
HAL Id: hal-01878765
https://hal.science/hal-01878765v1

Submitted on 21 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fractional decomposition of matrices and parallel
computing

Frédéric Hecht, Sidi-Mahmoud Kaber

To cite this version:
Frédéric Hecht, Sidi-Mahmoud Kaber. Fractional decomposition of matrices and parallel computing.
Journal of Mathematical Study, 2019, 52 (3), pp.244-257. �hal-01878765�

https://hal.science/hal-01878765v1
https://hal.archives-ouvertes.fr

Fractional decomposition of matrices
and parallel computing

Frédéric Hecht, Sidi-Mahmoud Kaber
Sorbonne Université,

Université Paris-Diderot, CNRS,
Laboratoire Jacques-Louis Lions,

LJLL, F-75005 Paris, France

September 21, 2018

Abstract

We are interested in the design of parallel numerical schemes for linear systems. We give an effec-
tive solution to this problem in the following case: the matrix A of the linear system is the product of p
nonsingular matrices Am

i with specific shape: Ai = I−hiX for a fixed matrix X and real numbers hi.
Although having the special form, these matrices Ai arise frequently in the discretization of evolution-
ary Partial Differential Equations. The idea is to express A−1 as a linear combination of elementary
matrices A−k

i . Hence the solution of the linear system with matrix A is a linear combination of the
solutions of linear systems with matrices Ak

i . These systems are solved simultaneously on different
processors.

1 Introduction
Let X be a real n × n square real (or complex) matrix and (hi)

p
i=1 a collection of pairwise distinct real

numbers. Matrices of the shape
Ai = I − hiX (1)

with I the n× n identity matrix, appear in many numerical schemes for differential equations. For small
hi (discretization parameters), such matrices are nonsingular. So is matrix

A =

p∏
i=1

Am
i (2)

for any m ∈ N. Note that matrices Ai commute and A is a polynomial of the single variable X . The
problem of interest here is the following: given y ∈ Rn, compute the unique solution x ∈ Rn of the
linear system

Ax = b (3)

using several processors at our disposal. The aim is to use parallel computing to save computational time.
The key idea consists in expressing matrix A−1 as a linear combination of matrices ((A−ki)pi=1)mk=1.
Since matrices Ai we consider come from the discretization of differential equations by time implicit
scheme, our method falls into the family of “parallelization in time” algorithms. We refrer to [3] for a
comprehensive overview of parallel time integration methods.
The paper is organised as follows.

1

• In section 2, we present the algebraic problem to be solved.

• In section 3, we explain how the method can be used to solve homgeneous evolution equations
ut = Lu.

• In section 4, we consider nonhomgeneous evolution equations ut = Lu + f and derive a new
parallel algorithm to solve such problems.

• The last section contains remarks on the reliability of the method and its limitations.

All computations have been done using FreeFem++, a Finite Elements software for the discretization of
Partial Differential Equations [1].

2 The algebraic problem
We consider in this section the homogeneous linear time-evolution problem

ut = Lu. (4)

Section 4 is devoted the nonhomogenoeus case which requiers a different numerical treatment. Starting
from an initial data u0, the time discretization of this equation by implicit Euler scheme with time step
h1 reads

u1 − u0

h1
= Lu1. (5)

Solving (5) with a Finite Difference scheme gives

(I − h1X)u1 = u0. (6)

with X a Finite Difference approximation of the spatial operator L. Iterating p steps of the implicit
scheme, we obtain an equation for up

(I − hpX) · · · (I − h2X)(I − h1X)up = u0.

We will always assume the time steps hi small enough insuring that all matrices Ai and A

A =

p∏
i=1

Ai (7)

are nonsingular. Hence up is given by
up = A−1u0.

Here comes into play the fractional decompositions of matrices. Indeed, if the hi are piecwise distinct,
there exist p real numbers (αi)

p
i=1 such that

A−1 =

p∑
k=1

αiA
−1
i . (8)

Consequently, the vector up could be split into

up =

p∑
i=1

αixi,

2

each xi being the unique solution of the system

Aixi = u0. (9)

These p linear systems are independent each other allowing the computation of up by using p proces-
sors to compute simultaneously the xi. This idea has been applied in [2] to solve the two-dimensional
heat equation discretized by a Finite Difference scheme. Note that the αi involved in (8) have a simple
expression

αi =
∏
k 6=i

(1− hk/hi)−1 . (10)

We introduce now the general case where the matrixA to be inverted is definied by (2) withAi defined
again as in (1). We will always assume that the hi are piecewise distinct.

Proposition 1 There exist mp real numbers αi,k such that the inverse of A defined in (2) is

A−1 =

p∑
i=1

m∑
k=1

αi,kA
−k
i . (11)

This is just the partial fraction decomposition of rational functions written for polynomials of matrices.
According to (11), the unique solution x of the linear system (3), with A defined in (2), is decomposed as

x =

p∑
i=1

xi. (12)

with

xi =

m∑
k=1

αi,kxi,k. (13)

and xi,k being the unique solution of the linear system

Ak
i xi,k = b.

The computation of each xi is done on one processor allowing the parallelization of the algorithm. Here
is an efficient way to do so: On processor number i,

? compute xi,1 solution of Aixi,1 = b,
? compute xi,2 solution of Aixi,2 = xi,1,

...
? compute xi,m solution of Aixi,m = xi,m−1,
? lastly, compute xi by (13).

(14)

Computation of the solution x by (12) requiers communications between processors. This step maybe
very time consuming, especially if the amount of data to transfer is large.

We end this section with numerical issues. The coefficients αi,k in (11) are given by

αi,j =
1

(m− j)!
lim

t→1/hi

[
(t− hit)m

ϕ(t)
](m−j). (15)

with

ϕ(t) =

p∏
i=1

(1− hit)m.

3

For m = 1, formulas (15) reduces to (10). For m = 2, there exist also simple explicit formulas :

A−1 =

p∑
i=1

αi,1A
−1
i + αi,2A

−2
i (16)

with
αi,2 =

∏
j 6=i

1

(1− hj

hi
)2
, αi,1 = −2αi,2

∑
j 6=i

hj
hi − hj

. (17)

For m > 2 there is an alternate method to the computation of the mp coefficents αi,k by (15): solve the
following linear system for well choosen mp real numbers t`

p∑
i=1

m∑
k=1

1

(1− hit`)k
αi,k =

1

ϕ(t`)
, 1 ≤ ` ≤ mp. (18)

In other words, compute the coefficients αi,k by interpolation of the function 1/ϕ at the distincts nodes
t` (to be well choosen). With αi ∈ Rm and α ∈ Rmp defined by

αi =

αi,1

...
αi,m

 , α =

α1

...
αp

 ,

the linear system to solve is ψ1(t1) · · · ψp(t1)
...

...
ψ1(tmp) · · · ψp(tmp)

α =

 1/ϕ(t1)
...

1/ϕ(tmp)

 (19)

with
ψi(t`) = (

1

1− hit`
, · · · , 1

(1− hit`)m
)

This system, a Vandermonde-like one, is ill-conditionned. Since only the case m = 1 was used in our
numerical tests, we do not discus further the linear system (19). Of course, preconditionning of the system
is necessary for larger values of m.

The main drawback of the method is that the coefficients do not have a constant sign and, in addition,
may be very large, consult [2]. This affects the accuracy. Typically, only an approximation x̃i of xi is
available: ‖x̃i − xi‖ ≤ ε, from which we deduce the following estimate of the error on the solution x:

‖x̃− x‖ ≤

[
p∑

i=1

|αi|

]
ε. (20)

Since the first term, that amplifies the error, may highly increases with the parameter p, it is crucial to
limit our investigation for small values of this parameter, see [2]. As an illustration, Table 1 displays the
evolution of the amplification term as a function of p.

3 The homogeneous case
As was stated earlier, Proposition 1 was used in [2] (in the case m = 1) to solve homogeneous linear
time-evolution equation (4) discretized by a Finite Difference method. In this section, we reproduce the

4

p = 2 p = 3 p = 4 p = 5 p = 6
p∑

i=1

|αi| 10.00 201.00 530.00 7068.33 10895.83

Table 1: Evolution of the amplification term in (20) as a function of the number of processors p. The
hi are choosen symmetrically : c = 1/10 and in the case p = 2, hi = (1 ± c)h, in the case p = 3,
hi ∈ {h, (1± c)h}, in the case p = 4, hi ∈ {(1± c)h, (1± 2c)h}, . . .

tests in [2] using a Finite Element scheme. One iteration of a Finite Elelement Method to solve the same
problem reads

M
u1 − u0

h1
= Bu1

with M the mass matrix and B the stiffness one. We obtain the same discrete evolution equation as in the
Finite Difference case (6) with

X = M−1B.

As we will see in next section this is not the always the case for nonhomogeneous equations. Consider
firstly the case m = 1 that will be mostly used in practice (i.e. A is defined by (7). Let T0, Tf be the
initial and final times. We define p time steps h1, h1, · · · , hp et intermediate times tn = T0 + n× (time
steps) used in a cyclical order: firstly h1, then h2, · · · , hp, · · ·

tn = T0 + h1 + h2 + · · ·+ hp + h1 + h2 + · · ·︸ ︷︷ ︸
n terms

It is important to precise that our algorithm computes the solution only at times tkp, k = 1, · · · ,K by
going directly from approximation at time tkp to approximation at time t(k+1)p. Indeed, suppose ukp
known. Instead of computing sequentially

? ukp+1 solution of A1ukp+1 = ukp,
? ukp+2 solution of A2ukp+2 = ukp+1,

...
? ukp+p solution of Apukp+p = ukp+p−1,

(21)

we write u(k+1)p as the solution of the linear system

Au(k+1)p = ukp (22)

with A =
∏p

i=1Ai and solve this system using the decomposition (8)-(10).
Let us compare sequential versus parallel computations.

1. Sequential solution. The cost of the sequential solution obtained by procedure (21) is the cost of
solving p linear sytems

2. Parallel solution. The cost of the parallel procedure (8)-(10) is that of one linear system sinch each
xi is computed in full parallel. However, we have to take into account the cost of summing up the
xi to get the solution by (12). This imposes a global communication requirement between all of
the processors in order to compute and share the updated solutions. This harms the efficiency of
the method.

In the general case m ≥ 2, the comparison is also favourable for the parallel algorithm.

5

1. Sequential solution. Solve mp linear sytems to compute x the solution of (21) with Ai replaced by
Am

i . The cost is that of solving mp linear sytems.

2. Parallel solution. On each of the p processors, compute in full parallel one xi this way:

(a) compute the xi,k iteratively:

Aixi,1 = b, Aixi,2 = xi,1, . . . Aixi,m = xi,m−1

by solving m linear systems,

(b) add the xi,k up to get xi using (13).

The cost is that of solving m linear sytems. Of course, there is an additional cost to take into
account: the summing up the xi to get x by (12).

We use a P1-Finite Element method for discretization in space and implicit Euler scheme for time
discretization to solve the 2D homogeneous heat equation on a domain Ω ⊂ R2 with homogeneous
Neumann boundary conditions. The domain Ω is the unit square, the initial condition is is u0(x, y) =
cos(nπx) cos(mπy) so that the exact solution is known. The final time of all numerical experiments
presented is T = 1. The computations were done on supercomputer SGI-UV2000 with 32 CPUs (Intel
Xeon 64 bits EvyBridge E4650 with 10 core) using MPI parallel implementation in Freefem.

There are p processors at our disposal and we use each of them to advance in time (only once) with a
time-step hi (1 ≤ i ≤ p). The linear system to solve is (2) with m = 1.

Figure 1 represents the error. The error increases with p the number of processors. Up to 7 processors,
the error is constant, almost equal the error made by using one processor. Starting from p = 8, the error
increases. The growth of the error is due to bad behaviour of the coefficents αi, see Table 1. As already
mentioned, we limit the use of the methos to moderate values of p. The method is therefore far from
massively parallel computing!

Figure 2 represents the computational time as a function of p. We observe a decreasing of computa-
tional time as the number of processors increases. For example, using 6 processors instead of one, divide
the computational time by a factor 5.8.

Two quantities are important in parallel computing: the Speedup defined as the ratio of sequential
time over parallel time and the parallel Efficiency defined as 1

p×Speedup.
Both are displayed on figure 3. Ideally, the speedup should be equal to p if the communications

between processors have no cost. But this is, of course, never the case. We obtain the following speedups:
with 2 processors, we have a speedup of 1.95, a speedup of 3.8 using 4 processors, and a speedup of 8.2
with 9 processors. Idealy, the parallel efficiency should be equal to 1. We obtain the following results:
with 2 processors, we have an efficiency of 0.98, an efficiency of 0.96 using 4 processors, and an efficiency
of 0.9 with 9 processors.

The algorithm gives good results for the values of p we tested. We emphasize again that we do not
plan to use our method for large values of p since the amplification term in (20) growth rapidly with p as
shown in Table 1. We return to this issue in the next section.

6

Figure 1: The 2D homogeneous heat equation. L2 error (numerical solution versus exact solution).
Numerical parallel solution as a function of p that is also the number of processors. Solid line represents
the error of the sequential solution.

Figure 2: The 2D homogeneous heat equation. CPU time (log scale) as a function of the number of
processors.

7

Figure 3: The 2D homogeneous heat equation. Speedup (left) and Efficiency (right) as a function of the
number of processors.

8

4 The nonhomogeneous case
Consider the nonhomogeneous Differential Equation

ut = Lu + f . (23)

One step in the Finite Element Method to solve (23) reads

M
un+1 − un

hi
= Bun+1 + fn+1

with M the mass matrix, B the stiffness one, and

fn+1 = (〈f(. , tn+1), ϕi〉)i,

with (ϕi)i the Finite Element Basis. If f belongs to V , the Finite Element space, we have

fn+1 = MFn+1, Fn+1 = (f(Si, tn+1))i,

with Si the nodes of the Finite Element triangulation. In that case, we obtain the same expression as in
the Finite Difference setting with

Ai = I − hiX, X = M−1B.

We introduce now some notations to simplify the presentation:

? ∆T = m
∑p

k=1 hk,

? Tn = T0 + n∆T and un the approximation of u(Tn),

? Tn,j = Tn +m
∑j

k=1 hk and un,j the approximation of u(Tn,j).
Note that Tn,0 = Tn and Tn,p = Tn+1.

Suppose un known, using m times the time-step h1, we get un,1 solution of

Am
1 un,1 = un + h1

m∑
j=1

Aj−1
1 f(Tn + jh1).

Using then m times the time-step h2, we get un,2 solution of

Am
2 un,2 = un,1 + h2

m∑
j=1

Aj−1
2 f(Tn,1 + jh2).

Finally

Am
p un,p = un,p−1 + hp

m∑
j=1

Aj−1
p f(Tn,p−1 + jhp).

So that, un+1 = un,p−1 is the solution of the linear system

Aun+1 = un + gn, (24)

with

gn =

p∑
k=1

hkBk

m∑
j=1

Aj−1
k f(Tn,k−1 + jhk) (25)

and

Bk =

k−1∏
`=1

Am
` .

The idea is to compute un+1 using Proposition 1 to solve (24).

9

4.1 The algorithm
First version

1. For k = 0, · · · ,K1 − 1 (K1∆T = Tfinal)

(a) uk is known (it is an approximation of u at time Tk)

(b) Compute gk defined in (25)

(c) Compute uk+1 solution of (24) To do so

i. compute in parallel xi by (13) and (14) with b = uk + gk,
ii. make a “reduce” step to compute uk+1 by (12):

uk+1 =

p∑
i=1

xi.

(d) uk+1 is computed (it is an approximation of u at time Tk+1 = Tn + ∆T)

It is important to point out that the algorithm computes the solution only at times Tk, k = 1, · · · ,K1

by going directly from approximation at time Tk to approximation at time Tk+1. In one step, the advance
in time is equal to ∆T . Communications between the processors is doneK1 times (during the sommation
process).

Remarque 1 Step 1b of the algorithm may be improved. Instead of computing gk by one processor while
the others sleep, we use all processors to compute in parallel the p next right-hand sides gk′ .

This leads to the following algorithm that we used in the computations. Note that, now, the outer loop is
performed K2 = K1/p times.

Second version

1. For k = 0, · · · ,K2 − 1 (K2p∆T = Tfinal)

(a) ukp is known (it is an approximation of u at time Tkp)

(b) Compute in parallel the p right-hand sides gkp+(i−1)pm for i = 1, · · · , p.

(c) Compute sequentially ukp+ipm for i = 1, · · · , p solution of

Aukp+ipm = ukp+(i−1)pm + gkp+(i−1)pm

To do so

i. compute in parallel xi by (13) and (14) with b = ukp+(i−1)pm + gkp+(i−1)pm,
ii. make a “reduce” step to compute ukp+ipm by (12):

ukp+ipm =

p∑
i=1

xi.

(d) u(k+1)p is computed (it is an approximation of u at time T(k+1)p = Tkp + p∆T)

The algorithm computes the solution only at times Tkp, by going directly from approximation at time Tkp
to approximation at time T(k+1)p. In one step, the advance in time is equal to p∆T . Communications
between all of the processors is done K2 times. Thus, we have p times less parallel overhead. That is
very valuable as we will see in the next section.

10

4.2 Numerical experiments
We use a P1-Finite Element method for discretization in space and implicit Euler scheme for time dis-
cretization to solve the the 2D nonhomogeneous heat equation

∂tu−∆u = f

on a domain Ω ⊂ R2 with Dirichlet boundary conditions. The domain Ω is the unit square. The source
term f is choosen so that the exact solution is u(x, y, t) = sin(nπx) sin(mπy) cos(mt). The final time
of all numerical experiments presented is T = 1.

We fix m = 1 and vary p, the number of processors. Figure 4 represents the error. As already men-
tioned, the error increases with p the number of processors. For p = 8 the error becomes unacceptable.
Afterward, we will consider at most p = 7 processors.

Figure 5 represents the computational time as a function. We observe a decreasing of computational
time as the number of processors increases. For example, using 6 processors instead of one, divide the
computational time a factor 4.9.

Speedup and parallel Efficiency are displayed on figure 6. We obtain the following speedups: with 2
processors, we have a speedup of nearly 1.9, a speedup of 3.14 using 4 processors and a speedup of 4.89
with 6 processors. We obtain the following results for efficiency: with 2 processors, we have an efficiency
of 0.96, an efficiency of 0.79 using 4 processors and an efficiency of 0.816 with 6 processors.

Although they are less impressive than in thehomogeneous case, both Speedup and Parallel are very
good. We mention again that we plan to use our method only for moderate values of p.

Figure 4: The 2D nonhomogeneous heat equation. L2 error (numerical solution versus exact solution).
Numerical parallel solution as a function of p that is also the number of processors. Solid line represents
the error of the sequential solution.

5 Conclusion
We have extended the work initiated in [2] on the fractional decomposition of the inverse of some specific
matrices resulting from the discretization of evolutionary differential equations. We apply this decompo-
sition to solve nonhomgeneous Partial Differential Equations using parallel computing. Although, both
speedup and parallel efficiency are good, the method is effective, for accuracy purposes, only for use
on a moderate number of processors. Several developments of the method are currently investigated:
analyse of the case m ≥ 2 (see discussion in Section 2), combine first order methods computed in par-
allel to get a high order method, and eventually combine the method with space-parallelization (domain
decomposition methods).

11

Figure 5: The 2D nonhomogeneous heat equation. CPU time (log scale) as a function of the number of
processors.

Figure 6: The 2D nonhomogeneous heat equation. Speedup (left) and Efficiency (right) as a function of
the number of processors.

References
[1] F. Hecht, New development in FreeFem++. J. Numer. Math. 20, no. 3-4, 2012.

[2] S.-M. Kaber, A. Loumi and P. Parnaudeau, Parallel Solution of Linear Systems. East Asian Journal
on Applied Mathematics, Vol. 6, No. 3, 2016.

[3] M.J. Gander, 50 Years of Time Parallel Time Integration, to appear in ’Multiple Shooting and Time
Domain Decomposition’, T. Carraro, M. Geiger, S. Körkel, R. Rannacher, editors, Springer Verlag,
2015.

12

