

Experimental Characterization of Cohesive Zone Models for Thin Adhesive Layers Loaded in Mode I, Mode II, and Mixed-Mode I/II by the use of a Direct Method

G. Lélias, Eric Paroissien, Frederic Lachaud, Joseph Morlier

▶ To cite this version:

G. Lélias, Eric Paroissien, Frederic Lachaud, Joseph Morlier. Experimental Characterization of Cohesive Zone Models for Thin Adhesive Layers Loaded in Mode I, Mode II, and Mixed-Mode I/II by the use of a Direct Method. International Journal of Solids and Structures, 2019, 10.1016/j.ijsolstr.2018.09.005. hal-01878722

HAL Id: hal-01878722 https://hal.science/hal-01878722

Submitted on 21 Sep 2018 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Experimental Characterization of Cohesive Zone Models for Thin Adhesive Layers
2	Loaded in Mode I, Mode II, and Mixed-Mode I/II by the use of a Direct Method
3	
4	
5	
6	G. Lélias ^{1,2} , E. Paroissien ^{1,*} , F. Lachaud ¹ and J. Morlier ¹
7	
8	
9	¹ Institut Clément Ader (ICA), Université de Toulouse, UPS, INSA, ISAE-SUPAERO, MINES-ALBI, CNRS, 3 rue
10	Caroline Aigle, 31400 Toulouse, France
11	² SOGETI HIGH TECH, AEROPARK, 3 Chemin Laporte, 31300 Toulouse, France
12	
13	
14	
15	
16	
17	
1/	
18	
19	
20	
21	
22	*To whom correspondence should be addressed: Tel. +33561338438, E-mail: eric.paroissien@isae-supaero.fr
23	
24	
25	
26	
27	
28	

2 Abstract – The demand for designing lightweight structures without any loss of strength or stiffness has 3 conducted many engineers and researchers to seek for alternative joining methods. In this context, adhesive 4 bonding may appear as an attractive joining method. However the interest of adhesive bonding remains while the 5 structural integrity of the joint is ensured. According to recent literature the Cohesive Zone Model (CZM) 6 appears as a suitable approach able to predict both static and fatigue strength of adhesively bonded joints. This 7 approach of the fracture process of adhesive layers is based on the modeling of the adhesive mechanical behavior 8 through a set of adhesive cohesive properties in either mode I, mode II or mixed-mode I/II. The strength 9 prediction of adhesively bonded joints is then highly dependent on the CZM parameters. The methods used to 10 experimentally characterize them are thus essential. A new methodology, termed direct method, is presented and 11 tested. It is based on the measurement of displacement field of bonded adherends at the crack tip of classical 12 specimens allowing for the loading of the adhesive layer in pure mode I, pure mode II and mixed-mode I/II. The 13 tested adhesive is a methacrylate-based two-component adhesive paste found under the reference SAF30 MIB 14 manufactured by AEC Polymers (ARKEMA group). The adherends are in aluminium 6060. It is shown that it is 15 possible to characterize the cohesive properties of the adhesive layer using the direct method. The numerical 16 tests involve both adherends and adhesive nonlinearities. Nevertheless, the presented experimental 17 implementation passes by the development of a dedicated data pre-processing to interpret the experimental 18 measurements, highlighting the significance of the choice of the measurement means linked to the design of 19 specimen.

- 20
- 21

Key words: adhesively bonded joint, cohesive zone model, macro-element, mode I, mode II, mixed-mode I/II,
 singular value decomposition, digital image correlation technique

1	NOMEN	CALTURE AND UNITS
2	BBe	bonded-beams element
3	CZM	cohesive zone model
4	DIC	digital image correlation
5	DoE	design of experiments
6	DCB	double cantilever beam
7	ENF	end notched flexure
8	FE	Finite Element
9	ME	macro-element
10	MMB	mixed mode bending
11	OSRA	optimal sub rank approximation
12	SLJ	single-lap joint
13	SVD	singular value decomposition
14	A_j	extensional stiffness (N) of adherend j
15	B_j	extensional and bending coupling stiffness (N.mm) of adherend j
16	D_j	bending stiffness (N.mm ²) of adherend j
17	Ε	adherend Young's modulus (MPa)
18	G_I	strain energy release rate (energy per unit of area: mJ or N/mm) in peel
19	G_{II}	strain energy release rate (energy per unit of area: mJ or N/mm)in shear
20	G_{Ic}	critical strain energy release rate (energy per unit of area: mJ or N/mm)in peel
21	G_{Ie}	adhesive elastic strain energy stored (energy per unit of area: mJ or N/mm)in peel
22	G_{IIc}	critical strain energy release rate (energy per unit of area: mJ or N/mm)in shear
23	G_{IIe}	adhesive elastic strain energy stored (energy per unit of area: mJ or N/mm)in shear
24	Н	magnitude of applied displacement (mm)
25	J	J-integral parameter
26	K_{BBe}	elementary stiffness matrix of a bonded-beam element
27	L	length (mm) of bonded overlap
28	M_{j}	bending moment (N.mm) in adherend j around the z direction
29	N_j	normal force (N) in adherend j in the x direction
30	Р	magnitude of applied force (N)

1	S	adhesive peel stress (MPa)
2	S _{max}	maximal adhesive peel stress (MPa)
3	Т	adhesive shear stress (MPa)
4	T_{max}	maximal adhesive shear stress (MPa)
5	V_{j}	shear force (N) in adherend j in the y direction
6	а	crack length (mm)
7	b	width (mm) of the adherends
8	d	damage parameter
9	е	thickness (mm) of the adhesive layer
10	h_j	half thickness (mm) of adherend j
11	k _I	adhesive elastic stiffness (MPa/mm) in peel
12	k _{II}	adhesive elastic stiffness (MPa/mm) in shear
13	n	power usd in the adhesive material law
14	n_ME	number of macro-elements
15	t	adherend thickness (mm)
16	u_j	displacement (mm) of adherend j in the x direction
17	v_j	displacement (mm) of adherend j in the y direction
18	Δ	overlap length (mm) of a macro-element
19	Δ_{j}	characteristic parameter of adherend j in N ² .mm ²
20	α	angle (rad) used for the definition the load application in MCB test
21	β	mixed-mode parameter
22	δ_t	numerical time step (s)
23	δ_{u}	displacement jump (mm) of the interface along the x-axis
24	δ_{ue}	displacement jump (mm) of the interface along the x-axis at initiation
25	δ_{uf}	displacement jump (mm) of the interface along the x-axis at propagation
26	δ_{v}	displacement jump (mm) of the interface along the y-axis
27	δ_{ve}	displacement jump (mm) of the interface along the x-axis at initiation
28	$\delta_{v\!f}$	displacement jump (mm) of the interface along the x-axis at propagation
29	λ	norm of displacement jump (mm) of the interface
30	λ_e	norm of displacement jump (mm) of the interface at initiation

 λ_f

norm of displacement jump (mm) of the interface at propagation

 2ν adherend Poisson's ratio

3

- θ_j bending angle (rad) of the adherend *j* around the *z* direction
- 4

5 1. Introduction

6 In the frame of structural design, the choice of joining technologies is decisive since they guarantee the integrity 7 of the manufactured system. The mechanical fastening, such as riveting or screwing, appears the reliable solution 8 for the designers. Nevertheless alone or in combination with the mechanical fastening, the adhesive bonding 9 joining technology may offer significantly improved mechanical performance in terms of stiffness, static 10 strength and fatigue strength (Hart-Smith 1980, Kelly 2006). The use of this higher level of mechanical 11 performance allows for the design of lighter joints. In other words, the adhesive bonding offers the possibility to 12 reduce the structural mass while ensuring the mechanical strength. The optimization of the strength-to-mass ratio 13 is a challenge for several industrial sectors, such as aerospace, automotive, rail or naval transport industries. But, 14 the reduction of structural mass makes sense only if the structural integrity is ensured. As result to take benefit 15 from the adhesive bonding in view of mass reduction, it is required to be able to predict the strength of bonded 16 joints. The strength prediction consists in the comparison of computed strength criteria to design allowable 17 value. The strength criteria could be based on theoretical, empirical, semi-empirical investigations and possibly 18 including in-service feedback. The stress analysis allows for the computation of input data, mandatory to the 19 assessment of strength criteria. The experimental characterization allows then for the definition of design 20 allowable value as well as of mechanical behavior to be used as input data of the mechanical analysis. As 21 highlighted in (Jumel et al. 2013), the strength of a same joining system at macroscale depends on the 22 experimental test specimen and procedure used, which contributes in restricted reliability or in extensive and 23 expensive experimental test campaign. According to (Li et al. 2006, Khoramishad et al. 2010, Khoramishad et 24 al. 2011, Da Silva and Campilho 2012), the cohesive zone modeling – denoted CZM – appears as one of the 25 most suitable approach able to model both the static and the fatigue behavior of adhesive joints. According to 26 (Khoramishad et al. 2010), the CZM have the advantage of: (i) considering finite strains and stresses at the 27 adhesive crack tip, (ii) indicating both damage initiation and propagation as direct outputs of the model, (iii) 28 advancing the crack tip as soon as the local energy release rate reaches its critical value with no need of complex 29 moving mesh techniques. Based on Continuum Damage Mechanics and Fracture Mechanics, the CZM enables a 30 diagnostic of the current state of the adhesive interface damage along the overlap. The damage, associated to

1 micro-cracks and/or voids coalescence, results in a progressive degradation of the material stiffness before 2 failure. An idealization of a CZM bilinear stress-strain relationship or CZM bilinear traction separation law is 3 presented in Figure 1. The CZM bilinear traction separation law is a well-established interface behavior that first 4 assumes a linearly dependency relationship between the interface separation (deformation) and the resulting 5 traction (stress). Once a prescribed value of separation is reached by the adhesive, the damage initiation is 6 described in the form of a linearly decreasing resulting traction. Finally, the propagation of the damage is 7 described by voluntarily fixing the resulting traction to zero, hence modeling the creation of two traction-free 8 surfaces (i.e.: physical cracking). Both damage initiation and damage propagation phases are addressed in the 9 model with no need of assuming any initial crack in the material (Valoroso and Champaney 2004, De Moura et

10 *al.* 2009, Campilho *et al.* 2013).

11

12

Figure 1. Representation for an idealized bilinear interface traction separation law.

13

14 The strength prediction of adhesively bonded joints is then highly dependent on the CZM parameters. The 15 methods used to experimentally characterize them are thus essential. As a result, numbers of authors have 16 addressed this critical point over the past few years (Anderson and Stigh 2004, Alfredsson et al. 2003, 17 Alfredsson 2004, Leffler et al. 2006, Högberg 2006, Högberg and Stigh 2006, Cui et al. 2014, Azari et al. 2009, 18 Gowrishankar S. et al. 2012, Wu et al. 2016). Most of these methods make use of the concept of the energetical 19 balance associated to the computation of the path independent J-integral (Rice 1968) along a closed contour of 20 specifically designed joint specimens, known as the inverse method (Anderson and Stigh 2004, Alfredsson et al. 21 2003, Alfredsson 2004, Leffler et al. 2006, Högberg 2006, Högberg and Stigh 2006). The inverse method is 1 based on the energetical balance associated with the computation of the path independent J-integral (Rice 1968)

2 on a closed contour Γ :

$$3 J = \int W dy - \bar{T} \frac{d\bar{U}}{dx} ds (1)$$

4 where *W* refers to the strain energy density, $\overline{T} = n\sigma$ to the traction vector, σ to the stress tensor, \overline{U} to the 5 displacement vector, *n* to the normal unit vector directed outward to the counter-clock wise integration path Γ , 6 and (x,y) to the specified two-dimensional coordinate system. From the fundamental work by (Fraisse and 7 Schmit 1993) it is shown that the J-integral parameter can be computed from stress analysis based on a model of 8 beam on an elastic foundation as:

9
$$J(\delta_u, \delta_v) = \int_0^{\delta_u} T(\delta_u, \delta_v) d\delta_u + \int_0^{\delta_v} S(\delta_u, \delta_v) d\delta_v$$
(2)

10 In the frame of the inverse method:

11 (i) the adhesive peel stress is obtained from experimental tests under pure mode I loading as (Anderson and Stigh

12 2004):

13
$$S(\delta_v) = \frac{\partial J(\delta_u, \delta_v)}{\partial \delta_v}$$
 (3)

14 (ii) the adhesive shear stress is obtained from experimental tests under pure mode II loading as (Alfredsson *et al.*

15 2003):

16
$$T(\delta_u) = \frac{\partial J(\delta_u, \delta_v)}{\partial \delta_u}$$
(4)

(iii) the adhesive peel and shear stresses are obtained from experimental tests under mixed-mode I/II loading as
(Högberg 2006, Högberg and Stigh 2006):

19
$$S(\delta_{\nu}) = \frac{\partial J(\delta_{u}, \delta_{\nu})}{\partial \delta_{\nu}}$$
(5)

$$20 T(\delta_u) = \frac{\partial J(\delta_u, \delta_v)}{\partial \delta_u} (6)$$

21 The adhesive stresses are then derived from the J-integral. An advantage of this method is that it offers the 22 possibility to monitor the evolution of the adhesive stress at the crack tip from the measurement of macroscopic 23 quantities possibly measurable from experimental test fixtures, such as the applied load (in N) or the evolution of 24 displacement jump (in mm) at the crack tip. Numbers of joint specimens have been explored for pure mode I, 25 pure mode II and mixed-mode I/II characterization of adhesive layers. According to (Da Silva and Campilho 26 2012), end notched flexure (ENF) and double cantilever beam (DCB) joint specimens have respectively emerged 27 as the joint specimens the most frequently used for characterizing the cohesive properties of thin adhesive 28 interfaces in pure mode I and pure mode II over the past years. An idealization of the linear elastic distributions

of adhesive stresses (strains) resulting from the loading of both ENF and DCB joint specimens is presented in Figure 2. According to (Reeder and Crews 1990, Kenane and Benzeggagh 1997, Högberg 2006) most of the mixed-mode I/II test fixture present practical limitations: (i) complex loading fixtures, (ii) unstable fracture process, (iii) complex manufacturing of the test samples. However, both mixed mode cantilever beam (MCB) and mixed mode bending (MMB) joint specimens offer the possibility of working over a wide range of adhesive mixed-mode ratios without modifying the geometry (Figure 2).

7

8

9 Figure 2. Schematic representation for the (a) End Notched Flexure (ENF), (b) Double Cantilever Beam (DCB)
10 adhesive joint specimens. Idealized adhesive stress distributions, (c) Mixed-mode Cantilever Beam (MCB) and
11 (d) Mixed-Mode Bending (MMB) adhesive joint specimens.

12

13 However, the methods based on J-integral are valid only when the J-integral is valid. If the J-integral can be 14 computed through a data reduction scheme based on a model of a beam on elastic foundations for the adhesive 15 bonded overlap (Fraisse and Schmit 1993), the J-integral is not suitable when the materials are dependent on 16 time. Another restriction is the consideration of unloading phases within the loading history. Various types of 17 CZM for mixed-mode exist in the literature (Goustanios and Sørensen 2012). One widespread type is based on 18 the definition of traction-separation laws in pure modes, which are coupled with interaction laws for damage 19 initiation and damage propagation under mixed-mode. Goustanios and Sørensen show that the mixed-mode 20 truss-like CZMs are path-dependent. The mixed-mode truss-like CZMs are a particular case of mixed-mode 21 CZM based on the definition of pure modes laws linked by interaction laws under mixed-mode. If the J-integral is path-independent along the spatial integration path, it is shown that the J-integral, which is shown to be a potential function from which derive the cohesive stress, is dependent on the loading path history. A direct consequence for truss-like CZMs is thus that Eq. (2) does not imply Eq. (5) and Eq. (6), so that the use of the inverse method should not be suitable to any type of CZM.

5 The objective of this paper is to suggest a direct method to assess CZMs for the modelling of adhesively bonded 6 joints, overcoming the restrictions involved in methods based on J-integral. In the first part, the inverse method 7 is employed on the results of a numerical test campaigns on MCB configuration. A mixed-mode CZM based on 8 the definition of pure mode bilinear laws linked by interaction laws under mixed-mode is used for this test 9 campaign in order to show the deviation of predictions obtained from the inverse method. The numerical 10 analyses are performed using three-dimensional Finite Element (3D FE) model as well as the macro-element 11 (ME) technique (Paroissien 2006a, Paroissien et al. 2006b, Paroissien et al. 2007, Paroissien et al. 2013, Lélias 12 et al. 2015). In the second part, an approach based on design of experiments (DoE) is presented to assess the 13 main parameters affecting the experimental assessment of CZM. Finally, in the part, the direct method is applied 14 to characterize the CZM properties in mode I, mode II and mixed-mode I/II through the use of double cantilever 15 beam (DCB) specimen, end notched flexure (ENF) specimen and mixed mode bending (MMB) specimen, 16 respectively (see Figure 3). Finally the single-lap bonded joint (SLJ) configuration is used to assess the relevance 17 of the method (see Figure 3).

¹⁸

Figure 3. Schematic representation for the manufacturing process of the ENF, DCB, MMB and SLJ jointspecimens.

- 22 2. Numerical test campaign
- 23 2.1. Overview of the numerical test campaign

1 In the frame of the numerical test campaign presented in this paper, the MCB test configuration has been 2 selected. It has been suggested by Högberg and Stigh (Högberg and Stigh 2006). Similarly to the DCB test 3 configuration, the loading consists in a pair of forces (termed P), being of the same magnitude but in opposite 4 directions. Nevertheless, the action direction of the pair of forces is defined by an angle α , which allows for the 5 adhesive layer to be submitted to pure mode I, pure mode II and mixed-mode I/II (see Figure 2). The selected 6 specimen design, including geometrical and material parameters, corresponds to the one described by Högberg 7 and Stigh (Högberg and Stigh 2006). The crack length a=0 is then chosen. The geometrical parameters are 8 provided in Table 1 in conjunction with Figure 2. In this numerical test campaign, only one angle α is chosen 9 $\alpha = \pi/16.$

- 10
- 11

 Table 1. Geometrical parameters of the MCB specimen.

a in mm	b in mm	e in mm	t in mm	L in mm
0	4	0.2	8	100

12

The adherends are made of steel with a Young's modulus E=200 GPa and a Poisson's ratio v=0.3. The design is such that the adherends will remain in their linear elastic domain. The adhesive is assumed to have a classical bilinear damage evolution law following (Allix and Ladevèze 1996), involving interaction energy laws for both initiation and propagation under mixed-mode:

$$17 \qquad \begin{cases} \left(\frac{G_I}{G_{Ie}}\right)^n + \left(\frac{G_{II}}{G_{IIe}}\right)^n = 1\\ \left(\frac{G_I}{G_{Ic}}\right)^m + \left(\frac{G_{II}}{G_{IIc}}\right)^m = 1 \end{cases}$$
(7)

18 where n=m is a material parameter to be identified, G_{Ic} and G_{IIc} are the critical strain energy release rate in mode 19 I and mode II, G_{Ie} and G_{IIe} are the elastic strain energies stored in mode I and mode II and G_{I} and G_{II} are related 20 to the strain energy release rates in mode I and mode II, respectively. For this numerical test campaign, n=1 is 21 chosen. The fracture energies in mode I and mode II and the elastic stiffnesses under peel and shear, termed k_I 22 and k_{II} respectively are the same as those used by Högberg and Stigh (Högberg and Stigh 2006). Nevertheless, 23 the adhesive maximal peel and shear stresses, termed S_{max} and T_{max} , is different, to ensure a right energy 24 dissipation during loading (Turon et al. 2010). It is indicated that the law by Allix and Ladevèze (Allix and 25 Ladevèze 1996) already includes this condition. It is then chosen to keep the same maximal shear stress $T_{max}=26$ 26 MPa, resulting in a maximal peel stress S_{max} =36.6 MPa, instead of 20 MPa. The choice consisting in keeping 27 S_{max} to its original value instead of T_{max} does not change qualitatively the results provided in his paper. The

- 1 material parameters of the adhesive layer are given in Table 2. In the following, the 3D FE model and the ME
 2 model are presented. Then the results of the numerical test campaign are provided including those relating to the
 3 convergence study of numerical models. Finally, the direct method is described.
- 4
- 5

Table 2. Adhesive material parameters.

6

7 2.2. Macro-element model

8 Macro-element technique. The numerical analysis is performed using the ME technique for the modelling of 9 bonded overlap (Paroissien 2006a, Paroissien et al. 2006b, Parossien et al. 2007, Paroissien et al. 2013, Lélias et 10 al. 2015). The ME technique is inspired by the FE method and differs in the sense that the interpolation functions 11 are not assumed, since they take the shape of the solutions of the governing differential equation system. A direct 12 consequence is that only one ME is sufficient to mesh a complete bonded overlap in the frame of a linear stress 13 analysis. The bonded overlap is then modelled by a four-node ME - also called bonded-beams element - the 14 nodes of which are located at the extremities of the overlap on the neutral axes of adherends (see Figure 4). This 15 ME involves 3 degrees of freedom per node or a total of twelve for a 1D-beam analysis.

2

Figure 4. Modelling of a bonded overlap by a bonded-beams element.

3

4 The main work is thus the formulation of the elementary stiffness matrix of the bonded-beams element. Indeed 5 once the stiffness matrix of the complete structure is assembled from the elementary matrices and the boundary 6 conditions are applied, the minimization of the potential energy provides the solution, in terms of distributions 7 along the overlap of adhesives stresses, internal forces and displacements in the adherends. An approach for the 8 formulation of the stiffness has already been described in detail in previous papers (Paroissien 2006a, Paroissien 9 et al. 2006b, Paroissien et al. 2007, Paroissien et al. 2013, Lélias et al. 2015). Nevertheless, this approach could 10 be long to set up. In this paper, a new approach is provided in Appendix A for a fast and easy implementation 11 within a mathematical software such as SCILAB for example. Compared with the early approach, the shape of 12 solutions in terms of displacements and internal loads is not provided. Nevertheless, in the frame of nonlinear 13 material analyses such as the one presented in this paper, the bonded overlap has to be meshed in order to locally 14 update the material parameters within an iterative computation procedure. As a result, the displacements and 15 internal loads are directly read at nodes. Moreover, the following description is useful for the derivation of the 16 direct method.

17 **Hypotheses.** It is assumed that the thickness of the adhesive is constant along the length Δ of the macro-element. 18 Moreover, the adherends are simulated as linear elastic Euler-Bernoulli laminated beams. The general shape of 19 the constitutive equations for the adherend j=1,2 provides the six first differential equations:

$$20 \qquad \begin{cases} N_j = A_j \frac{du_j}{dx} - B_j \frac{d\theta_j}{dx} \\ M_j = -B_j \frac{du_j}{dx} + D_j \frac{d\theta_j}{dx} \Leftrightarrow \\ \theta_j = \frac{dv_j}{dx} \end{cases} \Leftrightarrow \begin{cases} \frac{du_j}{dx} = \frac{D_j}{\Delta_j} N_j + \frac{B_j}{\Delta_j} M_j \\ \frac{dv_j}{dx} = \theta_j \\ \frac{d\theta_j}{dx} = \frac{B_j}{\Delta_j} N_j + \frac{A_j}{\Delta_j} M_j \end{cases}$$
(8)

- 1 where N_j (M_j) is the normal force (bending moment) of the adherend j and u_j (v_j , θ_j) is the longitudinal 2 displacement (deflection, bending angle) of the adherend j. For the adherend j, A_j represents the extensional 3 stiffness, D_j the bending stiffness and B_j the coupling stiffness and $\Delta_j = A_j D_j - B_j B_j \neq 0$ (see Appendix C).
- 4 The adhesive layer is simulated by an infinite number of elastic shear and transverse springs attached at both 5 adherend interfaces. The adhesive shear stress – denoted T – and the adhesive peeling stress – denoted S – are 6 then given by:

7
$$\begin{cases} S = k_I (v_1 - v_2) \\ T = k_{II} (u_2 - u_1 - h_2 \theta_2 - h_1 \theta_1) \end{cases}$$
(9)

- 8 where h_j is the half thickness of adherend *j*. In this paper, $h_1 = h_2 = t/2$.
- 9 The classical local equilibrium from Goland and Reissner (Goland and Reissner 1944) is used and provides the
- 10 six last differential equations for j=1,2 (see Figure 5):

11
$$\begin{cases} \frac{dN_j}{dx} = (-1)^j bT \\ \frac{dV_j}{dx} = (-1)^{j+1} bS \\ \frac{dM_j}{dx} + V_j + bh_j T = 0 \end{cases}$$
(10)

12 where V_i is the shear force of the adherend *j*.

- 13 14
- Figure 5. Free body diagram of infinitesimal elements of the adherend 1 (top) and adherend (bottom)
- 15

16 Non linear computation. The use of a nonlinear adhesive material implies that the computation is nonlinear. A 17 detailed description of the nonlinear algorithm used is provided in (Lélias *et al.* 2015). Only a brief overview is 18 given here. The algorithm is based on Newton-Raphson and uses the secant stiffness matrix with an update at

1 each iteration. In particular, the damage parameter is computed at each nodal abscissa according to the 2 introduced adhesive material law. The norm of displacement jump (in mm) of interface λ is defined by:

$$3 \qquad \lambda = \sqrt{(\delta_v)^2 + (\delta_u)^2} \tag{11}$$

4 where δ_{ν} (δ_{u}) is the displacement jump of the interface (see Table 2) along the y-axis (x-axis). A mixity 5 parameter β is defined by:

6
$$\beta = \frac{\delta_u}{\delta_v} = \frac{u_2 - u_1 - h_2 \theta_2 - h_1 \theta_1}{v_1 - v_2}$$
 (12)

7 At each iteration, the mixity parameter β is updated. Under the current local mixity parameter, it assumed that 8 the material law is bilinear, so that the damage parameter *d* is such that:

9
$$d = \frac{\lambda_f(\lambda - \lambda_e)}{\lambda(\lambda_f - \lambda_e)}$$
(13)

10 where $\lambda_e (\lambda_f)$ is the displacement jump (in mm) of the interface at initiation (propagation). In order to compute λ_e 11 (λ_f) , the interaction laws Eq. (1) are used while classically assuming that the projections on pure modes of the 12 mixed mode evolution law under the current local mixity are bilinear (see Table 2):

$$13 \quad \begin{cases} \lambda_e = \delta_{ue} \delta_{ve} \sqrt{1 + \beta^2} \left[\frac{1}{(\delta_{ue})^{2n} + (\beta \delta_{ve})^{2n}} \right]^{\frac{1}{2n}} \\ \lambda_f = \delta_{uf} \delta_{vf} \sqrt{1 + \beta^2} \left[\frac{\sqrt{(\delta_{ue})^{2n} + (\beta \delta_{ve})^{2n}}}{(\delta_{ue} \delta_{uf})^n + (\beta^2 \delta_{ve} \delta_{vf})^n} \right]^{\frac{1}{n}} \end{cases}$$
(14)

14 The damage parameter is computed only if δ_v is positive. Each ME is then updated with the damaged elastic 15 stiffness taken as the maximal value of both damage parameters computed at each extremity of the ME.

16 Finally, the displacement is linearly applied as a function of the numerical time. Each numerical test result is

17 obtained from a simulation run involving one hundred constant time steps δ_{l} .

18 Mesh and boundary conditions. The bonded overlap is regularly meshed with a parametrical number n_ME of 19 bonded-beams elements. One extremity is clamped and the loading is applied under displacement (termed *H*) at 20 the other extremity where the bending angle is fixed (see Figure 6). The applied displacement is H=0.074 mm so 21 that the damage begins to propagate in the adhesive layer at the loaded extremity. In view of the application of 22 the inverse method, it is mandatory that the adhesive layer does not deform at the joint extremity where the load 23 is not applied. Clamping conditions avoid both peel and shear deformations.

Figure 6. Applied displacement *H* and fixed displacements for the MCB test configuration.

The results are not presented in this paper but a study on the influence of mesh size up to a maximal mesh density of twenty ME per mm was performed under a pure linear elastic analysis under pure mode I ($\alpha = \pi/2$). The conclusions are that (i) the original approach and the present approach (see Appendix A) for the formulation of the elementary stiffness matrix of ME provides exactly the same results, and (ii) the computed reaction as well as the adhesive peak stresses do not vary at all with the mesh density.

8 Results. In order to assess the influence of the mesh density on the predictions from the ME model, four runs 9 associated with the four following mesh densities are launched: (i) one ME per mm, (ii) two MEs per mm, (iii) 10 four MEs per mm and (iv) eight MEs per mm. The norm of the reaction force on the loaded section of the upper 11 adherend as a function of the mesh density is provided in Figure 7. It is shown that the model converges when 12 the mesh density is increased. Moreover, the maximal peel and shear stresses at x=L reached during the runs are 13 constant when the mesh density varies and equal to: $S_{max}=23.6$ MPa and $T_{max}=19.8$ MPa. This result is not 14 surprising since the load is applied under the shape of displacement at the location where the adhesive stress 15 evolution is observed and the stiffness matrix is updated considering the maximal value of both damage 16 parameters computed at each extremity of the ME.

Figure 7. Norm of the reaction force on the loaded section of the upper adherend

4 2.3. Finite element model

1

2

3

5 Mesh and boundary conditions. A 3D FE model is developed using the FE code SAMCEF v18.1 (LMS PLM 6 software). This model makes use of linear brick elements with eight nodes and twenty-four degrees of freedom 7 for the adherends. A normal integration rule is selected. The adherends are assumed linear elastic. The adhesive 8 layer is simulated through 3D quadrangular interface elements. The CZM defined in section 2.1 is applied 9 through the Damage Interface SAMCEF material. The adhesive layer is regularly meshed along the overlap 10 length and width, with a constant aspect ratio equal to one: all the interface elements are squared. The adherends 11 mesh is coincident at the interface with the adhesive layer. The mesh along the thickness of adherends is 12 distributed as it follows. The adherends are cut at their own neutral plane in two parts. A distributed mesh is 13 applied on each part and a transition ratio equal to one is applied at the neutral plane. The size along the 14 thickness of the last element at the neutral axis of the adherend is fifty percent larger than those of the first 15 element at the interface with the adhesive layer. The same size ratio is applied for the second part. The mesh of 16 two adherend parts at the neutral plane is then coincident, so that a kinematic bonding of nodes is applied. As a 17 result, following the previous meshing method, the number of elements along the overlap drives the meshing of 18 the full model. The boundary conditions are relevant to those applied in the previous ME model. Only one half 19 of specimen is modelled and symmetry conditions are applied. The adherends are clamped at one extremity and 20 loaded under displacement at the other extremity (see Figure 8). It is indicated that the boundary conditions applied on the FE element model are relevant to those applied on the ME model. In particular, at the loaded
 extremity, the longitudinal displacement at the interface with the adhesive layer is the one at the neutral axis.

3 Nonlinear computation. The nonlinear computation is based on a Newton Raphson scheme, for which the 4 stiffness matrix is updated at each iteration with the secant properties concerning the adhesive layer. The 5 computation remains geometric linear, due the level of displacements and rotation. The applied displacement is 6 H=0.074 mm as for the simulations based on ME model. It is sufficient to apply the inverse method. As for the 7 simulations based on the ME model, each numerical test result is obtained from a simulation run involving one 8 hundred constant time steps δ_t .

Figure 8. View of the 3D FE model on the symmetry plane including the mesh (two MEs per mm) and the
boundary conditions.

12

13 Results. As for the ME model, the influence of the mesh density on the predictions from the FE model is 14 assessed using the same 4 mesh densities. The maximal peel and shear stresses at x=L reached during the run is 15 provided in Figure 9 as a function of the mesh density. It is shown that these adhesive peak stresses converges 16 when the mesh density is increased, while tending to the adhesive peak stresses predicted by the ME model. For 17 a mesh density of eight element per mm, the relative difference in the FE model prediction from the ME model 18 prediction is -3.11% in peak peel stress and +0.90% in peak shear stress. The evolution of the adhesive peel 19 (shear) stress as a function of the opening (sliding) displacement at x=L for the FE and ME models with a mesh 20 density of eight elements per mm is provided in Figure 10 (Figure 11). A very good agreement is then shown 21 between the predictions of the FE and ME models.

2 Figure 9. Maximal peel and shear stresses at x=L reached during the run as a function of the mesh density for the

- _

1 Figure 10. Evolution of the adhesive peel stress as a function of the opening displacement at x=L for the FE and

ME models with a mesh density of eight elements per mm.

20 18 ME model 16 shear stress T at x=L in MPa FE model 14 12 10 8 6 4 2 0 0 0.05 0.1 0.15 sliding displacement δ_u in mm

2

3

5 Figure 11. Evolution of the adhesive shear stress as a function of the sliding displacement at x=L for the FE and 6 ME models with a mesh density of eight elements per mm.

7

8 2.4. Application of the inverse method

9 The inverse method is applied on the predictions of the ME model with a mesh density of eight element per mm.

10 Firstly, the J-integral parameter at x=L has to be computed according to Eq. (2). Taking benefit from the elevated

11 number of computation time, a simple numerical integration is then performed as:

12
$$J(t_f) = \sum_{i=1}^{i=f} T(t_i) \left[\delta_u(t_i) - \delta_u(t_{i-1}) \right] + \sum_{i=1}^{i=f} S(t_i) \left[\delta_v(t_i) - \delta_v(t_{i-1}) \right]$$
(15)

13 where t_i is the ith computation time, t_f is the las computation time and t_0 is equal to zero. It is indicated that this 14 computation of the J-integral is valid in the abscissa x=L only and at any time, because (i) the applied loading on 15 the neutral line in terms of δ_u and δ_v is the same as the one seen at the interface in x=L ($\theta=0$) and (ii) the applied 16 loading is proportional at any time. As a result, the mixed mode parameter β is constant at any time in x=L and 17 the shear (peel) stress is only dependent on δ_u (δ_v) at the given constant β . 18 Secondly, the adhesive stresses are computed according to Eq. (5) and Eq. (6). The required differentiation of the

19 J-integral parameter is obtained by taken the slope between two consecutive times:

$$1 \qquad \begin{cases} S(\delta_{\nu}(t)) = \frac{J(t) - J(t - \delta_t)}{\delta_{\nu}(t) - \delta_{\nu}(t - \delta_t)} \\ T(\delta_u(t)) = \frac{J(t) - J(t - \delta_t)}{\delta_u(t) - \delta_u(t - \delta_t)} \end{cases}$$
(16)

The evolution of the adhesive peel (shear) stress as a function of the opening (sliding) displacement at x=L as computed by the ME model with a mesh density of eight elements per mm and predicted by the inverse method is provided in Figure 12 (Figure 13). It is shown that the predictions of the inverse method does not fit those of the ME models. It is then concluded that the considered CZM is an example for which the inverse method fails to predict the adhesive peel and shear stresses under mixed-mode. This example is not a general proof for this type of CZM. However, the main fact is that the application of the inverse method associated with particular types of CZM could lead to incorrect behavior assessment.

Figure 12. Evolution of the adhesive peel stress as a function of the opening displacement at x=L as computed by the ME model with a mesh density of eight elements per mm and predicted by the inverse method.

Figure 13. Evolution of the adhesive shear stress as a function of the sliding displacement at *x*=*L* as computed by
the ME model with a mesh density of eight elements per mm and predicted by the inverse method.

1

5 2.5. Description of the Direct Method

6 This method is presented in (Lélias 2016). It is based on the measurement around the crack tip of the
7 displacement of the neutral axis according to the x-axis and the y-axis. Contrary to the inverse method, no spatial
8 integration of equilibrium equations is required.

9 In the case of pure mode I loading, the adhesive shear stress vanishes so that the local equilibrium of adherends 10 can be reduced to the following set of differential equations for j=1,2:

11
$$\begin{cases} \frac{dN_{j}}{dx} = 0\\ \frac{dV_{j}}{dx} = (-1)^{j+1}bS\\ \frac{dM_{j}}{dx} + V_{j} = 0 \end{cases}$$
 (17)

12 As a result, it comes:

13
$$S = (-1)^{j} \left[-\frac{B_{j}}{b} \frac{d^{3} u_{j}}{dx^{3}} + \frac{D_{j}}{b} \frac{d^{4} w_{j}}{dx^{4}} \right]$$
(18)

14 Using the constitutive relationship, the adhesive peel stress can be expressed as:

15
$$S = (-1)^j \frac{D_j}{b} \frac{d^4 w_j}{dx^4}$$
 (19)

16 In the case of pure mode II loading, the adhesive peel stress vanishes so that the local equilibrium of adherends

17 can be reduced to the following set of differential equations for j=1,2:

$$1 \qquad \begin{cases} \frac{dN_j}{dx} = (-1)^j bT \\ \frac{dV_j}{dx} = 0 \\ \frac{dM_j}{dx} + V_j + bh_j T = 0 \end{cases}$$
(20)

2 As a result, it comes:

3
$$T = (-1)^{j} \left[\frac{A_{j}}{b} \frac{d^{2} u_{j}}{dx^{2}} - \frac{B_{j}}{b} \frac{d^{3} w_{j}}{dx^{3}} \right]$$
(21)

4 Using the constitutive relationships, the adhesive shear stress can be expressed as:

5
$$T = (-1)^j \frac{A_j}{b} \frac{d^2 u_j}{dx^2}$$
 (22)

6 In the case of mixed-mode I/II loading, the local equilibrium of adherends is given by Eq. (5). The following
7 expressions for the adhesive peel and shear stresses are obtained:

8
$$S = \left[(-1)^{j} \frac{D_{j}}{b} - h_{j} \frac{B_{j}}{b} \right] \frac{d^{4}w_{j}}{dx^{4}} + \left[h_{j} \frac{A_{j}}{b} - (-1)^{j} \frac{B_{j}}{b} \right] \frac{d^{3}u_{j}}{dx^{3}}$$
(23)

9
$$T = (-1)^{j} \left[\frac{A_{j}}{b} \frac{d^{2} u_{j}}{dx^{2}} - \frac{B_{j}}{b} \frac{d^{3} w_{j}}{dx^{3}} \right]$$
(24)

10 The same hypotheses as for the ME model are used for the direct method, so that its application on numerical 11 test results with a suitable post processing method provides predictions exactly corresponding to those of ME. A 12 design of experiments is then developed to investigate the main factors influencing the predictions of the direct 13 method.

14

15 3. Assessing our methodology of derivatives of deflection with DIC experimental parameters

16 3.1. Signal processing of the 3^{rd} order derivative of the deflection

Within the framework of the direct method, the evolution of the adhesive stresses can be theoretically derived from the measurement at the crack tip of the second and third order derivative of the upper adherend bending angle and of the derivative of the upper adherend longitudinal displacement at neutral axis (see section 2.5).

Since the raw differentiation of noised experimental results can lead to the rise of important numerical singularities, a particular attention has to be given to the correct evaluation of these successive derivatives. Data pre-processing is then highly needed to reduce experimental noises (see Figure 14). The data pre-processing algorithm used to reduce experimental noises from the measured upper and lower adherends displacement fields lies on the optimal sub-rank approximation (OSRA) based on singular value decomposition (SVD), and is related to signal processing techniques that are commonly referred to as SVD signal enhancement methods, reduced-rank signal processing or more simply subspace methods (Andrews and Patterson 1973). The detailed

- 1 presentation of the data pre-processing is not given in detail in this paper; a summarized description can be found
- 2 in the Appendix B.

Figure 14. Comparison of the 3rd order derivative of the deflection of the neutral fiber of the upper adherend
obtained from raw and pre-processed experimental results.

6

7 3.2. Supervised experiments using virtual fields

8 To characterize the ability of the suggested data pre-processing and differentiation algorithm to determine the 9 successive derivatives of the adherend-to-adherend displacement field with sufficient accuracy, we propose to 10 use supervised virtual fields. It refers to the data pre-processing and data differentiation of a displacement field 11 that is virtually generated so that the evolution of its successive derivatives is known in advance of the 12 experiment. For simplification purpose, the comparison between the supervised data and those obtained from the 13 data processing will be made in terms of the 3rd and 4th order derivatives of the transverse displacement of the 14 adherend neutral axis only. However the results are similar with other derivatives

- 15 The virtual displacement field is generated using Matlab® R2012b and resumes the kinematic of a classical
- 16 Euler-Bernoulli's beam in coupled in-plane tension/flexion, so that:

17
$$\begin{cases} u(x, y, t) = u(x, y = 0, t) - y \frac{\partial v(x, y = 0, t)}{\partial x} \\ v(x, y, t) = v(x, y = 0, t) \end{cases}$$
(25)

18 where the evolutions of u(x,y=0,t) and v(x,y=0,t) are arbitrary fixed as:

19
$$\begin{cases} u(x, y = 0, t) = e^{-0.005tx} \\ v(x, y = 0, t) = e^{-0.15tx} \end{cases}$$
 (26)

To model the effect of experimental noises, the virtual displacement field described in Eq. (25) and Eq. (26) is then degraded by adding a normal (Gaussian) noise using the *normrand*(θ, σ) Matlab® function, where θ refers to the prescribed zero mean value and σ to the configurable standard deviation of the normal (Gaussian) noise distribution. 1 In order to test for the linear dependency between the successive derivatives of the supervised data and those

2 obtained from the fitted polynomial series, the Pearson product-moment correlation coefficient is used:

3
$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n \sum x^2 - (\sum x)^2][n \sum y^2 - (\sum y)^2]}}$$
 (27)

where *x* refers to the set of supervised data, *y* to the set of simulated data and *n* to the total number of data pairs.

6 *3.3.* Chosen DOE and justification

A full factorial Design of Experiments (DoE) consists in the following: (i) vary one factor at a time, (ii) perform experiments for all levels and combination of levels for all factors, (iii) hence perform a large number of experiments (*N*), (iv) so that all effects and interactions are captured. Let *k* be the number of factor, n_i the number of levels of the *i*th factor and *p* the number of replications to determine the impact of the measurement dispersion. The total number of experiments *N* of a full factorial DoE is then: $N = p(\prod_{i=1}^{k} n_i)$ (28)

$$= P(\mathbf{n}_{l=1}, v_l)$$

- 13 Here is considered a full factorial DoE of five factors with respectively 3x3x3x3x2 levels, so that the linear
- 14 Taguchi's graph of effects and interactions can be represented in the form of Figure 15.

	$SNR^{-1}(A)$	x=y(B)	t (C)	Degree (D)	Model (E)
			~ /		
Low (-1)	0.00175	201	51	4	1
Medium (0)	0.00350	401	101	6	N.A
High (+1)	0.00700	801	201	8	2

Table 3. Factor versus levels matrix.

1

3 where *SNR* refers to the simulated Signal-to-Noise ratio, x=y to the spatial resolution of each displacement field 4 instantaneous image, t to the number of instantaneous images taken during the experiment (i.e. thereafter 5 referred as the temporal resolution), *Degree* to the degree of the polynomial series used to fit/differentiate the 6 neutral fiber transverse displacement and *Model* to the model used for minimizing the vertical deviation with 7 experimental data in the sense of the least squares method (1 means fitting independently on v(x) and on 8 $\theta(x)=dv(x)/dx$, 2 means fitting simultaneously v(x) and $\theta(x)=dv(x)/dx$).

9

10 3.4. Synthesis of the results

The initial SNR appears as a key parameter in increasing the accuracy of measuring the successive derivatives of the upper adherend displacement field (see Figure 16-(a)), then suggesting that a significant attention has to be given into reducing the noise of the measured signal before any pre-processing of the data. This can be achieved in various ways so that it results in improving the overall quality of the displacement measures.

15

16

- 19
- 20
- 21
- 22

Figure 16. Effect of factor i (i=A,B,C,D,E) on the correlation coefficient r^2 . Influence of the experimental (algorithmic) parameters on the accuracy of the experimental measures. Red= Significant effects. Black= Negligible effects.

8 The spatial resolution of the instantaneous images of the upper adherend displacement field also appears as a key 9 parameter in increasing the accuracy of the estimation of the successive derivatives of the upper adherend 10 displacements (see Figure 16-(b), Figure 17-(e) and Figure 17-(h)). A particular attention has then to be given to 11 measuring the displacements of the upper adherend with a sufficient enough spatial resolution.

Figure 17. First order interaction between factors i-j (i,j=A,B,C,D,E) on the correlation coefficient r^2 . Influence of the experimental (algorithmic) parameters on the accuracy of the experimental measures. Red= Significant interactions. Black= Negligible interactions.

4

5 On another side, the time resolution (i.e. number of images of the upper adherend displacement field taken 6 during the experiment) appears as negligibly influencing the accuracy of the estimation of the successive 7 derivatives of the upper adherend displacements (see Figure 16-(c), Figure 17-(b), Figure 17-(d), Figure 17-(f) 8 and Figure 17-(i)). Thus its own effect as well as its respective interactions with other factors can be legitimately 9 neglected at first sight.

10 Similarly to the initial SNR or the spatial resolution of the displacement images, the degree of the polynomial 11 series used for fitting/differentiating the pre-processed displacements also appears as a parameter that has to be 12 chosen with extreme caution. Indeed, although increasing the degree of the polynomial series from 4 to 6 appears 13 as negligibly influencing the overall accuracy of the measure, increasing it from 6 to 8 results in a serious 14 degradation of the accuracy of the measure (see Figure 16-(d)). This degradation of the accuracy of the 15 measurement using high order polynomials is a well-known issue, and is due to the oscillation of the polynomial 16 series around the experimental set of data points for increasing degrees (i.e. Runge's phenomenon). A particular 17 attention has then to be given in choosing the best compromise between fitting the experimental data points 18 using high order polynomials functions and preserving the overall accuracy of the measurement of its successive 19 derivatives.

Finally, the choice of the Moore-Penrose pseudo inverse model for minimizing in the sense of the least squares method the vertical deviation between the polynomial function (i.e. used for fitting/differentiating the set of experimental data points) and the experimental data points themselves appears as a worthwhile way of influencing the accuracy of the measured displacement derivatives (see Figure 16-(e)). It is then suggested that simultaneously accounting for both v(x) and $\theta(x)=dv(x)/dx$ when fitting/differentiating the experimental set of data points significantly increases the accuracy of the measurement.

26

27 4. Experimental test campaign

28 The entire test campaign is performed on an electro-mechanical test machine (Ref: Instron AI735-1325).

29 4.1. Adherend bulk specimens

1 Each specimen is manufactured from a laminated aluminum-magnesium-silicon alloy (6060 series). A total of 2 three specimens are tested. The manufactured specimens are measured before the tests (see Figure 18). The 3 evolution of both the applied load and the resulting displacement are measured using the build-in machine load 4 and displacement cells. The loading speed is fixed at 0.5mm/min. The evolution of the specimen displacement 5 field is measured using the Digital Image Correlation (DIC) technique (see Figure 19). Both the evolution of the 6 axial deformation and the Poisson's ratio of the samples are computed from the evolution of the specimen 7 displacement field. The specimens are displacement loaded using the build-in machine displacement command 8 instruction. The results obtained in terms of (a) the axial stress-strain evolution law and (b) the evolution of the 9 measured Poisson's ratio as a function of the axial deformation in Figure 20. The aluminum alloy exhibits two 10 distinct phases. The first one, the linear elastic phase, appears as extremely limited compared to the whole 11 deforming capability of the material (i.e. ~3% of the whole deforming capability of the material). The second 12 phase, the plasticization phase, appears on another side as extremely important (i.e. ~97% of the whole 13 deforming capability of the material). To model the effective stress-strain evolution law of each adherend, it is 14 then decided to fit a trilinear elastic-plastic evolution law onto the results obtained (see Figure 21). The material 15 law identified is provided in Table 4. A Poisson's ratio of 0.35 is considered.

16

- 17
- 18

19

Figure 18. Geometry of the aluminum bulk specimens.

2 Figure 19. Measuring the displacement field of aluminum bulk specimens using Digital Image Correlation

- Figure 20. Experimental characterization for aluminum bulk specimens in terms of axial stress-strain evolution
 law (a) and evolution of the measured Poisson's ratio (b). YT is the Young's modulus.
- 3

Figure 21. Experimental characterization of aluminum bulk specimens. Representation for the optimized
trilinear elastic plastic stress-strain evolution law.

8

9 Table 4. Definition of aluminum bulk material law identified. σ = true stress. ε = true strain.

	Elastic	Plastic 1	Plastic 2
Model (EPB)	$\sigma(arepsilon)$ = E $arepsilon$	$\sigma(\varepsilon) = \sigma_1 + E_{T,1}(\varepsilon - \varepsilon_1)$	$\sigma(\varepsilon) = \sigma_2 + E_{T,2}(\varepsilon - \varepsilon_2)$
		$E_{T,1} = 8800MPa$	$E_{T,2} = 250MPa$
Parameters	E = 66000 MPa	$\sigma_1 = 200.31 MPa$	$\sigma_2 = 232.84 MPa$
		$\varepsilon_1 = 0.003035$	$\varepsilon_{2} = 0.04$
Validity	$0 \le \varepsilon \le \varepsilon_1$	$\mathcal{E}_1 \leq \mathcal{E} \leq \mathcal{E}_2$	$\mathcal{E}_2 \leq \mathcal{E}$

10

11 4.2. Adhesive joint specimens

12 4.2.1. Overview of the experimental setting

The adhesive used is the SAF30 MIB adhesive from AEC Polymers / BOSTIK (ARKEMA Group). It is a methacrylate-based two-component adhesive paste. In order to enhance the adhesion properties between the adhesive layer and each adherend before bonding, both adherends are cleaned using the AEC Polymers T700 dry cleaning spray. In order to ensure a constant adhesive thickness along the overlap, two calibrated anti-adhesive tapes are stuck at each side of the bonded overlap (see Figure 3). The dimensions of each specimen are controlled after bonding (see Table 5). The applied load, the resulting displacement and the adherend-to-

1 adherend displacement field at crack tip are measured during the tests. The evolution of both the applied load 2 and the resulting displacement are measured using the build in machine load and displacement cells. The load 3 speed is 0.5 mm.min⁻¹. The evolution of the adherend-to-adherend displacement field is measured using the DIC 4 technique (see Figure 22 and Figure 23). The pure mode deformations of the adhesive layer are computed from 5 the relative displacement of the adherends neutral fibers (see Figure 24). Both DIC and build-in machine 6 measures are synchronized using an analogical-to-numerical National Instrument acquisition card, so that it 7 facilitates the processing of the adhesive CZM constitutive relationships. The mechanical stiffness of the tensile 8 test machine is characterized so that the resulting displacement measured by the build-in machine displacement 9 cell is corrected to fit the true displacement of the adhesive test specimens. Four specimens of each configuration 10 (e.g. ENF, DCB, MMB and SLJ) are tested. The SLJ specimens are tested for relevance assessment purposes 11 only. Correlations between experimental and numerical force versus resulting displacement curves are used to 12 assess the ability of the direct approach to characterize the CZM properties. A particular emphasis is given to the 13 ability of the suggested approach to provide both the experimental stiffness and the maximum load bearing 14 capability of each adhesive specimen. All the numerical tests presented in this paper are based on the simplified 15 stress analyses using ME, already presented in details in (Lélias et al. 2015).

- 16
- 17

Table 5. Controlled geometries of the ENF, DCB, MMB and SLJ joint specimens.

	а	L	1	t	e	b
ENF	29.82mm	71.43mm	N.A.	3.96mm	0.230mm	22.0mm
DCB	30.69mm	70.0mm	N.A.	3.96mm	0.180mm	22.0mm
MMB	30.21mm	70.89mm	N.A.	3.96mm	0.180mm	22.0mm
SLJ	N.A.	51.4mm	29.35mm	3.96mm	0.120mm	22.0mm

- 19
- 20
- 21
- 22

Figure 22. Experimental monitoring of the adherend-to-adherend displacement field using Digital Image
 Correlation (DIC) techniques. (a) End Notched Flexure (ENF) joint specimen. (b) Double Cantilever Beam
 (DCB) joint specimen. (c) Mixed-Mode Bending (MMB) joint specimen. (d) Single-Lap Joint (SLJ) joint
 specimen

5

9 Figure 23. Experimental monitoring of the adherend-to-adherend displacement field using Digital Image
10 Correlation (DIC) techniques. (a) End Notched Flexure (ENF) joint specimen. (b) Double Cantilever Beam
11 (DCB) joint specimen. (c) Mixed-Mode Bending (MMB) joint specimen. (d) Single-Lap Joint (SLJ) joint
12 specimen.

Figure 24. Schematic representation for the geometrical relationships between both shear and peel deformations
 of the adhesive layer and the relative displacement of the surrounding adherends. γ: adhesive shear strain. ε:
 Adhesive peel strain. γe: adhesive shear displacement jump between P2-P1. (1+ε)e: adhesive peel displacement
 jump between P2-P1.

5

6 4.2.2. Test results and modelling under pure modes

7 The constitutive traction separation law of the adhesive layer obtained in the case of pure mode I and pure mode 8 II loadings is presented in Figure 25-(a) and Figure 26-(a) respectively. The CZM parameters for pure mode I 9 and pure mode II l are then provided in Table 6 and Table 7 respectively. On each pure mode, the model 10 obtained is composed by 3 parts: an elastic part, a plastic part and a softening part. The identification of CZM 11 parameters is performed on the envelope curves built from the cyclic response, using the elastic stiffness of 12 adherends. The hypothesis underlying is that the Young's modulus does not vary significantly during the plastic 13 phase. Even if this hypothesis does not hold at large strain of adherends, it allows drastic simplification of the 14 identification process. It means that the adherend stiffnesses used for the identification in Eqs. (18), (21), (23) 15 and (24) correspond to the initial elastic values. A numerical test is then performed assuming a nonlinear 16 behavior for both the adherends (following the trilinear approximation in Table 4, see Appendix C) and the 17 adhesive layer. The numerical test predictions, in terms of load / displacement curve, are then compared to the 18 experimental test results on DCB and ENF specimens in Figure 25-(b) and Figure 26-(b) respectively. A good 19 agreement is shown.

20

\mathbf{a}	1
2	T

	а	L	t	e	b
Dimensions	30.69mm	70.0mm	3.96mm	0.180mm	22.0mm

	a	L	t	e	b
Dimensions	29.82mm	71.34mm	3.96mm	0.230mm	22.0mm

Experimental

Figure 26. (a) Experimental adhesive traction separation law in pure mode II. (b) Comparison between
experimental results and numerical predictions in terms of load versus displacement curves.

Table 6.	CZM	properties	in	pure	mode	L
1 4010 01		properties		P ···· ·		-

	Elastic	Plastic	Softening
Model (CZM)	$S(\varepsilon) = \frac{k_s \varepsilon_1}{\ln(e_s)} \left(1 - \exp\left(\frac{\ln(e_s)}{\varepsilon_1}\varepsilon\right) \right)$	$S(\varepsilon) = S_1 + k_{S,1}(\varepsilon - \varepsilon_1)$	$S(\varepsilon) = S_2 \frac{\varepsilon_3 - \varepsilon}{\varepsilon_3 - \varepsilon_2}$
	$k_s = 250MPa$	$k_{s,1} = 2.5 MPa$	$S_2 = 10.99MPa$
Parameters	$e_{s} = 0.030$	$S_1 = 10.37 MPa$	$\varepsilon_2 = 0.4$
	$\varepsilon_1 = 0.15$	$\varepsilon_1 = 0.15$	$\varepsilon_3 = 0.75$
Validity	$0 \le \varepsilon \le \varepsilon_1$	$\mathcal{E}_1 \leq \mathcal{E} \leq \mathcal{E}_2$	$\mathcal{E}_2 \leq \mathcal{E} \leq \mathcal{E}_3$

1 abit 7. CZIVI properties in pure mode i	Table 7.	CZM	properties	in	pure	mode I	I
---	----------	-----	------------	----	------	--------	---

		Elastic	Plastic	Softening
Model (CZM)	$T(\gamma) = \frac{k_T \gamma_1}{\ln(e_T)} \left(1 - \exp\left(\frac{\ln(e_T)}{\gamma_1}\gamma\right) \right)$	$T(\gamma) = T_1 + k_{T,1}(\gamma - \gamma_1)$	$T(\gamma) = T_2 \frac{\gamma_3^{3} - \gamma^3}{\gamma_3^{3} - \gamma_2^{3}}$

	$k_T = 110MPa$	$k_{T,1} = 2.5MPa$	$T_2 = 10.48 MPa$
Parameters	$e_{T} = 0.075$	$T_1 = 7.85 MPa$	$\gamma_2 = 1.25$
	$\gamma_1 = 0.2$	$\gamma_1 = 0.2$	$\gamma_3 = 1.675$
Validity	$0 \le \gamma \le \gamma_1$	$\gamma_1 \leq \gamma \leq \gamma_2$	$\gamma_2 \leq \gamma \leq \gamma_3$

2 4.2.3. Test results and modelling under mixed-mode I/II

3 As previously, the constitutive relationships of the adhesive layer when facing mixed-mode I/II solicitations are 4 investigated using the direct method. Nevertheless, the exploitation of test results fails, due to the limited axial 5 displacements of both upper and lower adherends nearby the adhesive crack tip. It results in badly conditioned 6 measures of the adherends axial displacements, from which the differentiation with respect to x is insufficiently 7 accurate. An alternative characterization method is then developed for determining the effective mixed-mode I/II 8 properties of the tested MMB specimens. It is suggested to use an inverse characterization method based on 9 numerical tests. The CZM properties in pure mode I and pure mode II are considered as well as the nonlinear 10 adhered behavior. Both initiation and propagation mixed-mode criteria are assumed as following power law 11 energetical relationships (see Eq. (7)). The idea is then to adjust the value of the value of the exponent n=m in 12 order numerical prediction fit the experimental tests. In this study, the identification was made according to tests 13 with two different value of mixed-mode ratio, by the use of two different lever arm denoted c. Similarly to the 14 previous pure mode tests, the experimental test results and numerical test predictions for both mixed-mode ratios 15 are compared in terms of load / displacement curve in Figure 27. The presented comparison is for n=m=1. Good 16 agreement is shown.

17

18

	a	L	t	e	b
Dimensions	30.21mm	70.89mm	3.96mm	0.180mm	22.0mm

Figure 27. Determination of the effective mixed-mode properties of the adhesive layer using the inverse
method. Comparison between experimental results and semi-analytical predictions in terms of load versus
displacement curve.

5

6 In order to assess the relevance of the measured constitutive stress-strain relationships of the adhesive layer 7 subjected to pure mode I, pure mode II and mixed-mode I/II adhesive loadings, experimental test results and 8 numerical test predictions are compared on the configuration of the SLJ configuration. As shown, in Figure 28, 9 good agreement is shown in terms of both stiffness and maximum load bearing capability of the SLJ joint 10 specimen. Nevertheless, the single-lap joint configuration is known to be submitted significantly more in mode I 11 than in mode II due to the eccentricity of the load path generating secondary bending moment and large peel 12 stresses at both overlap ends. To validate the behavior law under mixed-mode, other experimental tests should be 13 conducted based on various loading and geometrical configurations.

14

	L	1	t	e	b
Dimensions	51.4mm	29.35mm	3.96mm	0.120mm	22.0mm

1

Figure 28. Comparison between experimental results and semi analytical predictions in terms of load versus
displacement curve.

5 5. Conclusion

6 In this paper, a direct method for the assessment of the CZM parameters of a thin adhesive layer is presented and 7 then implemented. This method is based on the measurement of the displacement field of adherends at the crack 8 tip of classical adhesively bonded specimens (i.e.: ENF, DCB, MMB), allowing for pure mode I, pure mode II 9 and mixed-mode I/II loadings. Nevertheless, the identification presented remains dependent of the modelling 10 framework. The experimental implementation makes use of a methacrylate-based two-component adhesive 11 paste, found under the commercial reference SAF30 MIB manufactured by AEC Polymers / Bostik (ARKEMA 12 Group). The adherends are made in aluminum alloy (6060 series). The adhesive constitutive stress-strain 13 relationships are derived from the monitoring of the evolution at crack tip of both the relative displacement of 14 interfaces and the displacement field of the adherend, using the DIC technique. The main difficulty encountered 15 within the experimental implementation concerns the experimental measurements. Indeed, a dedicated data 16 preprocessing (see Appendix B) is developed to best fit the experimental data coming from the DIC technique. 17 The use of experimental measurement providing a higher resolution such as Speckle interferometry could be 18 more suitable.

In pure mode I and pure mode II, it is shown that the adhesive layer experiences three distinct phases. The first one, the linear elastic phase, appears as extremely limited compared to the whole deforming capability of the adhesive layer. A mathematical model is then provided for each mode. Under mixed-mode, the data preprocessing fails in interpreting the experimental measurements, so that a dedicated method is suggested. The mathematical models are then implemented to perform numerical tests using a simplified stress analysis based on

1 ME. In terms of global behavior, the predictions of numerical tests are in a close agreement with the results of 2 experimental tests, up to the final failure of specimens. Besides, it is indicated that the identification of CZM 3 properties presented in this paper involves specimens, the adherends of which experienced plasticization. Even if 4 the simplified stress analysis based on ME allowing for numerical tests supports both nonlinear adhesive and 5 adherend material behavior, the embedded level of complexity in the experimental test procedure appears as 6 elevated. The implementation of the direct method should be then tested through various combinations of 7 adherends and adhesive materials and various geometries, some of which should prevent the adherends to 8 plasticize, to assess the reliability of the experimental procedure. The effect of the adhesive thickness on the 9 material law could be investigated using measurement means with a better performance.

10

11 Acknowledgement

12 The authors gratefully acknowledge Mr Christian Bret, CEO of AEC Polymers, for the supplying of materials.

13

14 Appendix A

Considering the local equilibrium equations Eqs. (8), the adhesive stresses are replaced by their expressions as functions of adherend displacements Eqs. (9). In conjunction Eqs (10), it results in a system of twelve linear first-order ordinary differential:

$$18 \begin{cases} \frac{du_{1}}{dx} = \frac{D_{1}}{A_{1}}N_{1} + \frac{B_{1}}{A_{1}}M_{1} \\ \frac{du_{2}}{dx} = \frac{D_{2}}{A_{2}}N_{1} + \frac{B_{2}}{A_{2}}M_{2} \\ \frac{dv_{1}}{dx} = \theta_{1} \\ \frac{dv_{2}}{dx} = \theta_{2} \\ \frac{d\theta_{1}}{dx} = \frac{B_{1}}{A_{1}}N_{1} + \frac{A_{1}}{A_{1}}M_{1} \\ \frac{d\theta_{2}}{dx} = \frac{B_{2}}{A_{2}}N_{2} + \frac{A_{2}}{A_{2}}M_{2} \end{cases}$$

$$(A1) \\ \frac{dN_{1}}{dx} = bk_{II}u_{1} + bk_{II}h_{1}\theta_{1} - bk_{II}u_{2} + bk_{II}h_{2}\theta_{2} \\ \frac{dN_{2}}{dx} = -bk_{I}u_{1} - bk_{I}v_{1} + bk_{II}h_{2}\theta_{2} \\ \frac{dV_{2}}{dx} = -bk_{I}v_{1} + bk_{I}v_{2} \\ \frac{dV_{2}}{dx} = -bk_{I}v_{1} + bk_{I}v_{2} \\ \frac{dW_{2}}{dx} = -bk_{I}v_{1} - bk_{I}v_{2} \\ \frac{dW_{2}}{dx} = -bk_{I}v_{1} + bk_{II}h_{2}h_{2}\theta_{2} - V_{1} \\ \frac{dM_{2}}{dx} = bh_{2}k_{II}u_{1} + bk_{II}h_{2}h_{2}\theta_{1} - bh_{2}k_{II}u_{2} + bk_{II}h_{2}h_{2}\theta_{2} - V_{2} \end{cases}$$

19 This system can be written as $\frac{dX}{dx} = AX$ where A is 12x12 matrix with real constant components and the 20 unknown vector X such that ${}^{t}X = (u_1 \ u_2 \ v_1 \ v_2 \ \theta_1 \ \theta_2 \ N_1 \ N_2 \ V_1 \ V_2 \ M_1 \ M_2)$. But the elementary stiffness matrix

- 1 corresponds to the relationship between the vector of nodal forces and the vector of nodal displacements
- 2 (Paroissien 2006a, Paroissien 2006b, Paroissien et al. 2007, Paroissien et al. 2013, Lélias et al. 2015), such as:

$3 \qquad \begin{vmatrix} N_2(\Delta) \\ -V_1(0) \\ -V_2(0) \\ V_1(\Delta) \end{vmatrix} = K_{BBe} \begin{vmatrix} u_2(\Delta) \\ v_1(0) \\ v_2(0) \\ v_2(0) \\ v_1(\Delta) \end{vmatrix}$	$3 \qquad \begin{pmatrix} N_{2}(\Delta) \\ -V_{1}(0) \\ -V_{2}(0) \\ V_{1}(\Delta) \\ V_{2}(\Delta) \\ -M_{1}(0) \\ M_{1}(0) \end{pmatrix} = K_{BBe} \begin{vmatrix} u_{2}(\Delta) \\ v_{1}(0) \\ v_{2}(0) \\ v_{1}(\Delta) \\ v_{2}(\Delta) \\ \theta_{1}(0) \\ \theta_{1}(0) \end{vmatrix}$	$\begin{pmatrix} -N_1(0) \\ -N_2(0) \\ N_1(\Delta) \end{pmatrix}$		$\begin{pmatrix} u_1(0) \\ u_2(0) \\ u_1(\Delta) \end{pmatrix}$	
	$ \begin{vmatrix} V_1(\Delta) \\ V_2(\Delta) \\ -M_1(0) \\ M_1(0) \end{vmatrix} \qquad $	$3 \qquad \begin{array}{c} N_2(\Delta) \\ -V_1(0) \\ -V_2(0) \\ V_1(\Delta) \end{array}$	$= K_{BBe}$	$ \begin{array}{c} u_2(\Delta) \\ v_1(0) \\ v_2(0) \\ v_1(\Delta) \end{array} $	

5 The fundamental matrix of *A*, termed Φ_A , is computed at x=0 and $x=\Delta$; using the SCILAB software, the 6 associated command is "expm":

7
$$\begin{cases} \Phi_A(x=0) = expm(A,0) \\ \Phi_A(x=\Delta) = expm(A,\Delta) \end{cases}$$
 (A3)

8 From these both 12*12 matrices, two matrices M' and N' are extracted. M' (N') is composed of the lines related

9 to the nodal displacements (forces). For each, a first block of six lines and twelve rows comes from $\Phi_A(x=0)$ and

10 the second block of six lines and twelve rows come from $\Phi_A(x=\Delta)$, such that:

11
$$\begin{cases} M' = \Phi_U(0,\Delta) = \begin{pmatrix} [\Phi_A(x=0)]_{i=1,2,3,4,5,6}; j=1:12 \\ [\Phi_A(x=\Delta)]_{i=1,2,3,4,5,6}; j=1:12 \end{pmatrix} \\ N' = \Phi_F(0,\Delta) = \begin{pmatrix} [\Phi_A(x=0)]_{i=7,8,9,10,11,12}; j=1:12 \\ [\Phi_A(x=\Delta)]_{i=7,8,9,10,11,12}; j=1:12 \end{pmatrix} \end{cases}$$
(A4)

12 where *i* (*j*) indicates the line (row) number.

As K_{BBe} is defined according to $([u_1(0) \ u_2(0) \ u_1(\Delta) \ u_2(\Delta) \ v_1(0) \ v_2(0) \ v_1(\Delta) \ v_2(\Delta) \ \theta_1(0) \ \theta_2(0) \ \theta_1(\Delta) \ \theta_2(\Delta)])$, a simple rearrangement of the order of lines of M' is performed to produce the matrix M. Similarly, the matrix N'is submitted to the same operation. In a same way, the terms related to nodal forces at x=0 are multiplied by -1 to follow the arrangement $([-N_1(0) - N_2(0) \ N_1(\Delta) \ N_2(\Delta) - V_1(0) - V_2(0) \ V_1(\Delta) \ V_2(\Delta) - M_1(0) - M_2(0) \ M_1(\Delta) \ M_2(\Delta)])$. It leads to the definition of the matrix N. The elementary stiffness matrix K_{BBe} is equal to the product of N and the inverse of M (Paroissien *et al.* 2013, Lélias *et al.* 2015): $K_{BBe}=N.M^{-1}$.

- 19 Even if it is not the topic of this paper, it is obvious that this previous approach can be easily used to develop
- 20 ME, under different local equilibrium equations (e.g. Hart-Smith (Hart-Smith 1973, Luo and Tong 2009,
- 21 Paroissien et al. 2018) or under different constitutive equations (e.g. Tsaï et al. (Tsaï et al. 1998)) and/or
- 22 including different number layers of adhesives and adherends (e.g. double lap joint configuration). It is indicated
- that the resolution using the exponential matrix was already been used in previous works (Gustafson et al. 2006),

(Gustafson and Waas 2007, Gustafson 2008, Gustafson and Waas 2009, Stapleton and Waas 2009, Stapleton *et al.* 2010, Stapleton 2012, Stapleton *et al.* 201, Stapleton *et al.* 2017). The use of the resolution scheme using the
 exponential matrix is suitable in the case of nonlinear analysis since a mesh is required. It is suitable in the case
 of non-homogeneous elastic adhesive properties too (Paroissien *et al.* 2018). Besides, it is useful for the
 formulation of new macro-elements under various simplified hypotheses (Paroissien *et al.* 2018).

6

7 Appendix B

8 The data pre-processing algorithm used to reduce experimental noises from the measured adherend-to-adherend 9 displacement fields then lies on the digital mapping of the adherend-to-adherend axial (transverse) displacement 10 fields as a set of 2D matrices. First, the evolution of the axial (transverse) displacement field of each adherend is 11 mapped as 3D tensors resuming both the distributions of the adherend axial (transverse) displacements nearby 12 the adhesive crack tip as well as their respective evolutions. Then, the constructed 3D tensors of dimensions x, y13 and t are rearranged in the form of simpler 2D matrices so that their new dimensions are respectively y and x^*t 14 (see Figure B-1). The constructed 2D matrices are then filtered using the rank-R reduction approximation based 15 on the SVD of the raw experimental results, so that R is chosen to capture 95% of the original data energy in the 16 sense of the Frobenius norm (see Figure B-2). The evolution of each adherend axial and transverse displacement 17 fields are then reconstructed from their respective decompositions and rearranged in the form of 3D tensors, so 18 that the displacements of the upper (lower) neutral fiber are finally extracted from the reconstructed axial and 19 transverse displacement fields and formatted into the relevant beam or plate theory (see Figure B-3). Finally, the 20 differentiation of the adherends cross-section rotation is ensured by fitting a polynomial series so that the vertical 21 deviation with experimental data is minimized in the sense of the least squares method by using the Moore-22 Penrose pseudo inverse technique.

Besides, a full factorial design of experiments is performed in order to assess the algorithmic parameters on the accuracy of the measure. It consists in the following: (i) vary one factor at a time, (ii) perform experiments for all levels and combination of levels for all factors, (iii) hence perform a large number of experiments, (iv) so that all effects and interactions are captured. The main results for each of five factors selected are presented hereafter.

(i) The initial signal to noise ratio appears as a key parameter in increasing the accuracy of measuring the
successive derivatives of the upper adherend displacement field. It suggests that a significant attention has to be
given into reducing the noise of the measured signal before any pre-processing of the data. This can be achieved
in various ways so that it results in improving the overall quality of the displacement measures (DIC).

(ii) The spatial resolution of the instantaneous images of the upper adherend displacement field also appears as a
 key parameter in increasing the accuracy of the estimation of the successive derivatives of the upper adherend
 displacements. A particular attention has then to be given to measuring the displacements of the upper adherend
 with a sufficient enough spatial resolution.

(iii) On another side, the time resolution (i.e. number of images of the upper adherend displacement field taken
during the experiment) appears as negligibly influencing the accuracy of the estimation of the successive
derivatives of the upper adherend displacements. Its own effect as well as its respective interactions with other
factors can be legitimately neglected at first sight.

9 (iv) Similarly to the initial signal to noise ratio or the spatial resolution of the displacement images, the degree of 10 the polynomial series used for fitting/differentiating the pre-processed displacements also appears as a parameter 11 that has to be chosen with extreme caution. Indeed, although increasing the degree of the polynomial series from 12 four to six appears as negligibly influencing the overall accuracy of the measure, increasing it from six to eight 13 results in a serious degradation of the accuracy of the measure. This degradation of the accuracy of the 14 measurement using high order polynomials is a well-known issue, and is due to the oscillation of the polynomial 15 series around the experimental set of data points for increasing degrees. A particular attention has then to be 16 given in choosing the best compromise between fitting the experimental points using high order polynomials 17 functions and preserving the overall accuracy of the measurement of its successive derivatives.

18 (v) Finally, the choice of the Moore-Penrose pseudo inverse model for minimizing in the sense of the least 19 squares method the vertical deviation between the polynomial function (i.e. used for fitting/differentiating the set 20 of experimental data points) and the experimental data points themselves appears as a worthwhile way of 21 influencing the accuracy of the measured displacement derivatives. It is then suggested that simultaneously 22 accounting for both v(x) and $\theta(x)=dv(x)/dx$ when fitting/differentiating the experimental set of data points 23 significantly increases the accuracy of the measurement.

Figure B-1. Digital mapping of the adherend-to-adherend axial and transverse displacement fields.

2 Figure B-2. Filtering of the experimental results using the rank-R reduction approximation based on Singular

Value Decomposition (SVD).

 $\frac{1}{2}$

Figure B-3. Extraction of the displacements of each adherend neutral fiber.

4 Appendix C

5 The beam model use for the adherends allows for the consideration of the Young's modulus graduation in the

6 thickness. The constitutive equations for the normal force and bending moment are derived as it follows.

7 Using the Euler-Bernoulli kinematics, the normal force N_j of the adherend *j* is written such as:

8
$$N_j = \int \sigma_{xx} dS = \int E_j(y) \varepsilon_{xx} dS = \int E_j(y) \left[\frac{du_j}{dx} - y \frac{d\theta_j}{dx} \right] dS$$
 (C-1)

9 It leads to:

10
$$N_{j} = \left(\int E_{j}(y)dS\right)\frac{du_{j}}{dx} - \left(\int E_{j}(y)ydS\right)\frac{d\theta_{j}}{dx} = A_{j}\frac{du_{j}}{dx} - B_{j}\frac{d\theta_{j}}{dx}$$
(C-2)

11 The same approach is used for the bending moment:

12
$$M_{j} = \int -y\sigma_{xx}dS = \int -yE_{j}(y)\varepsilon_{xx}dS = \int -yE_{j}(y)\left[\frac{du_{j}}{dx} - y\frac{d\theta_{j}}{dx}\right]dS$$
(C-3)

1 leading to:

2
$$M_j = -\left(\int E_j(y)ydS\right)\frac{du_j}{dx} + \left(\int E_j(y)y^2dS\right)\frac{d\theta_j}{dx} = -B_j\frac{du_j}{dx} + D_j\frac{d\theta_j}{dx}$$
(C-4)

To take into account for the nonlinear behavior of adherends, the iterative Newton-Raphson procedure associated with the secant stiffness matrix is used, which is detailed in (Lélias 2015). The secant Young's modulus of adherends is then updated following the behavior law identified in Table 4. As a result the stiffness parameters A_j , B_j and D_j are updated consequently. In particular, when the isotropic adherends begin to plasticize, the coupling membrane-bending stiffness B_j could become different from zero.

8

9 **REFERENCES**

(Alfredsson *et al.* 2003) Alfredsson K.S., Biel A. and Leffler K., 2003. An experimental method to determine the
 complete stress-deformation relation for a structural adhesive layer loaded in shear. In: Proceeding to 9th
 International Conference on The Mechanical Behavior of Materials, Geneva, Switzerland.

13

(Alfredsson 2004) Alfredsson K.S., 2004. On the instantaneous energy release rate of the end notched flexure
adhesive joint specimen. Int. J. Solids Struct. 41, 4787-4807.

16

(Allix and Ladevèze 1996) Allix O. and Ladevèze P., 1996. Damage mechanics of interfacial media: Basic
aspects, identification and application to delamination, in *Damage and Interfacial Debonding in Composites*,
Studies in Applied Mechanics, 44, D. Allen and G. Voyiadjis (Eds.), pp. 167-88, Elsevier.

- 20
- 21 (Andersson and Stigh 2004) Anderson T. and Stigh U., 2004. The stress-elongation relation for an adhesive
 22 loaded in peel using equilibrium of energetic forces. Int. J. Solids Struct. 41, 413-434.
- 23

(Andrews and Patterson 1973) Andrews H.C. and Patterson C.L., 1976. Singular value decomposition and digital
 iamge processing. IEEE Transactions on ASSP-24, 26-53

26

(Azari *et al.* 2009) Azari S., Eskandarian M., Papini M., Schroeder J.A. and Spelt J.K., 2009. Fracture load
predictions and measurements for toughened epoxy adhesive joints. Eng. Fract. Mech. 76, 2039-2055.

1	(Bartczak and Geleski 2010) Bartczak Z. and Geleski A., 2010. Plasticity of semicrystalline polymers.
2	Macromolecular Symposia 294, Issue 1, 67-90.
3	
4	(Camphilho et al. 2013) Campilho R.D.S.G., Banea M.D., Neto J.A.B.P. and Da Silva L.F.M., 2013. Modelling
5	adhesive joints with cohesive zone models: Effects of the cohesive law shape of the adhesive layer. Int. J. Adhes.
6	Adhes. 44, 48-56.
7	
8	(Clarke et al. 2003) Clarke J.L., 2003. Structural design of polymer composites: Eurocomp design code and
9	background document. CRCpress. ISBN 0203475135, 9780203475133.
10	
11	(Cui et al. 2014) Cui H., Koussios S., Li Y. and Beukers A., 2014. Constitutive law of adhesive layer measured
12	with mixed-mode bending test. Eng. Fract. Mech. 127, 235-251.
13	
14	(Da Silva and Campilho 2012) Da Silva L.F.M. and Campilho R.D.S.G., 2012. Advances in numerical modeling
15	of adhesive joints. Springer Briefs in Computational Mechanics, DOI 10.1007/978-642-23608_1.
16	
17	(De Moura et al. 2009) De Moura M.F.S.F., Campilho R.D.S.G. and Goncalves J.P.M., 2009. Mixed-mode
18	cohesive damage model applied to the simulation of the mechanical behavior of laminated composite adhesive
19	joints. J. Adhes. Sci. Technol. 23, Issue 10-11, 1477-1491.
20	
21	(Fraisse and Schmit 1993) Fraisse P. and Schmit F., 1993. Use of J-integral as fracture parameter in simplified
22	analysis of bonded joints. Int. J. Fract. 63, 59-73.
23	
24	(Goland and Reissner 1944) Goland M. and Reissner E., 1944. The stresses in cemented joints, J. Appl. Mech.
25	11, A17-A27.
26	
27	(Gowrishankar S. et al. 2012) Gowrishankar S., Mei H., Liechti K.M. and Huang R., 2012. A comparison of
28	direct and iterative methods for determining traction-separation relations. Int. J. Fract. 177, 109-128.
29	

1	(Goustanios and Sørensen 2012) Goustanios S. and Sørensen B.F., 2012. Path dependence of truss-like mixed
2	mode cohesive laws. Eng. Fract. Mech. 91, 117-132.
3	
4	(Gustafson et al. 2006) Gustafson, P.A., Bizard, A., M. Waas., 2006. A macroscopic joint finite element for a
5	symmetric double lap joint. Proceedings of the American Society of Composites 21st Annual Technical
6	Conferences, No. 24, American Society of Composites.
7	
8	(Gustafson and Waas 2007) Gustafson, P.A., Waas, A.M., 2007. A macroscopic finite element for a symmetric
9	double lap joint subjected to mechanical and thermal loading. 48th AIAA/ASME/ASCE/AHS/ASC Structures,
10	Structural Dynamics, and Materials Conference, 23-26 April 2007, Honolulu, Hawaii.
11	
12	(Gustafson 2008) Gustafson, P.A., 2018. Analytical and experimental methods for adhesively bonded joints
13	subjected to high temperatures PhD thesis, University of Michigan. Michigan.
14	
15	(Gustafson and Waas 2009) Gustafson, P.A., Waas, A.M., 2009. A bonded joint finite element for a symmetric
16	double lap joint subjected to mechanical and thermal loads. Int. J. Numer. Meth. Eng., 79(1), 94-126.
17	
18	(Hart-Smith 1973) Hart-Smith L.J., 1973. Adhesive bonded single lap joints. NASA Technical Report, CR-
19	112236, Douglas Aircraft Company, Long Beach, California.
20	
21	(Hart-Smith 1980) Hart-Smith L.J., 1980. Adhesive Bonding of Aircraft Primary Structures. SAE Technical
22	Paper 801209.
23	
24	(Högberg 2006) Högberg J.L., 2006. Mixed-mode testing of adhesive layer. In: Proceeding to 27th International
25	Symposium on Materials Science, Polymer Composite Materials for Wind Power Turbines, Risø, Denmark.
26	

- 27 (Högberg and Stigh 2006) Högberg J.L. and Stigh U., 2006. Specimen proposals for mixed-mode testing of
 28 adhesive layer. Eng. Fract. Mech. 73, 2541-2556.

1	(Jumel et al. 2006) Jumel J., Budzik M.K., Ben Salem N., Shanahan M.E.R., 2013. Instrumented end notched
2	flexure - Crack propagation and process zone monitoring. Part I: Modelling and Analysis. Int. J. Adhes. Adhes.
3	50, N°2, 297-309.
4	
5	(Khoramishad et al. 2010) Khoramishad H., Crocombe A.D., Katnam K.B. and Ashcroft I.A., 2010. A
6	generalized damage model for constant amplitude fatigue loading of adhesively bonded joints. Int. J. Adhes.
7	Adhes. 30, 513-521.
8	
9	(Khoramishad et al. 2011) Khoramishad H., Crocombe A.D., Katnam K.B. and Ashcroft I.A., 2011. Fatigue
10	damage modeling of adhesively bonded joints under variable amplitude loading using cohesive zone model. Eng.
11	Fract. Mech. 78, 3212-3225.
12	
13	(Kelly 2006) Kelly G., 2006. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-
14	lap joints. J. Compos. Struct. 72, 119-129.
15	
16	(Kenane and Benzeggagh 1997) Kenane M. and Benzeggagh M.L., 1997. Mixed-mode delamination fracture
17	toughness of unidirectional glass/epoxy composites under fatigue loading. Compos. Sci. Technol. 57, 597-605.
18	
19	(Leffler et al. 2007) Leffler K., Alfredsson K.S. and Stigh U., 2007. Shear behavior of adhesive layers. Int. J.
20	Solids Struct. 44, 530-545.
21	
22	(Lélias et al. 2015) Lélias G., Paroissien E., Lachaud F., Morlier J., Schwartz S. and Gavoille C., 2015. An
23	extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints.
24	Int. J. Solids and Struct. 62, 18-38.
25	
26	(Luo and Tong 2009) Luo Q. and Tong L., 2009. Analytical solutions for nonlinear analysis of composite single-
27	lap joints, Int. J. Adhes. Adhes. 29, 144-154.
28	

1	(Paroissien 2006a) Paroissien E., 2006. Contribution aux Assemblages Hybrides (Boulonnés/Collés) -
2	Application aux Jonctions Aéronautiques. PhD Dissertation (in French), Université de Toulouse III (2006), on
3	line <u>http://thesesups.ups-tlse.fr/3/</u>
4	
5	(Paroissien et al. 2006b) Paroissien E., Sartor M., Huet J. and Lachaud F., 2006. Hybrid (Bolted/Bonded) Joints
6	Applied to Aeronautic Parts: Analytical Two-Dimensional Model of a Hybrid (Bolted/Bonded) Single-Lap Joint.
7	47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference (47th SDM
8	AIAA), 1-4 May 2006, Newport (RI), paper AIAA-2006-2268
9	
10	(Paroissien et al. 2007) Paroissien E., Sartor M., Huet J. and Lachaud F., 2007. Analytical two-dimensional
11	model of a hybrid (bolted/bonded) single-lap joint. J. Aircraft 44, 573-582.
12	
13	(Paroissien et al. 2013) Paroissien E., Lachaud F. and Jacobs T., 2013. A simplified stress analysis of bonded
14	joints using macro-elements. In: Advances in Modeling and Design of Adhesively Bonded Bonded Systems, S.
15	Kumar and K.L. Mittal (Eds), 93-146, Wiley-Scrivener, Beverly, Massachusetts.
16	
17	(Paroissien et al. 2018) Paroissien E. da Silva L.F.M., Lachaud F., 2018. Simplified stress analysis of
18	functionally graded single-lap joints subjected to combined thermal and mechanical loads. Compos. Struct., Vol.
19	203, pp. 85-100 [DOI: 10.1016/j.compstruct.2018.07.015]
20	
21	(Reeder and Crews 1990) Reeder J.R. and Crews J.R., 1990. Mixed-mode bending method for delamination
22	testing. AIAAA J. 28, N°7, 1270-1276.
23	
24	(Rice 1968) Rice J.R., 1968. A path independent integral and the approximate analysis of strain concentration by
25	notches and cracks. J. of Appl. Mech. 35, 379-386.
26	
27	(Stapleton and Waas 2009) Stapleton, S.E., P.A., Waas, A.M., 2007. Macroscopic finite element for a single lap
28	joint. 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4-7 May
29	2009, Palm Springs, California.
30	

1	(Stapleton et al. 2010) Stapleton, S.E., P.A., Waas, A.M., Bednarcyk, B.A., 2010. Modelling progressive failure
2	of bonded joints using a single joint finite element. 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural
3	Dynamics, and Materials Conference, 12-15 April 2010, Orlando, Florida.
4	
5	(Stapleton 2012) Stapleton, S.E., 2012. The analysis of adhesively bonded advanced composite joints using joint
6	finite elements. PhD thesis, University of Michigan. Michigan.
7	
8	(Stapleton et al. 2012) Stapleton, S.E., Waas A.M., Arnold, S.M., 2012. Functionally graded adhesive joints. Int.
9	J. Adhes. Adhes., 35, 36-49.
10	
11	(Stapleton et al. 2017) Stapleton, S.E., Weimer, J., Spengler, J., 2017. Design of functionally graded joints using
12	a polyurethane-based adhesive with varying amounts of acrylate, Int. J. Adhes. Adhes., 76, 38-46.
13	
14	(Tsaï et al. 1998) Tsai M.Y., Oplinger D.W. and Morton J., 1998. Improved theoretical solutions for adhesive
15	lap joints. Int. J. Solids Struct. 35, 1163-1185.
16	
17	(Turon et al. 2010) Turon A., Camanho P.P., Costa J. and Renart J., 2010. Accurate simulation of delamination
18	growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic
19	stiffness. Compos. Struct. 92, 1857-1864.
20	
21	(Valoroso and Champaney 2004) Valoroso N. and Champaney L., 2004. A damage model for simulating
22	decohesion in adhesively bonded assemblies. In: Proceeding to European Congress on Computational Methods
23	in Applied Sciences and Engineering, Jyvakyla, Finland.
24	
25	(Weissgraeber et al. 2014) Weissgraeber P., Stein N. and Becker W., 2014. A general sandwich type model for
26	adhesive joints with composite adherends. Int. J. Adhes. Adhes. 55, 56-63.
27	
28	(Wu et al. 2016) Wu C., Gowrishankar S., Huang R. and Liechit K.M., 2013. On determining mixed-mode
29	traction-speration relations for interfaces. Int. J. Fract. 202, 1-19.
30	