative on P (g).

Rewriting the proof using the open convex set Gr(g) instead of
˚̄

P (g), we see that the convergence
of
∫
D
eg implies that 0 ∈ Gr(g). As P (g+ 〈λ, · 〉) = λ+P (g) and Gr(g + 〈λ, · 〉) = λ+Gr(g) for all

λ ∈ Rn, we see that
˚̄

P (g) ⊂ Gr(g). So we have proved:

Proposition 1.10. — For any concave function g on D, we have:

Gr(g) =
˚̄

P (g).

To finish this section, let us stress that what we proved is an openness property; namely if
eg ∈ L1(D), then e(1+ǫ)g ∈ L1(D) for ǫ small enough. As any locally uniformly upper bounded
sequence of psh functions converging pointwise to a psh function converges in fact in the topology
of psh functions, the argument given in section 5.4 of [DK01] applies here to show that any small
perturbation g + h, where h is any sufficiently small concave function, satisfies the integrability
condition eg+h ∈ L1(D).

1.3. Toric plurisubharmonic functions. — Now we get back to toric plurisubharmonic func-
tions on a polydisk D(0, r) = {(z1, . . . , zn) ∈ Cn | ∀i ∈ {1, . . . , n}, |zi| < r}. This is a special kind
of polydisk (we fix the same radius r for every coordinate), but since all the upcoming results are
purely local, there will not be any loss of generality (we could even fix r = 1). The dimension, n,
is fixed for the rest of the paper.
Let us recall that a toric function ϕ on D(0, r) is a function which is invariant under the torus
action on Cn: (eiθ1 , . . . , eiθn) · z := (eiθ1z1, . . . , e

iθnzn). In more elementary terms, ϕ(z) depends
only on |z1|, . . . , |zn|. In the psh case, we can say more (e.g. [Dem]):

Proposition 1.11. — Let ϕ be a toric psh function on D(0, r). Then there exists a convex func-
tion f , non-decreasing in each variable, defined on ]−∞, log r[n such that for all z = (z1, . . . , zn) ∈
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D(0, r), we have ϕ(z) = f(log |z1|, . . . , log |zn|).

For the convenience of the reader, we now state and give an elementary proof of the following
well-known result, that will be useful in the following.

Lemma 1.12. — If I is an ideal of the ring OCn,0 of the germs of holomorphic functions at
0 ∈ Cn such that for every f ∈I, all monomials appearing in f are also inI, thenI is generated
by monomials (ie it is a monomial ideal).

Proof. — The first step is to see that, given a (countable) set I of monomials in n variables, we can
always extract some finite subset J such that each element of I can be divided by an element of J .
To see this, we use a reductio ad absurdum. So, if this property fails, there exists a sequence (uk)k>1

with values in Nn such that zuk+1 cannot be divided by any zup with p 6 k. Stated with quantifiers,
the property becomes:

∃σ : N2 → {1, . . . , n}; ∀k > 2, ∀j < k, (uk)σ(j,k) < (uj)σ(j,k),

where (uk)i denotes the i-th component of the vector uk.
As the sequence σ(k − 1, k) has values in a finite set, we can extract some subsequence, given by
ψ : N∗ → N∗ increasing, such that σ(ψ(k)− 1, ψ(k)) is a constant, say 1. But then, for every k > 2,
we have: (uψ(k))1 < (uψ(k)−1)1, which is impossible because (uk)1 is always a non-negative integer.
The second step is the result of the lemma itself.
As OCn,0 is noetherian, I is finitely generated, so we can consider a finite generating family
(f1, . . . , fp). For each index k, we consider the monomial ideal Ik of C[z1, . . . , zn] generated by
the monomials appearing in fk. From the first point, there exists a finite number of minimal mono-
mials appearing in fk, such that the others ones can be divided by the minimal ones. Therefore
we have shown that each fk lies in the ideal of OCn,0 generated by a finite number of monomials
appearing in the expansion of fk. If we put all those minimal monomials for f1, . . . , fk together,
we see thatI is generated by (a finite number of) monomials.

For the following, if ϕ is a toric psh function on D(0, r) attached to the convex function f , we
denote by g the concave function defined on [log(r),+∞[n by g(x) = −f(−x). Moreover, if g is
attached to ϕ, we define P (ϕ) to be the Newton convex body P (g) of g.

Now we can state the precise description of the multiplier ideal sheaf attached to any toric psh
function, viewed as an ideal I(ϕ) ⊂ OX(X) for the Stein manifold X = D(0, r). This can be seen
as the analogue or generalization in the analytic setting of Howald’s theorem (see [Laz04]):

Theorem 1.13. — Let ϕ be a toric psh function on D(0, r) ⊂ Cn. Then the multiplier ideal I (ϕ)
is a monomial ideal, and we have:

zα = zα1
1 · · · zαn

n ∈ I(ϕ) ⇐⇒ α+ 1 ∈
˚̆

P (ϕ).

We want to apply this theorem to the psh function attached to g = mini〈αi, · 〉 for some αi ∈ Rn.
But thanks to Proposition 1.10, P (a) and P (g) have same interiors, so we obtain:
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Corollary 1.14 (Howald’s theorem, [How01]). — Let a = (zα1 , . . . , zαk) be a monomial ideal
of C[z1, . . . , zn], and let P (a) be the Newton polyhedron attached to the set {α1, . . . , αk}. Then for
every c > 0:

zβ ∈ J (ac) ⇐⇒ β + 1 ∈ c
˚̄
P (a).

Proof of theorem 1.13. — We first have to check that I (ϕ) is monomial, so we consider f =∑
aIz

I ∈ I(ϕ). This means that for some r > 0,
∫

D(0,r)

|f |2e−2ϕ(|z1|,...,|zn|)dV (z)

is finite. Thanks to Parseval’s theorem, this is equivalent to

∑

I

|aI |2
∫

D(0,r)

|zI |2e−2ϕ(|z1|,...,|zn|)dV (z) < +∞

so that each monomial of f already belongs to I(ϕ). Then we are done applying lemma 1.12.
We are now interested in the convergence of the integral

∫

D(0,r)

|z1|2α1 · · · |zn|2αne−2ϕ(z1,...,zn)dV (z).

So we first perform the change of variables variables zj = rje
iθj , and up to a multiplicative factor,

the integral equals: ∫

[0,r]n
r2α1+1
1 · · · r2αn+1

n e−2f(log r1,...,log rn)dr1 · · · drn

We set then ti = − log(ri) so that the previous integral becomes
∫

[log(r),+∞[n
e−(2α1+2)u1 · · · e−(2αn+2)une2g(u1,...,un)du1 · · · dun

or also ∫

[log(r),+∞[n
e2g(x)−2〈A,x〉dx.

Now we just have to apply Proposition 1.9 to the concave function 2(g−〈A, ·〉), and we are done.

As P ((1+ ǫ)ϕ) = (1+ ǫ)·P (ϕ), the characterization of the multiplier ideal given in theorem 1.13
implies a (very) particular case of the generalized openness conjecture, recalled in this paper as the
conjecture 1.5:

Corollary 1.15. — The generalized openness conjecture I+(ϕ) = I (ϕ) holds for any toric psh
function ϕ.

Remark 1.16. — If X = (Cn, 0) and z = z1 · · · zn, then for any toric psh germ ϕ and any
holomorphic germ f on X , Theorem 1.13 implies the following property:

f e−ϕ ∈ L2(X) =⇒ (z · f) e−ϕ ∈ L∞(X).
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1.4. Valuative interpretation. — We now want give the valuative interpretation of Theorem
1.13, keeping in mind the end of section 1.1.
For this, let us briefly recall some classical facts about Kiselman numbers, that can be found in
[Dem]. We fix ϕ a psh germ at 0 ∈ Cn, w ∈ Rn+, and we define ψw(z) = maxi

1
wi

log |zi| and also

χw(t) = sup{ψw<t} ϕ, which is a convex function. Then we have:

vw(ϕ) = sup {µ > 0, ϕ 6 µψw +O(1)}
= max {µ > 0, ϕ 6 µψw +O(1)}
= χ′

w(−∞)

= lim
−∞

χw(t)

t
.

Definition 1.17. — Let g be a concave function onD = Rn+. Then we define ĝ the homogenization
of g on D r {0} by

ĝ(w) = lim
t→+∞

g(tw)

t
.

One reason for which we introduced the homogenization function lies in the following lemma:

Lemma 1.18. — Let ϕ be a toric psh function on D(0, r) ⊂ Cn, and g its attached concave
function. Then

vw(ϕ) = ĝ(w).

Proof. — We write

χw(t) = sup{ϕ(z); ∀i, log |zi| < twi}
= sup{−g(x); ∀i, xi > −twi)} [xi := − log |zi|]
= − inf{g(x); ∀i, xi > −twi}
= −g(−tw)

because g is non-decreasing in each variable. Therefore χw(t)
t = g(−tw)

−t and passing to the limit
when t→ −∞, we obtain the desired result.

The next result gives a precise description of the closure P (g) of the Newton convex body attached
to g in terms of P (ĝ).

Lemma 1.19. — Let ga be a non-decreasing in each variable concave function on Da = a + Rn+
for some a ≺ 0. Setting g = ga|D, we have the following equalities:

P (g) = P (ĝ) = {λ ∈ Rn; ĝ 6 〈λ, · 〉}.

Proof. — As ĝ is homogeneous, if λ ∈ P (ĝ), then there exists C > 0 such that for all x ∈ D r {0}
and all t > 0, we have ĝ(x) = 1

t ĝ(tx) 6 〈λ, x〉 + C
t so that when t tends to +∞, we obtain the

second identity of the lemma, which shows that P (ĝ) is closed.
Now, we choose λ ∈ P (g), and write for all x ∈ D, and t > 0: 1

t g(tx) 6 〈λ, x〉 + C
t , and then

λ ∈ P (ĝ). So we have proved P (g) ⊂ P (ĝ).
As any convex set with non-empty interior has the same closure than its interior, it is enough to
show that P (g) and P (ĝ) have the same interior. So we choose λ in the interior of P (ĝ). This
means that there exists ǫ > 0 such that for all x ∈ D, ĝ(x) 6 〈λ − ǫ1, x〉. We write x = tw where
t > 0 and w ∈ ∆n = {(w1, . . . , wn) ∈ Rn+;

∑
wi = 1} is the standard n-simplex, which is obviously
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compact. An important remark is that g and ĝ are restrictions of concave functions ga and “ga to

D ⊂ ˚̂
Da, so they are both continuous on D.

We know that g is non-decreasing in each variable, so t 7→ g(tw) is a non-decreasing concave
function. Clearly, g is bounded below on D, thus there exists C such that h = g+C is non-negative
on D. Then ht(w) :=

1
th(tw) for t > 0, w ∈ ∆n, defines a non-increasing (in t) family of continuous

functions on ∆n converging to ĥ = ĝ. Indeed, if t2 > t1, then ht1(w)− ht2(w) > h(0)( 1
t1

− 1
t2
).

By Dini’s theorem, the convergence is uniform, as |ht(w) − gt(w)| 6 C/t, then for t > t0(ǫ),
||ĝ − gt||∆n,∞ 6 ǫ. Thus, for such a t, we have:

gt(w) 6 ĝ(w) + ǫ

6 〈λ− ǫ1, w〉+ ǫ

= 〈λ,w〉.
If C = sup{g(x)− 〈λ, x〉; x ∈ D and

∑
xi 6 t0}, then we have for all x ∈ D, g(x) 6 〈λ, x〉+C and

therefore λ ∈ P (g). So the interior of P (ĝ) is contained in P (g) thus in
˚̄

P (g), and as P (g) ⊂ P (ĝ),
this concludes the proof of the lemma.

These two lemmas give now almost immediately the valuative version of Theorem 1.13:

Theorem 1.20. — Let ϕ be a toric psh germ at 0 ∈ Cn. Then I(ϕ) is monomial, and:

zα ∈ I(ϕ) ⇐⇒ sup
w∈Rn

+

vw(ϕ)

vw(zα) +A(w)
< 1.

Proof. — First of all, we attach to ϕ its concave function g, and as the singularity is isolated at 0,
we may suppose (by shrinking the domain of ϕ) that g is the restriction to D = Rn+ of a concave
function on some Da = a + Rn+ with a ≺ 0, so that the preceding lemma applies here, and in
particular, P (g) and P (ĝ) have same interiors.
Thus, using Theorem 1.13 and both preceding lemmas, we have:

zα ∈ I(ϕ) ⇐⇒ α+ 1 ∈ ˚̄
P (g)

⇐⇒ ∃δ ∈]0, 1[; ∀w ∈ D, ĝ(w) 6 (1− δ)〈α+ 1, w〉
⇐⇒ ∃δ ∈]0, 1[; ∀w ∈ D, vw(ϕ) 6 (1− δ)〈α+ 1, w〉

⇐⇒ ∃δ ∈]0, 1[; sup
w∈D

vw(ϕ)

vw(zα) +A(w)
6 1− δ

which concludes the proof of the theorem.

Remark 1.21. — Compared to Theorem 1.6, this result tells us that for toric psh functions,
multiplier ideals satisfy the openness property, and that they are totally determined by the datum
of all monomial valuations; namely we don’t need to look at divisors lying in some birational model
of (Cn, 0) to understand the singularities of toric psh functions.

1.5. An example. — To finish this first part, we illustrate Theorem 1.13 with a particular
example, for which some computations lead to a rather simple result.
Let us define g(x1, . . . , xn) = k xα1

1 · · ·xαn
n , with k > 0 and αi > 0 for all i. First, we must know

whether this function is concave or not. But we can see rather easily that g is concave if and only
if α1 + · · ·+ αn 6 1.
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Then, following the method suggested by Theorem 1.13 and Proposition 1.10, some computations
give rise to the following description of the multiplier ideal:

Proposition 1.22. — Let ϕ(z) = −k |log |z1||α1 · · · |log |zn||αn where the αi are non-negative real
numbers, of sum less or equal than 1, and k > 0 be a real number. Then ϕ is psh on D(0, 1), and:

(i) Either
∑
αi < 1, and then I (ϕ) = OD(0,1);

(ii) Or
∑
αi = 1 and then I (ϕ)0 is generated by the zβ such that:

∏

αi>0

Å
βi + 1

kαi

ãαi

> 1.

2. The analytic adjoint ideal sheaf

2.1. Preliminaries. — The adjoint ideal attached to an ideal was introduced in the algebraic
setting to deal with extension problems for functions belonging to some multiplier ideals. A general
and detailed approach can be found in [Tak07] or [Eis10], so we are just going to recall some
elementary facts about adjoint ideals.

Definition 2.1. — Let a ⊂ OX be a non-zero ideal sheaf on a smooth complex variety X , c > 0
a real number, and D a reduced divisor on X such that a is not contained in any ideal IDi

of Di

an irreducible component of D. We fix µ : ‹X → X a log resolution of a such as a · O
X̃

= O
X̃
(−F )

is such that F + µ∗D+K
X̃/X

+Exc(µ) is a simple normal crossing divisor. Then the adjoint ideal

Adj(ac, D) attached to c and a is defined by:

Adj(ac, D) = µ∗OX̃
(K

X̃/X
− [c · F ]− µ∗D +D′)

where K
X̃/X

= K
X̃
−µ∗KX , [ ] denotes the integral part of a divisor, and D′ is the strict transform

of D, defined by linearity.

Remark 2.2. — To obtain such a resolution, we compose a log resolution (µ′, X ′,OX′(−F ′)) of a
with a log resolution of F ′ + µ′∗D.
Furthermore, one can show that the previously defined sheaf does not depend on such a log resolu-
tion.

We then have the so-called adjunction exact sequence, appearing (in a hidden way) in the proof
of [Laz04, Theorem 9.5.1]:

Theorem 2.3. — With the previous notations, and in the case where D = H is a non-singular
hypersurface, the following short sequence is exact:

0 −→ I (ac)⊗OX(−H) −→ Adj(ac, H) −→ I ((ac)|H) −→ 0

So what we are willing to construct is an analogue of the adjoint ideal which would be attached
to any psh function ϕ. Just as multiplier ideals can be defined using the space of holomorphic germs
in L2(e−ϕ,Leb) (it is even their original definition), we would like to find some volume form Ω such
that the space of holomorphic germs in L2(e−ϕ,Ω) defines adjoint ideals. To find Ω, the intuition
is given by the famous Ohsawa-Takegoshi-Manivel theorem ([Dem01]):
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Theorem 2.4 (Ohsawa-Takegoshi-Manivel). — Let X ⊂ Cn be a bounded pseudoconvex open
set, and let Y ⊂ X be a complex submanifold of codimension r, defined by a section s of a hermitian
holomorphic bundle with bounded curvature tensor. We suppose that s is everywhere transverse to
the zero section, and that the inequality |s| 6 e−1 holds on X. Then there exists a constant C > 0
(only depending on E) such that: for all psh function ϕ on X, for all holomorphic function f on Y
such that

∫
Y
|f |2|Λr(ds)|−2e−2ϕdVY < +∞, there exists a holomorphic function F on X extending

f such that ∫

X

|F |2
|s|2 log2 |s|

e−2ϕdVX 6 C

∫

Y

|f |2
|Λr(ds)|2 e

−2ϕdVY .

So it seems very natural that choosing Ω to be a Poincaré volume form attached to H (this
means that if H is locally given by {h = 0}, then PoinH = 1

|h|2 log2 |h|
Leb) will be the right way to

define the analytic adjoint ideal. In this section, we are going to check if things happen as well as
predicted.

Let us now give more general and precise setting. We take a complex manifold X and a simple
normal crossing (SNC) divisor D =

∑
Di; in the following, we will identify the divisor with its

support. Then, for all x ∈ X , there exists a neighborhood Ux of x, an integer 0 6 p 6 n and
coordinates z1, . . . zn such that D ∩ Ux = {(z1, . . . , zn) ∈ Ux; z1 · · · zp = 0}. In these coordinates,
we have obviously:

Ux rD ≃ (∆∗)p ×∆n−p,

where ∆ is the open unit disk in C, and ∆∗ the punctured disk. If x /∈ D, then p = 0.

The fundamental object, which is a growth’s class of volume forms, is described in the following
definition:

Definition 2.5. — Let X be a complex manifold of dimension n, D =
∑
Di a simple normal

crossing divisor on X , and X0 = X r D. We say that a positive (1, 1)-form ωP on X0 is D-
Poincaré if for all sufficiently small open set U ⊂ X there exists some coordinates z1, . . . , zn,
U ∩D = {(z1, . . . , zn) ∈ U ; z1 · · · zp = 0}, and some positive constant C such that:

C−1ωP 6
i

2

(
p∑

i=1

dzi ∧ dz̄i
|zi|2 log2 |zi|

+

n∑

i=p+1

dzi ∧ dz̄i
)

6 CωP .

The associated volume form
ωn

P

n! , which we will denote by ΩP , is then said to be D-Poincaré. So
locally, we have up to equivalence:

ΩP =

p∏

i=1

1

|zi|2 log2 |zi|
Leb ,

and the density of ΩP is integrable with respect to the Lebesgue measure on R2n.

Remark 2.6. — According to the definition, it is clear that there is a unique D-Poincaré volume
form on X , up to equivalence.

Let us remark that for a sufficiently small coordinate chart U ⊂ X , if we set U0 = U∩X0, then the

manifold
Ä
U0, ωP = i

2

Ä∑p
i=1

dzi∧dz̄i
|zi|2 log2 |zi|

+
∑n

i=p+1 dzi ∧ dz̄i
ää

is Kähler and weakly pseudoconvex.
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Indeed, we may suppose U = D(0, 1), and then ϕ(z) = − log(1− |z|2)− log |z1|2 − · · · − log |zp|2 is
a smooth psh exhaustion function of U0.

Definition 2.7. — Let ϕ be a psh function on a complex manifold X , D an SNC divisor. We
define the ideal sheaf Adj0D(ϕ) to be made up of the germs f ∈ OX,x such that |f |2e−2ϕ is integrable
with respect to some (hence any) D-Poincaré volume form near x.

Remark 2.8. — We always have Adj0D(ϕ) ⊂ I (ϕ), and if x /∈ D, then Adj0D(ϕ)x = I (ϕ)x.

Unfortunately, our sheaf Adj0D(ϕ) fails to coincide in general with the algebraic adjoint, as the
following example shows:

Counterexample. — Let X = (C2, 0), a = m
6, H = {z1 = 0}, and f(z1, z2) = z31z

3
2. If ϕa =

3 log(|z1|2 + |z2|2) is a psh function attached to a, then we have:

f ∈ AdjH(ϕa)rAdj(a, H).

Indeed, we are in case (ii) of the next Proposition 2.9, with equality in the first large inequality.

Therefore, setting D = D(0, 1),
∫
D

|f |2e−2ϕ

|z1|2 log2 |z1|
dV < +∞ but for all ǫ > 0,

∫

D

|f |2
|z1|2 log2 |z1|

e−2(1+ǫ)ϕdV = +∞.

As the algebraic adjoint satisfies the openness property, f cannot belong to Adj(a, H).

Let us now give the following result that we used in our counterexample, and which gives a
precise description of the ”zero” adjoint ideal attached to some coordinates monomials:

Proposition 2.9. — Let ϕ = k
2 log(

∑n
i=1 |zi|2αi), with αi some positive real numbers, just as k,

and let H be the hyperplane {z1 = 0}. Then the stalk at 0 of Adj0H(ϕ) is a monomial ideal, generated
by the zβ satisfying one of the following conditions:

(i)
∑ βi+1

αi
> k + 1

α1

(ii)
∑ βi+1

αi
> k + 1

α1
and β1 > 0.

Proof. — The fact that the ideal is monomial can be easily deduced from the same reasoning as
the one made to show that multiplier ideals attached to toric psh functions are monomial.
We set N =

∑ βi+1
αi

.
As for the computation of the ideal, after a first polar, then toric change of variables, it boils down
to the convergence, for U ⊂ D(0, δ), δ < 1 (resp. V ) neighborhood of 0 in Cn (resp. Rn+) of the
integral:
∫

U

∏n
i=1 |zi|2βi

|z1|2 log2 |z1| (
∑n

i=1 |zi|2αi)
k
dVCn = C

∫

V

∏n
i=1 r

2βi+1
i

r21 log
2 r1

(∑n
i=1 r

2αi

i

)k dVRn

= C′

∫ δ

t=0

∫

u∈S
n−1
+

t2(N−k−1/α1)−1∏n
i=1 u

2(βi+1)/αi−1
i

u
2/α1

1 log2(tu1)
du dt

où Sn−1
+ = {(x1, . . . , xn) ∈ Rn+;x

2
1 + · · ·+ x2n = 1}.

To simplify the computations, we introduce the following notations: r = 2(N − k − 1/α1) − 1,
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λ1 = 2β1/α1 − 1, and for i > 2, λi = 2(βi + 1)/αi − 1. So we always have λ1 > −1, and for
i > 2, λi > −1. We now have to estimate the following integral:

I(r, λ) =

∫ δ

t=0

∫

u∈S
n−1
+

tr
∏n
i=1 u

λi

i

log2(tu1)
du dt

An obvious necessary condition of convergence is r > −1, which is equivalent to N > k + 1
α1

.

• Let us suppose that we have r > −1. Then the integral is bounded above by:

∫ δ

t=0

∫

u∈[0,1]n

tr
∏n
i=2 u

λi

i

u1 log
2(tu1)

du dt

and integrating with respect to u1, the last integral becomes:

∫ δ

t=0

∫

u∈[0,1]n−1

tr
∏n
i=2 u

λi

i

− log t
du dt < +∞

• We now suppose that r > −1 and λ1 > 0. Then the integral I(r, λ) is less than:

∫ δ

t=0

∫

u∈[0,1]n

∏n
i=1 u

λi

i

t log2(tu1)
du dt

which in turn equals to
∫

u∈[0,1]n

∏n
i=1 u

λi

i

− log(δu1)
du dt < +∞

• Reciprocally, let us assume that I(r, λ) is finite. Thus r > −1, and it remains to show that if
r = −1, then we necessarily have λ1 > −1. We use the following equality:

I(−1, λ) =

∫

u∈S
n−1
+

∏n
i=1 u

λi

i

− log(δu1)
du

Then, fixing ǫ =
√
3/2

√
n− 1, if u = (u1, . . . , un) ∈ Sn−1

+ satisfies u1 ∈ [0, ǫ] and u2, . . . , un−1 ∈
[ǫ/2, ǫ], then xn > 1/2. In fact, x2n > 1− (n− 1)ǫ2 = 1/4.
So we have the minoration:

I(−1, λ) >

∫ ǫ

u1=0

∫ ǫ

u2=ǫ/2

· · ·
∫ ǫ

un−1=ǫ/2

2−λn

∏n−1
i=1 u

λi

i

− log(δu1)
du1 · · · dun−1

> C

∫ δǫ

u1=0

uλ1
1

− log(u1)
du1

where C is a positive constant. But the right hand side is finite if and only if λ1 > −1, which
concludes the proof of the proposition.

The last counterexample shows us that we have to modify the definition of the analytic adjoint
ideal if we want it to extend the usual algebraic adjoint. The goal of the next section is thus to find
the correct way to define analytically the adjoint ideal, and to check if this new ideal fits into the
generalized adjunction exact sequence.
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2.2. Adjoint ideal attached to a plurisubharmonic function. — As we saw in the preceding
counterexample, our ”zero” adjoint ideal doesn’t satisfy the expected openness property even in the
algebraic case. So the idea is to regularize our ideal: more precisely we suggest the following
definition:

Definition 2.10. — With the preceding notations, and those from definition 2.7, we define the
analytic adjoint sheaf AdjD(ϕ) to be:

AdjD(ϕ) =
⋃

ǫ>0

Adj0D((1 + ǫ)ϕ).

In more analytic terms, we can rephrase the definition by saying that AdjD(ϕ) is made up of the
germs f ∈ OX,x such that for ǫ > 0 small enough, |f |2e−2(1+ǫ)ϕ is integrable with respect to any
D-Poincaré volume form near x.

A natural question to ask is whether the adjoint ideal is a coherent ideal sheaf. As we will see
in Corollary 2.19, if H is a hypersurface of X , then it is a consequence of the adjunction exact
sequence that the coherence of AdjH(ϕ) holds whenever eϕ is locally Hölder continuous. In the
general case, one could expect that the coherence should be obtained as the one of the multiplier
ideal sheaf, that is solving some well-chosen ∂̄-equation with L2 estimates. Unfortunately, a major
difficulty appears then, namely solving the ∂̄-equation for functions (and not (n, q)-forms) with
L2(ΩP ) estimates, which cannot be deduced from the usual case because of the negativity of the
Ricci curvature of the Poincaré metric ωP .

We are now going to show that the sheaf AdjD(ϕ) generalizes the usual adjoint ideal sheaf, in the
sense that AdjH(ϕ) coincides with the algebraic adjoint ideal whenever ϕ has analytic singularities,
and that it fits into the adjunction exact sequence.

Proposition 2.11. — Let D be an SNC divisor on a smooth complex manifold X, a an analytic
ideal sheaf on X not containing any of the ideals of the components of D, c > 0 a real number and
ϕc·a be a psh function attached to a

c. Then the following equality of sheaves holds:

AdjD(ϕc·a) = Adj(ac, D).

Proof. — We write

ϕ =
c

2
log(|f1|2 + · · ·+ |fN |2) +O(1)

in the neighborhood of the poles, for fi local generators of a, and we write D =
∑p

i=1Di.
There exists a modification µ : X ′ → X , with exceptional divisors E1, . . . , Em such that µ∗

a =
OX′(−F ) where F =

∑m
j=p+1 ajEj is such that F + µ∗D + KX′/X + Exc(µ) has simple normal

crossings, and satisfies for all j > p + 1, aj > 0 (for j ∈ {1, . . . , p}, we set aj = 0). Moreover, for
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i ∈ {1, . . . , p}, Ei denotes the strict transform of Di. To sum up, we use the following notations:

µ∗
a =

m∑

j=p+1

ajEj

µ∗Di = Ei +

m∑

j=p+1

bi,jEj

KX′ = µ∗KX +
m∑

j=1

cjEj

We choose x ∈ X , which will be 0 in our chart. To simplify the notations, we suppose that p is cho-
sen such that x ∈ D1∩· · ·∩Dp. We take the local generators x1, . . . , xp of OX(−D1), . . . ,OX(−Dp)
respectively. Similarly, zk will be a local generator of OX′(−Ek).
If f is a germ of holomorphic function near x, defined on a sufficiently small neighborhood U of 0,
we have to compute the following expression:

∫

U

|f |2e−2(1+ǫ)ϕ

∏p
k=1 |xk|2 log2 |xk|

dV =

∫

U ′=µ−1(U)

|f ◦ µ|2e−2(1+ǫ)ϕ◦µ

∏p
k=1 |xk ◦ µ|2 log2 |xk ◦ µ|

|Jµ|2 dV ′

Thanks to Parseval’s theorem, if a function f is such that the right hand side is finite, then all
monomials in the Taylor expansion of f satisfy the same property. So there is no loss of generality

in supposing that f ◦ µ =
∏
z
dj
j . Thus, up to a non-zero multiplicative constant, the right hand

side is (we may suppose that U ′ is contained in a polydisk D(0, R) with R < 1):

∫

U ′

∏m
k=1 |zk|2(ck+dk−(1+ǫ)cak)

∏p
k=1

[
|zk|2 log2(|zk|

∏
j>p |zj |bk,j )

]
·∏k>p |zk|2ek

dV ′

where we set, for k > p, ek =
∑p

i=1 bi,k. Setting then k ∈ {1, . . . , p}, ek = 1, the previous integral
can be written: ∫

U ′

∏m
k=1 |zk|2(ck+dk−ek−(1+ǫ)cak)

∏p
k=1 log

2(|zk|
∏m
j=1 |zj |bk,j )

dV ′

We set λk(ǫ) = 2(ck+dk− ek− (1+ ǫ)cak)+1 for all 1 6 k 6 m, and changing to polar coordinates
leads us to estimate the following integral, on V a neighborhood of 0 in Rm+ :

I(ǫ) =

∫

V

∏m
k=1 x

λk(ǫ)
k∏p

k=1 log
2(xk

∏
bk,j>0 xj)

dx1 . . . dxm

and V ⊂ B(0, r) for some r < 1. The question of the convergence is answered by the lemma 2.12
given at the end of the proof.

Furthermore, we already know that for k ∈ {1, . . . , p}, we have λk(ǫ) = 2(ck + dk − 1) + 1 =
2(ck + dk)− 1 > −1. About the condition concerning k > p, it is equivalent to:

ck + dk > ek + [(1 + ǫ)cak].

But for all real number x > 0, we have [(1 + ǫ)x] = [x] for ǫ > 0 small enough, and more precisely
for ǫ < ([x] + 1)/x− 1.
Putting all these results together, we have shown that f ∈ AdjD(ϕ) if and only if for all k, we have
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dk > −(ck − [cak] − ek). Now, let us remind that µ∗D − D′ =
∑
k>p ekEk, so that the previous

condition is equivalent to: f ∈ µ∗OX′(KX′/X − [c · F ]− µ∗D +D′), which shows the proposition.

Lemma 2.12. — The integral I(ǫ′) converges for all 0 < ǫ′ 6 ǫ if and only if for all k ∈ {1, . . . ,m},
we have λk(ǫ) > −1.

Proof. — The condition is obviously necessary by the usual criterion which determines the integra-
bility near 0 of xα logβ x .
Reciprocally, we suppose that for all k, we have λk(ǫ) > −1. Then, as for all k > p, we have ak > 0,
the following inequality holds for all 0 < ǫ′ < ǫ: λk(ǫ

′) > −1. To conclude, we are going to use the
identity

∫

]0,δ[2

xay−1

log2(xy)
dydx =

∫ δ

0

xa

− log(δx)
dx = −δ1−a

∫ δ2

0

xa

log x
dx

in the following computation:

I(ǫ′) =

∫

V

∏m
k=1 x

λk(ǫ
′)

k∏p
k=1 log

2(xk
∏
bk,j>0 xj)

dx1 . . . dxm

6

∫

V

∏p
k=1 x

−1
k

∏
k>p x

λk(ǫ
′)

k∏p
k=1 log

2(xk
∏
bk,j>0 xj)

dx1 . . . dxm

6 C

∫

V ′

∏
k>p x

λk(ǫ
′)

k

|∏p
k=1 log(

∏
bk,j>0 xj)|

dxp+1 . . . dxm

< +∞

where V ′ is a neighborhood of 0 in Rm−p
+ .

2.3. Adjoint ideal of a monomial ideal. — We would like to give a precise description of the
adjoint ideal attached to a monomial ideal, just as Howald’s theorem does for multiplier ideals.
Unfortunately, the statement corresponding to the adjoint ideal is a little more complicated.
So we work locally and we are given an ideal a = (zα1 , . . . , zαk) ⊂ C[z1, . . . , zn], together with the
hypersurface H ⊂ Cn defined by {z1 = 0}. We know that the Newton polyhedron P (a) attached
to a has exactly n (infinite) faces F1, . . . , Fn which are orthogonal to e1 = (1, 0, . . . , 0), . . . , en =
(0, . . . , 0, 1) respectively, and all other faces of P (a) are not included in any affine hyperplane
{xp = const}. We recall that the relative interior ri(Fp) of a face Fp is the interior of Fp as

embedded in some affine hyperplane {xp = const}. Finally, we define 1̃ := (0, 1, . . . , 1).
Now we can state the desired result:

Theorem 2.13. — Let a = (zα1 , . . . , zαk) ⊂ C[z1, . . . , zn] be a monomial ideal, H = {z1 = 0}
such that (z1) * a . Then, for every c > 0, Adj(ac, H) is a monomial ideal, and

zβ ∈ Adj(ac, H) ⇐⇒ β + 1̃ ∈ c · ˚̄
P (a) ∪ c · ri(F1).

Proof. — We are going to use the analytic definition of Adj(a, H) = AdjH(ϕ) where ϕ is attached
to the concave function g = c mini〈αi, · 〉. Then zβ ∈ AdjH(ϕ) if and only if there exists ǫ > 0 such
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that on a neighborhood U of 0 in Cn, the integral
∫

V

|z|2βe−2(1+ǫ)g(− log |z1|,...,− log |zn|)

|z1|2 log2 |z1|
dV

converges. But after performing the usual changes of variables, the convergence of this integral is
equivalent to the one of ∫

[1,+∞[n

e2((1+ǫ)g(t)−〈A,t〉)

t21
dt1 · · · dtn,

where A = β + 1̃. There is no loss of generality in replacing αi by c αi, so we shall suppose that
c = 1 in the following.

• First, we suppose that this integral converges for some ǫ > 0. This implies that for all η > 0,
the integral ∫

[1,+∞[n
e2((1+ǫ)g−〈A+(η,0,...,0),·〉)dt

converges, so that, thanks to Proposition 1.9, we have:

(1) ∀η > 0, A+ (η, 0, . . . , 0) ∈ (1 + ǫ)
˚̄

P (g)

We claim that (1) is equivalent to

(2) A ∈ ˚̄
P (a) ∪ ri(F1)

The implication (2) ⇒ (1) is clear because as (z1) * a, F1 ⊂ {x1 = 0} contains thus the infinite
face orthogonal to e1 attached to (1 + ǫ)P (a), so that (1) holds.
As for the other direction, we first show that if A belongs to some face F of P (a) which is not
one of the Fi’s (i > 1), then for all ǫ > 0, (1) fails to be true. Indeed, as each αi has non-
negative components, F is included in some affine hyperplane {x; 〈x,w〉 = α} where w 6= 0
has non-negative components, and α > 0 (because F is not one of the Fi’s). Thus we have

(1 + ǫ)
˚̄

P (a) ⊂ {x; 〈x,w〉 > (1 + ǫ)α〉}.
Therefore we should have for all η > 0: 〈A+ (η, 0, . . . , 0), w〉 > (1 + ǫ)α, or equivalently ηw1 > ǫα,
which is absurd because η can be arbitrarily small.
The case where A belongs to one of the faces F2, . . . , Fn is immediate, so we have proved that if
zβ ∈ AdjH(ϕ), then (2) holds.

• Conversely, if A ∈ ˚̄
P (a), then A ∈ (1+ǫ)

˚̄
P (a) for ǫ > 0 sufficiently small, so that e2[(1+ǫ)g−〈A,·〉]

is integrable. In the case where A ∈ ri(F1), then there exists some λ = (0, λ2, . . . , λn) ∈ R×(R∗
+)

n−1

and some barycentric coefficients ti such that A =
∑
tiαi + λ. As g 6

∑
tiαi, we have: (1 + ǫ)g −

〈A, · 〉 6 〈ǫA − λ, · 〉. As F1 ⊂ {z1 = 0}, the first component A1 of A is zero, so that if we choose

0 < ǫ < min{ λi

2Ai
; i > 2}, then

e(1+ǫ)g(t)−〈A,t〉
6 e−λ2t2/2 · · · e−λntn/2

and thus the integral ∫

[1,+∞[n

e2((1+ǫ)g(t)−〈A,t〉)

t21
dt1 · · · dtn

is convergent. Therefore zβ ∈ AdjH(ϕ), which concludes the proof of the theorem.
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Remark 2.14. — The polyhedral structure of P (a) is thus crucial to read the adjoint ideal of a
on its Newton polyhedron. Therefore, as the Newton convex body attached to a toric psh function
ϕ is in general not polyhedral (take g –the concave function attached to ϕ– to be any non affine
smooth concave function, and use the description of P (g) in terms of gradients given in Proposition
1.10), it seems hopeless to generalize Theorem 2.13 to the general toric psh case.

2.4. The adjunction exact sequence. — We turn now to the generalized adjunction exact
sequence. To prove the validity of the adjunction exact sequence in the analytic setting, we are
going to use in a essential manner the proof of the so-called inversion of adjunction, that we may
find in [DK01]. The main difficulty we will face is to show that the restriction map is well-defined.
As for seeing that this restriction induces a surjection, it will be a straightforward consequence of
the Ohsawa-Takegoshi-Manivel theorem.
Before going into the proof, we give an easy but useful result:

Lemma 2.15. — Let Ω ⊂ Cn an open set that is relatively compact in the unit polydisk, let ϕ a
psh function on Ω such that for all z ∈ Ω, ϕ(z) 6 −1, let f be an holomorphic function on Ω, and
α > 0 a real number.

If there exists ǫ > 0 such that
∫
Ω

|f |2e−2(1+ǫ)ϕ

(−ϕ)α dVΩ converges, then there exists ǫ′ > 0 such that the

integral
∫
Ω
|f |2e−2(1+ǫ′)ϕdVΩ converges.

In particular, if
∫
Ω

|f |2e−2(1+ǫ)ϕ

log2 |zn|
dVΩ converges, then

∫
Ω′

|f |2e−2(1+ǫ′)ϕdVΩ converges too, for some

ǫ′ > 0 and all Ω′ ⋐ Ω.

Proof. — We set C = inf{eǫx/xα;x > 1}, it is a positive number. Then the inequality
∫

Ω

|f |2e−2(1+ǫ)ϕ

(−ϕ)α dVΩ > C

∫

Ω

|f |2e−2(1+ǫ/2)ϕdVΩ

shows the first assertion.
As for the second, we define A = {z ∈ Ω;ϕ(z) 6 1

4 log |zn|} and B = {z ∈ Ω;ϕ(z) > 1
4 log |zn|}.

Then ∫

A

|f |2e−2(1+ǫ)ϕ

log2 |zn|
dVΩ >

∫

A

|f |2e−2(1+ǫ)ϕ

16ϕ2
dVΩ

and using the first part, this implies that
∫
A
|f |2e−2(1+ǫ′)ϕdVΩ is finite for some ǫ′ > 0.

Furthermore, setting δ = min(ǫ′, 1), the following inequality holds on B: −2(1 + δ)ϕ 6 −(1 +
δ)/2 log |zn|, thus:

∫

B∩Ω′

|f |2e−2(1+δ)ϕdVΩ 6 ||f ||L∞(Ω′)

∫

Ω

|zn|−
1+δ
2 dVΩ < +∞

which concludes the proof of the lemma.

Now we can prove the main result of this section:

Theorem 2.16. — Let X be a complex manifold, H ⊂ X a smooth hypersurface, and ϕ a psh
function on X, ϕ|H 6= −∞, such that eϕ is locally Hölder continuous, and let i : H →֒ X be the
inclusion. The the natural restriction map induces the following exact sequence:

0 −→ I+(ϕ)⊗OX(−H) −→ AdjH(ϕ) −→ i∗I+(ϕ|H) −→ 0
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Proof. — What we have to check is that the restriction map is well-defined, that it is surjective,
and that this sequence is exact. We proceed in the order we just described. As everything is purely
local, we may assume that H is the hyperplane zn = 0 in the polydisk U = D(0, r), r < 1 in Cn.
Moreover, since changing ϕ into ϕ − C does not affect the questions of integrability, and since ϕ
is locally upper bounded, we may assume that ϕ 6 −1 on U , so that we can apply the preceding
lemma 2.15.
So, we choose a holomorphic non-zero function F , defined on a neighborhood U of 0, and satisfying
F ∈ AdjH(ϕ)(U). We write then F (z) = F (z′, zn) = (F (z′, zn) − F (z′, 0)) + F (z′, 0), and as F is
holomorphic, there exists a constant C1 > 0 such that |F (z′, 0)|2 6 C1|zn|2 + |F (z)|2 and therefore
|F (z)|2 > |F (z′, 0)|2 − C1|zn|2.
Furthermore, as eϕ is Hölder, there exists α ∈]0, 1] and C2 > 0 such that

e2ϕ(z) 6
Ä
eϕ(z

′,0) + C2|zn|α
ä2

6 C3(e
2ϕ(z′,0) + |zn|2α)

with C3 = 4max(1, C2). Setting f(z
′) = F (z′, 0), we obtain the following inequalities:

|F (z)|2e−2(1+ǫ)ϕ(z)

|zn|2 log2 |zn|
> C−1

3

|F (z)|2
log2 |zn|

· 1

|zn|2(e2ϕ(z′,0) + |zn|2α)1+ǫ

>
C−1

3 |f(z′)|2
|zn|2 log2 |zn|(e2ϕ(z′,0) + |zn|2α)1+ǫ

− C−1
3 C1

log2 |zn|(e2ϕ(z′,0) + |zn|2α)1+ǫ

Now we suppose that U = U ′ × D(0, rn) (if it’s not the case, we just have to restrict U a bit),
and we partially integrate with respect to the last variable, in the family of disks |zn| < ρ(z′) with

ρ(z′) = δe(1+ǫ)α
−1ϕ(z′,0) where δ > 0 is small enough so that ρ(z′) < rn for all z′ ∈ U ′.

The right term in the right hand side is easily estimated when integrated, because log2 |zn| >

log2 r > 0, zn being of module 6 r < 1, we have:
∫

|zn|<ρ(z′)

C1

log2 |zn|(e2ϕ(z′,0) + |zn|2α)1+ǫ
dV (zn) 6 C4δ

2e(
2
α
−2)(1+ǫ)ϕ(z′,0)

which is bounded because α 6 1.
As for the remaining term, we write:

∫

|zn|<ρ(z′)

dV (zn)

|zn|2 log2 |zn|(e2ϕ(z′,0) + |zn|2α)1+ǫ
> C5

∫

|zn|<ρ(z′)

e−2(1+ǫ)ϕ(z′,0)dV (zn)

|zn|2 log2 |zn|

> C6e
−2(1+ǫ)ϕ(z′,0)

∫ ρ(z′)

0

dt

t log2 t

= −C6
e−2(1+ǫ)ϕ(z′,0)

log ρ(z′)

Then, as log ρ(z′) = log δ+ (1+ ǫ)α−1ϕ(z′, 0), the lemma 2.15 gives the expected result (instead of

integrating, we could have written directly (|zn|2 log2 |zn|)−1 > (ρ(z′)2 log2 ρ(z′))−1).
To show the surjectivity of the last map, we use the local version of Ohsawa-Takegoshi-Manivel,
with the weight (1 + ǫ)ϕ.
Finally, to show that the sequence is exact, if f ∈ AdjH(ϕ) vanishes on H ∩U , then we write locally
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f = g · zn where g is holomorphic, and satisfies on an open set W ⊂ U :
∫

W

|g|2e−2(1+ǫ)ϕ

log2 |zn|
dV < +∞

and using again lemma 2.15, we can conclude that g ∈ I+(ϕ)(W ), which had to be proved.

Remark 2.17. — In the case where eϕ is not Hölder continuous, the restriction map may not be
well-defined anymore: on the polydisk of radius 1

2 in C2, we choose f = 1 and

ϕ(z1, z2) = max(−λ log(− log |z1|), log |z2|)

with 0 < λ < 1
2 . We then have ϕ(z) > −λ log(− log |z1|) thus e−2ϕ(z)

|z1|2 log2 |z1|
6 1

|z1|2|log |z1||
2(1−λ)

which is integrable on the polydisk, and it is then easy to see that any constant function belongs
to AdjH(ϕ). However on the hyperplane {z1 = 0}, e−2ϕ(z) = |z2|−2 is not integrable, so that any
non-zero constant function does not belong to I+(ϕ|H), or even to I (ϕ|H).

Remark 2.18. — If ϕ has analytic singularities in the sense that near the poles, ϕ = log(|f1| +
· · ·+ |fr|) + v where the fi’s are holomorphic and v is smooth, we know that I+(ϕ) = I(ϕ), and
we have proved previously that AdjH(ϕ) coincide with the algebraic ideal. Moreover, eϕ is clearly
Hölder continuous near the poles, so Theorem 2.16 is a generalization of the algebraic adjunction
exact sequence given in [Laz04].

Corollary 2.19. — Let X be a complex manifold, H ⊂ X a smooth hypersurface, and ϕ a psh
function on X, ϕ|H 6= −∞, such that eϕ is locally Hölder continuous. Then AdjH(ϕ) is a coherent
ideal sheaf on X.

We now turn to get a global extension theorem for holomorphic forms on a hypersurface with
coefficients in some multiplier ideal. For this, we only need some vanishing result for cohomology
groups, and therefore it is practical to introduce some notations for the global (compact) setting.

Definition 2.20. — Let X be a complex manifold, and H a hypersurface of X . We pick an
almost-psh function ϕ (ie it is locally the sum of a psh function and of a smooth function) non
identically equal to −∞ on H , T a positive closed current of bidegree (1, 1) on X well-defined on
H , and h a singular hermitian metric of some holomorphic line bundle, satisfying h|H 6≡ +∞. The
we define:

• If locally, ϕ = ψ + f with ψ psh and f smooth, then we set AdjH(ϕ) := AdjH(ψ), which
makes sense globally;

• If locally T = S + ddcϕ where S is smooth, and thus ϕ is almost-psh, we set AdjH(T ) :=
AdjH(ϕ), which makes sense globally;

• If the metric h has an almost positive curvature current Θh, we set AdjH(h) := AdjH(Θh).

Of course, we can make the same definition with the multiplier ideals instead of the adjoint ideals.

Combining the adjunction exact sequence and a variant of Nadel vanishing theorem, we can give a
global result for extending holomorphic functions with some finite L2 norms. So we have to prove
the following result:
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Proposition 2.21. — Let (X,ω) be a compact Kähler manifold, and let (E, h) be a line bundle
on X, where h is a singular hermitian metric, whose curvature tensor T satisfies T > η ω for some
η > 0. Then

∀q > 0, Hq(X,OX(KX + E)⊗ I+(h)) = 0.

Proof. — We know that there exists ǫ0 > 0 such that I+(T ) = I ((1 + ǫ0)T ). If h0 is any
smooth metric on E, of curvature current T0, we can choose ǫ0 > ǫ > 0 sufficiently small such that
(1 + ǫ)T − ǫT0 > η/2. Then we just have to apply Nadel’s vanishing to the hermitian line bundle
(E, h1+ǫ ⊗ h−ǫ0 ) whose multiplier ideal is precisely I+(h).

Remark 2.22. — In view of the openness conjecture, it seems very natural that this result should
hold in the general weakly pseudoconvex (Kähler) case, though we were not able to prove it.

Corollary 2.23. — Let (X,ω) be a compact Kähler manifold, H ⊂ X a smooth hypersurface,
(E, h) a holomorphic line bundle equipped with a singular hermitian metric h, h|H 6≡ +∞, whose
curvature current has local potentials ϕ such that eϕ is Hölder continuous, and such that there exists
some η > 0 satisfying i∂∂̄ϕ > η ω.
Then every holomorphic section s ∈ H0(H,OH(KH + EH) ⊗ I+(h|H)) extends to a section s̃ ∈
H0(X,OX(KX +H + E)⊗AdjH(h)).

Remark 2.24. — It is well-known that if a compact Kähler manifold carries a integral Kähler
current, then it is Moishezon and therefore automatically projective.

Proof. — Tensorizing the adjunction exact sequence by KX + E +H , we obtain :

0 −→I+(h)⊗OX(KX+E) −→ AdjH(h)⊗OX(KX+E+H) −→ i∗I+(h|H)⊗OH(KH+EH) −→ 0

If T is the Chern curvature of (E, h), then the last proposition show that:

H1(X,OX(KX + E)⊗I+(h)) = H1(X,OX(KX + E)⊗I+(T )) = 0

Therefore the restriction maps induces a surjection

H0(X,OX(KX + E +H)⊗AdjH(h)) −։ H0(H,OH(KH + EH)⊗ I+(h|H))

which had to be proved.

The approach we used to show this result, which relies in an essential manner on the local version
of Manivel’s theorem, is a natural way to obtain the global version of Manivel’s theorem [Dem01].
Nevertheless, the result we obtain is a quite weaker version of the original Manivel’s theorem, in
the sense that it is qualitative (we don’t have any control on the L2 norm anymore), and is only
given for ”regular” currents (more precisely with Hölder psh local potentials).

2.5. Back to the sheaf Adj0H(ϕ). — Finally, we would like to give one positive result concerning
the ideal Adj0H(ϕ). For this, the crucial fact is given in the following lemma, which assumptions
are unfortunately really restrictive:

Lemma 2.25. — Let ϕ be a psh function which has only analytic or toric singularities on a
bounded open set B ⊂ Cn, satisfying ϕ < C < 0 on B, and let f be an holomorphic function
on B. If the integral ∫

B

|f |2 e
−2ϕ

ϕ
dV
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converges, then so does the integral ∫

B

|f |2e−2ϕdV.

Proof. — We start with the case where ϕ has analytic singularities. As B is bounded, the question
is actually local, and using a log resolution, and using the notations of section 2.2, the integrability
assumption becomes:

∫

U ′

∏ |zj |2(cj+dj−aj)
| log(∏ |zj |aj )|

dV ′ < +∞,

and performing a toric change of variable, the Bertrand criterion shows that
∫

U ′

∏
|zj |2(cj+dj−aj)dV ′ < +∞,

which we had to show.

Let us now get to the toric case. Again, the question is local, so we borrow the techniques of the
first part. The calculus appearing in the proof of Theorem 1.13 shows that we are boiled down to
show the integrability of eh for some h concave (more precisely, f can be chosen to be a monomial
zα, and h = g − 〈α, · 〉 for g the concave function attached to ϕ). As for non-zero concave function
h of 1-variable (say on R+) the integrability of eh/g for g a non-zero concave function implies the
one of eh (indeed, h(x) = Ox→+∞(x) or more precisely, either h(x) tends to 0 when x goes to +∞,

or it is equivalent to ℓx where ℓ = lim d+

dx h(x, ·) is non-zero; idem for g), we can follow the proof of
Proposition 1.9 to show that this extends to all dimensions.

Denoting flI (ϕ) the analogue of the multiplier ideal sheaf where we replace the integrability

condition by the local integrability of |f |2e−2ϕ

log2 |s|
, where s is a (local) section defining H , with ds|H

never zero. Then we have the following result:

Theorem 2.26. — Let ϕ be a Hölder psh function whose singularities are only analytic or toric,
and let i : H →֒ X the inclusion. The the natural restriction map induces the following exact
sequence:

0 −→ flI (ϕ)⊗OX(−H) −→ Adj0H(ϕ) −→ i∗I (ϕ|H) −→ 0

Proof. — The proof is very similar to the one of the adjunction exact sequence. The only difference
appearing here concerns the restriction map, which has a priori no reason to be well-defined.
So we take F ∈ Adj0H(ϕ), and as previously, we have:

|F (z)|2e−2ϕ(z)

|zn|2 log2 |zn|
> C−1

3

|F (z)|2
log2 |zn|

· 1

|zn|2(e2ϕ(z′,0) + |zn|2α)

>
C−1

3 |f(z′)|2
|zn|2 log2 |zn|(e2ϕ(z′,0) + |zn|2α)

− C−1
3 C1

log2 |zn|(e2ϕ(z′,0) + |zn|2α)
We also suppose that U = U ′×D(0, rn), and we partially integrate with respect to the last variable,

in the family of disks |zn| < ρ(z′) with ρ(z′) = ǫeα
−1ϕ(z′,0) with ǫ > 0 small enough so that ρ(z′) < rn

for all z′ ∈ U ′.
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The right term in the right hand side is easily estimated when integrated, because log2 |zn| >

log2 r > 0, zn being of module 6 r < 1, we have:∫

|zn|<ρ(z′)

C1

log2 |zn|(e2ϕ(z′,0) + |zn|2α)
dV (zn) 6 C4ǫ

2e(
2
α
−2)ϕ(z′,0)

which is bounded because α 6 1 and ϕ is upper bounded. For the remaining term:
∫

|zn|<ρ(z′)

dV (zn)

|zn|2 log2 |zn|(e2ϕ(z′,0) + |zn|2α)
> C5

∫

|zn|<ρ(z′)

e−2ϕ(z′,0)dV (zn)

|zn|2 log2 |zn|

> C6e
−2ϕ(z′,0)

∫ ρ(z′)

0

dt

t log2 t

= −C6
e−2ϕ(z′,0)

log ρ(z′)

Then we write log ρ(z′) = log ǫ+ α−1ϕ(z′, 0), and using the lemma 2.25, the proof is finished.

Remark 2.27. — So if we knew that the lemma 2.25 still holds under the general assumption that
eϕ is Hölder continuous, we would have a general twisted adjunction exact sequence for Adj0H(ϕ).
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