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The demand for designing lightweight structures without any loss of strength or stiffness has conducted many engineers and researchers to seek for alternative joining methods. In this context, adhesive bonding may appear as an attractive joining method. However the interest of adhesive bonding remains while the structural integrity of the joint is ensured. According to recent literature the Cohesive Zone Model (CZM) appears as a suitable approach able to predict both static and fatigue strength of adhesively bonded joints. This approach of the fracture process of adhesive layers is based on the modeling of the adhesive mechanical behavior through a set of adhesive cohesive properties in either mode I, mode II or mixed-mode I/II. The strength prediction of adhesively bonded joints is then highly dependent on the CZM parameters. The methods used to experimentally characterize them are thus essential. A new methodology, termed direct method, is presented and tested. It is based on the measurement of displacement field of bonded adherends at the crack tip of classical specimens allowing for the loading of the adhesive layer in pure mode I, pure mode II and mixed-mode I/II. The tested adhesive is a methacrylate-based two-component adhesive paste found under the reference SAF30 MIB manufactured by AEC Polymers (ARKEMA group). The adherends are in aluminium 6060. It is shown that it is possible to characterize the cohesive properties of the adhesive layer using the direct method. The numerical tests involve both adherends and adhesive nonlinearities. Nevertheless, the presented experimental implementation passes by the development of a dedicated data pre-processing to interpret the experimental measurements, highlighting the significance of the choice of the measurement means linked to the design of specimen.
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NOMENCALTURE AND UNITS

Introduction

In the frame of structural design, the choice of joining technologies is decisive since they guarantee the integrity of the manufactured system. The mechanical fastening, such as riveting or screwing, appears the reliable solution for the designers. Nevertheless alone or in combination with the mechanical fastening, the adhesive bonding joining technology may offer significantly improved mechanical performance in terms of stiffness, static strength and fatigue strength (Hart-Smith 1980, Kelly 2006). The use of this higher level of mechanical performance allows for the design of lighter joints. In other words, the adhesive bonding offers the possibility to reduce the structural mass while ensuring the mechanical strength. The optimization of the strength-to-mass ratio is a challenge for several industrial sectors, such as aerospace, automotive, rail or naval transport industries. But, the reduction of structural mass makes sense only if the structural integrity is ensured. As result to take benefit from the adhesive bonding in view of mass reduction, it is required to be able to predict the strength of bonded joints. The strength prediction consists in the comparison of computed strength criteria to design allowable value. The strength criteria could be based on theoretical, empirical, semi-empirical investigations and possibly including in-service feedback. The stress analysis allows for the computation of input data, mandatory to the assessment of strength criteria. The experimental characterization allows then for the definition of design allowable value as well as of mechanical behavior to be used as input data of the mechanical analysis. As highlighted in [START_REF] Jumel | Instrumented end notched flexure -Crack propagation and process zone monitoring. Part I: Modelling and Analysis[END_REF], the strength of a same joining system at macroscale depends on the experimental test specimen and procedure used, which contributes in restricted reliability or in extensive and expensive experimental test campaign. According to (Li et al. 2006[START_REF] Khoramishad | A generalized damage model for constant amplitude fatigue loading of adhesively bonded joints[END_REF][START_REF] Khoramishad | Fatigue damage modeling of adhesively bonded joints under variable amplitude loading using cohesive zone model[END_REF][START_REF] Silva | Advances in numerical modeling of adhesive joints[END_REF], the cohesive zone modelingdenoted CZMappears as one of the most suitable approach able to model both the static and the fatigue behavior of adhesive joints. According to [START_REF] Khoramishad | A generalized damage model for constant amplitude fatigue loading of adhesively bonded joints[END_REF], the CZM have the advantage of: (i) considering finite strains and stresses at the adhesive crack tip, (ii) indicating both damage initiation and propagation as direct outputs of the model, (iii) advancing the crack tip as soon as the local energy release rate reaches its critical value with no need of complex moving mesh techniques. Based on Continuum Damage Mechanics and Fracture Mechanics, the CZM enables a diagnostic of the current state of the adhesive interface damage along the overlap. The damage, associated to micro-cracks and/or voids coalescence, results in a progressive degradation of the material stiffness before

failure. An idealization of a CZM bilinear stress-strain relationship or CZM bilinear traction separation law is presented in Figure 1. The CZM bilinear traction separation law is a well-established interface behavior that first assumes a linearly dependency relationship between the interface separation (deformation) and the resulting traction (stress). Once a prescribed value of separation is reached by the adhesive, the damage initiation is described in the form of a linearly decreasing resulting traction. Finally, the propagation of the damage is described by voluntarily fixing the resulting traction to zero, hence modeling the creation of two traction-free surfaces (i.e.: physical cracking). Both damage initiation and damage propagation phases are addressed in the model with no need of assuming any initial crack in the material [START_REF] Valoroso | A damage model for simulating decohesion in adhesively bonded assemblies[END_REF], De Moura et al. 2009[START_REF] Camphilho | Modelling adhesive joints with cohesive zone models: Effects of the cohesive law shape of the adhesive layer[END_REF].

Figure 1. Representation for an idealized bilinear interface traction separation law.

The strength prediction of adhesively bonded joints is then highly dependent on the CZM parameters. The methods used to experimentally characterize them are thus essential. As a result, numbers of authors have addressed this critical point over the past few years (Anderson and Stigh 2004, Alfredsson et al. 2003, Alfredsson 2004, Leffler et al. 2006, Högberg 2006[START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF], Cui et al. 2014, Azari et al. 2009, Gowrishankar S. et al. 2012[START_REF] Wu | On determining mixed-mode traction-speration relations for interfaces[END_REF]. Most of these methods make use of the concept of the energetical balance associated to the computation of the path independent J-integral (Rice 1968) along a closed contour of specifically designed joint specimens, known as the inverse method (Anderson and Stigh 2004, Alfredsson et al. 2003, Alfredsson 2004, Leffler et al. 2006, Högberg 2006[START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF]. The inverse method is based on the energetical balance associated with the computation of the path independent J-integral (Rice 1968) on a closed contour :

𝐽 = ∫ 𝑊𝑑𝑦 -𝑇 ̅ 𝑑𝑈 ̅ 𝑑𝑥 𝑑𝑠 (1)
where W refers to the strain energy density,  n T  to the traction vector, σ to the stress tensor, 𝑈 ̅ to the displacement vector, n to the normal unit vector directed outward to the counter-clock wise integration path Γ, and (x,y) to the specified two-dimensional coordinate system. From the fundamental work by [START_REF] Fraisse | Use of J-integral as fracture parameter in simplified analysis of bonded joints[END_REF] it is shown that the J-integral parameter can be computed from stress analysis based on a model of beam on an elastic foundation as:

𝐽(𝛿 𝑢 , 𝛿 𝑣 ) = ∫ 𝑇(𝛿 𝑢 , 𝛿 𝑣 )𝑑𝛿 𝑢 𝛿 𝑢 0 + ∫ 𝑆(𝛿 𝑢 , 𝛿 𝑣 )𝑑𝛿 𝑣 𝛿 𝑣 0 (2)
In the frame of the inverse method:

(i) the adhesive peel stress is obtained from experimental tests under pure mode I loading as (Anderson and Stigh The adhesive stresses are then derived from the J-integral. An advantage of this method is that it offers the possibility to monitor the evolution of the adhesive stress at the crack tip from the measurement of macroscopic quantities possibly measurable from experimental test fixtures, such as the applied load (in N) or the evolution of displacement jump (in mm) at the crack tip. Numbers of joint specimens have been explored for pure mode I, pure mode II and mixed-mode I/II characterization of adhesive layers. According to [START_REF] Silva | Advances in numerical modeling of adhesive joints[END_REF], end notched flexure (ENF) and double cantilever beam (DCB) joint specimens have respectively emerged as the joint specimens the most frequently used for characterizing the cohesive properties of thin adhesive interfaces in pure mode I and pure mode II over the past years. An idealization of the linear elastic distributions of adhesive stresses (strains) resulting from the loading of both ENF and DCB joint specimens is presented in Figure 2. According to [START_REF] Reeder | Mixed-mode bending method for delamination testing[END_REF], Kenane and Benzeggagh 1997, Högberg 2006) most of the mixed-mode I/II test fixture present practical limitations: (i) complex loading fixtures, (ii) unstable fracture process, (iii) complex manufacturing of the test samples. However, both mixed mode cantilever beam (MCB) and mixed mode bending (MMB) joint specimens offer the possibility of working over a wide range of adhesive mixed-mode ratios without modifying the geometry (Figure 2). However, the methods based on J-integral are valid only when the J-integral is valid. If the J-integral can be computed through a data reduction scheme based on a model of a beam on elastic foundations for the adhesive bonded overlap [START_REF] Fraisse | Use of J-integral as fracture parameter in simplified analysis of bonded joints[END_REF], the J-integral is not suitable when the materials are dependent on time. Another restriction is the consideration of unloading phases within the loading history. Various types of CZM for mixed-mode exist in the literature (Goustanios and Sørensen 2012). One widespread type is based on the definition of traction-separation laws in pure modes, which are coupled with interaction laws for damage initiation and damage propagation under mixed-mode. Goustanios and Sørensen show that the mixed-mode truss-like CZMs are path-dependent. The mixed-mode truss-like CZMs are a particular case of mixed-mode CZM based on the definition of pure modes laws linked by interaction laws under mixed-mode. If the J-integral is path-independent along the spatial integration path, it is shown that the J-integral, which is shown to be a potential function from which derive the cohesive stress, is dependent on the loading path history. A direct consequence for truss-like CZMs is thus that Eq. (2) does not imply Eq. ( 5) and Eq. ( 6), so that the use of the inverse method should not be suitable to any type of CZM.

The objective of this paper is to suggest a direct method to assess CZMs for the modelling of adhesively bonded joints, overcoming the restrictions involved in methods based on J-integral. In the first part, the inverse method is employed on the results of a numerical test campaigns on MCB configuration. A mixed-mode CZM based on the definition of pure mode bilinear laws linked by interaction laws under mixed-mode is used for this test campaign in order to show the deviation of predictions obtained from the inverse method. The numerical analyses are performed using three-dimensional Finite Element (3D FE) model as well as the macro-element (ME) technique (Paroissien 2006a, Paroissien et al. 2006b[START_REF] Paroissien | Analytical two-dimensional model of a hybrid (bolted/bonded) single-lap joint[END_REF][START_REF] Paroissien | A simplified stress analysis of bonded joints using macro-elements[END_REF][START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF]. In the second part, an approach based on design of experiments (DoE) is presented to assess the main parameters affecting the experimental assessment of CZM. Finally, in the part, the direct method is applied to characterize the CZM properties in mode I, mode II and mixed-mode I/II through the use of double cantilever beam (DCB) specimen, end notched flexure (ENF) specimen and mixed mode bending (MMB) specimen, respectively (see Figure 3). Finally the single-lap bonded joint (SLJ) configuration is used to assess the relevance of the method (see Figure 3). 

Numerical test campaign

2.1.

Overview of the numerical test campaign In the frame of the numerical test campaign presented in this paper, the MCB test configuration has been selected. It has been suggested by [START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF]. Similarly to the DCB test configuration, the loading consists in a pair of forces (termed P), being of the same magnitude but in opposite directions. Nevertheless, the action direction of the pair of forces is defined by an angle , which allows for the adhesive layer to be submitted to pure mode I, pure mode II and mixed-mode I/II (see Figure 2). The selected specimen design, including geometrical and material parameters, corresponds to the one described by Högberg and Stigh [START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF]. The crack length a=0 is then chosen. The geometrical parameters are provided in Table 1 in conjunction with Figure 2. In this numerical test campaign, only one angle  is chosen /16. 

Macro-element model

Macro-element technique. The numerical analysis is performed using the ME technique for the modelling of bonded overlap (Paroissien 2006a, Paroissien et al. 2006b, Parossien et al. 2007[START_REF] Paroissien | A simplified stress analysis of bonded joints using macro-elements[END_REF][START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF]. The ME technique is inspired by the FE method and differs in the sense that the interpolation functions are not assumed, since they take the shape of the solutions of the governing differential equation system. A direct consequence is that only one ME is sufficient to mesh a complete bonded overlap in the frame of a linear stress analysis. The bonded overlap is then modelled by a four-node MEalso called bonded-beams elementthe nodes of which are located at the extremities of the overlap on the neutral axes of adherends (see Figure 4). This ME involves 3 degrees of freedom per node or a total of twelve for a 1D-beam analysis. The main work is thus the formulation of the elementary stiffness matrix of the bonded-beams element. Indeed once the stiffness matrix of the complete structure is assembled from the elementary matrices and the boundary conditions are applied, the minimization of the potential energy provides the solution, in terms of distributions along the overlap of adhesives stresses, internal forces and displacements in the adherends. An approach for the formulation of the stiffness has already been described in detail in previous papers (Paroissien 2006a, Paroissien et al. 2006b[START_REF] Paroissien | Analytical two-dimensional model of a hybrid (bolted/bonded) single-lap joint[END_REF][START_REF] Paroissien | A simplified stress analysis of bonded joints using macro-elements[END_REF][START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF]. Nevertheless, this approach could be long to set up. In this paper, a new approach is provided in Appendix A for a fast and easy implementation within a mathematical software such as SCILAB for example. Compared with the early approach, the shape of solutions in terms of displacements and internal loads is not provided. Nevertheless, in the frame of nonlinear material analyses such as the one presented in this paper, the bonded overlap has to be meshed in order to locally update the material parameters within an iterative computation procedure. As a result, the displacements and internal loads are directly read at nodes. Moreover, the following description is useful for the derivation of the direct method.

Hypotheses. It is assumed that the thickness of the adhesive is constant along the length  of the macro-element.

Moreover, the adherends are simulated as linear elastic Euler-Bernoulli laminated beams. The general shape of the constitutive equations for the adherend j=1,2 provides the six first differential equations: where N j (M j ) is the normal force (bending moment) of the adherend j and u j (v j ,  j ) is the longitudinal displacement (deflection, bending angle) of the adherend j. For the adherend j, A j represents the extensional stiffness, D j the bending stiffness and B j the coupling stiffness and  j =A j D j -B j B j ≠0 (see Appendix C).

{ 𝑁 𝑗 =
The adhesive layer is simulated by an infinite number of elastic shear and transverse springs attached at both adherend interfaces. The adhesive shear stressdenoted Tand the adhesive peeling stressdenoted Sare then given by:

{ 𝑆 = 𝑘 𝐼 (𝑣 1 -𝑣 2 ) 𝑇 = 𝑘 𝐼𝐼 (𝑢 2 -𝑢 1 -ℎ 2 𝜃 2 -ℎ 1 𝜃 1 ) (9) 
where h j is the half thickness of adherend j. In this paper, h 1 =h 2 =t/2.

The classical local equilibrium from Goland and Reissner [START_REF] Goland | The stresses in cemented joints[END_REF] is used and provides the six last differential equations for j=1,2 (see Figure 5):

{ 𝑑𝑁 𝑗 𝑑𝑥 = (-1) 𝑗 𝑏𝑇 𝑑𝑉 𝑗 𝑑𝑥 = (-1) 𝑗+1 𝑏𝑆 𝑑𝑀 𝑗 𝑑𝑥 + 𝑉 𝑗 + 𝑏ℎ 𝑗 𝑇 = 0 (10)
where V j is the shear force of the adherend j. 
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each iteration. In particular, the damage parameter is computed at each nodal abscissa according to the introduced adhesive material law. The norm of displacement jump (in mm) of interface  is defined by:

𝜆 = √(𝛿 𝑣 ) 2 + (𝛿 𝑢 ) 2 (11)
where  v ( u ) is the displacement jump of the interface (see Table 2) along the y-axis (x-axis). A mixity parameter is defined by:

𝛽 = 𝛿 𝑢 𝛿 𝑣 = 𝑢 2 -𝑢 1 -ℎ 2 𝜃 2 -ℎ 1 𝜃 1 𝑣 1 -𝑣 2 (12) 
At each iteration, the mixity parameter  is updated. Under the current local mixity parameter, it assumed that the material law is bilinear, so that the damage parameter d is such that:

𝑑 = 𝜆 𝑓 (𝜆-𝜆 𝑒 ) 𝜆(𝜆 𝑓 -𝜆 𝑒 ) (13) 
where  e ( f ) is the displacement jump (in mm) of the interface at initiation (propagation). In order to compute  e ( f ), the interaction laws Eq. ( 1) are used while classically assuming that the projections on pure modes of the mixed mode evolution law under the current local mixity are bilinear (see Table 2):

{ 𝜆 𝑒 = 𝛿 𝑢𝑒 𝛿 𝑣𝑒 √1 + 𝛽 2 [ 1 (𝛿 𝑢𝑒 ) 2𝑛 +(𝛽𝛿 𝑣𝑒 ) 2𝑛 ] 1 2𝑛 𝜆 𝑓 = 𝛿 𝑢𝑓 𝛿 𝑣𝑓 √1 + 𝛽 2 [ √(𝛿 𝑢𝑒 ) 2𝑛 +(𝛽𝛿 𝑣𝑒 ) 2𝑛 (𝛿 𝑢𝑒 𝛿 𝑢𝑓 ) 𝑛 +(𝛽 2 𝛿 𝑣𝑒 𝛿 𝑣𝑓 ) 𝑛 ] 1 𝑛 (14) 
The damage parameter is computed only if  v is positive. Each ME is then updated with the damaged elastic stiffness taken as the maximal value of both damage parameters computed at each extremity of the ME.

Finally, the displacement is linearly applied as a function of the numerical time. Each numerical test result is obtained from a simulation run involving one hundred constant time steps  t .

Mesh and boundary conditions. The bonded overlap is regularly meshed with a parametrical number n_ME of bonded-beams elements. One extremity is clamped and the loading is applied under displacement (termed H) at the other extremity where the bending angle is fixed (see Figure 6). The applied displacement is H=0.074 mm so that the damage begins to propagate in the adhesive layer at the loaded extremity. In view of the application of the inverse method, it is mandatory that the adhesive layer does not deform at the joint extremity where the load is not applied. Clamping conditions avoid both peel and shear deformations. The results are not presented in this paper but a study on the influence of mesh size up to a maximal mesh density of twenty ME per mm was performed under a pure linear elastic analysis under pure mode I (=/2).

The conclusions are that (i) the original approach and the present approach (see Appendix A) for the formulation of the elementary stiffness matrix of ME provides exactly the same results, and (ii) the computed reaction as well as the adhesive peak stresses do not vary at all with the mesh density.

Results.

In order to assess the influence of the mesh density on the predictions from the ME model, four runs associated with the four following mesh densities are launched: (i) one ME per mm, (ii) two MEs per mm, (iii)

four MEs per mm and (iv) eight MEs per mm. The norm of the reaction force on the loaded section of the upper adherend as a function of the mesh density is provided in Figure 7. It is shown that the model converges when the mesh density is increased. Moreover, the maximal peel and shear stresses at x=L reached during the runs are constant when the mesh density varies and equal to: S max =23.6 MPa and T max =19.8 MPa. This result is not surprising since the load is applied under the shape of displacement at the location where the adhesive stress evolution is observed and the stiffness matrix is updated considering the maximal value of both damage parameters computed at each extremity of the ME. 

Finite element model

Mesh and boundary conditions. A 3D FE model is developed using the FE code SAMCEF v18.1 (LMS PLM software). This model makes use of linear brick elements with eight nodes and twenty-four degrees of freedom for the adherends. A normal integration rule is selected. The adherends are assumed linear elastic. The adhesive layer is simulated through 3D quadrangular interface elements. The CZM defined in section 2.1 is applied through the Damage Interface SAMCEF material. The adhesive layer is regularly meshed along the overlap length and width, with a constant aspect ratio equal to one: all the interface elements are squared. The adherends mesh is coincident at the interface with the adhesive layer. The mesh along the thickness of adherends is distributed as it follows. The adherends are cut at their own neutral plane in two parts. A distributed mesh is applied on each part and a transition ratio equal to one is applied at the neutral plane. The size along the thickness of the last element at the neutral axis of the adherend is fifty percent larger than those of the first element at the interface with the adhesive layer. The same size ratio is applied for the second part. The mesh of two adherend parts at the neutral plane is then coincident, so that a kinematic bonding of nodes is applied. As a result, following the previous meshing method, the number of elements along the overlap drives the meshing of 

Application of the inverse method

The inverse method is applied on the predictions of the ME model with a mesh density of eight element per mm.

Firstly, the J-integral parameter at x=L has to be computed according to Eq. ( 2). Taking benefit from the elevated number of computation time, a simple numerical integration is then performed as:

𝐽(𝑡 𝑓 ) = ∑ 𝑇(𝑡 𝑖 ) 𝑖=𝑓 𝑖=1
[𝛿 𝑢 (𝑡 𝑖 ) -𝛿 𝑢 (𝑡 𝑖-1 )] + ∑ 𝑆(𝑡 𝑖 )

𝑖=𝑓 𝑖=1

[𝛿 𝑣 (𝑡 𝑖 ) -𝛿 𝑣 (𝑡 𝑖-1 )]

where t i is the i th computation time, t f is the las computation time and t 0 is equal to zero. It is indicated that this computation of the J-integral is valid in the abscissa x=L only and at any time, because (i) the applied loading on the neutral line in terms of  u and  v is the same as the one seen at the interface in x=L (=0) and (ii) the applied loading is proportional at any time. As a result, the mixed mode parameter  is constant at any time in x=L and the shear (peel) stress is only dependent on  u ( v ) at the given constant .

Secondly, the adhesive stresses are computed according to Eq. ( 5) and Eq. ( 6). The required differentiation of the J-integral parameter is obtained by taken the slope between two consecutive times: 

The evolution of the adhesive peel (shear) stress as a function of the opening (sliding) displacement at x=L as computed by the ME model with a mesh density of eight elements per mm and predicted by the inverse method is provided in Figure 12 (Figure 13). It is shown that the predictions of the inverse method does not fit those of the ME models. It is then concluded that the considered CZM is an example for which the inverse method fails to predict the adhesive peel and shear stresses under mixed-mode. This example is not a general proof for this type of CZM. However, the main fact is that the application of the inverse method associated with particular types of CZM could lead to incorrect behavior assessment. the ME model with a mesh density of eight elements per mm and predicted by the inverse method.

Description of the Direct Method

This method is presented in (Lélias 2016). It is based on the measurement around the crack tip of the displacement of the neutral axis according to the x-axis and the y-axis. Contrary to the inverse method, no spatial integration of equilibrium equations is required.

In the case of pure mode I loading, the adhesive shear stress vanishes so that the local equilibrium of adherends can be reduced to the following set of differential equations for j=1,2:

{ 𝑑𝑁 𝑗 𝑑𝑥 = 0 𝑑𝑉 𝑗 𝑑𝑥 = (-1) 𝑗+1 𝑏𝑆 𝑑𝑀 𝑗 𝑑𝑥 + 𝑉 𝑗 = 0 (17) 
As a result, it comes:

𝑆 = (-1) 𝑗 [- 𝐵 𝑗 𝑏 𝑑 3 𝑢 𝑗 𝑑𝑥 3 + 𝐷 𝑗 𝑏 𝑑 4 𝑤 𝑗 𝑑𝑥 4 ] (18) 
Using the constitutive relationship, the adhesive peel stress can be expressed as:

𝑆 = (-1) 𝑗 𝐷 𝑗 𝑏 𝑑 4 𝑤 𝑗 𝑑𝑥 4 (19) 
In the case of pure mode II loading, the adhesive peel stress vanishes so that the local equilibrium of adherends can be reduced to the following set of differential equations for j=1,2: As a result, it comes:

𝑇 = (-1) 𝑗 [ 𝐴 𝑗 𝑏 𝑑 2 𝑢 𝑗 𝑑𝑥 2 - 𝐵 𝑗 𝑏 𝑑 3 𝑤 𝑗 𝑑𝑥 3 ] (21) 
Using the constitutive relationships, the adhesive shear stress can be expressed as:

𝑇 = (-1) 𝑗 𝐴 𝑗 𝑏 𝑑 2 𝑢 𝑗 𝑑𝑥 2 (22) 
In the case of mixed-mode I/II loading, the local equilibrium of adherends is given by Eq. ( 5). The following expressions for the adhesive peel and shear stresses are obtained:

𝑆 = [(-1) 𝑗 𝐷 𝑗 𝑏 -ℎ 𝑗 𝐵 𝑗 𝑏 ] 𝑑 4 𝑤 𝑗 𝑑𝑥 4 + [ℎ 𝑗 𝐴 𝑗 𝑏 -(-1) 𝑗 𝐵 𝑗 𝑏 ] 𝑑 3 𝑢 𝑗 𝑑𝑥 3 (23) 𝑇 = (-1) 𝑗 [ 𝐴 𝑗 𝑏 𝑑 2 𝑢 𝑗 𝑑𝑥 2 - 𝐵 𝑗 𝑏 𝑑 3 𝑤 𝑗 𝑑𝑥 3 ] (24) 
The same hypotheses as for the ME model are used for the direct method, so that its application on numerical test results with a suitable post processing method provides predictions exactly corresponding to those of ME. A design of experiments is then developed to investigate the main factors influencing the predictions of the direct method.

Assessing our methodology of derivatives of deflection with DIC experimental parameters

Signal processing of the 3 rd order derivative of the deflection

Within the framework of the direct method, the evolution of the adhesive stresses can be theoretically derived from the measurement at the crack tip of the second and third order derivative of the upper adherend bending angle and of the derivative of the upper adherend longitudinal displacement at neutral axis (see section 2.5).

Since the raw differentiation of noised experimental results can lead to the rise of important numerical singularities, a particular attention has to be given to the correct evaluation of these successive derivatives. Data pre-processing is then highly needed to reduce experimental noises (see Figure 14). The data pre-processing algorithm used to reduce experimental noises from the measured upper and lower adherends displacement fields lies on the optimal sub-rank approximation (OSRA) based on singular value decomposition (SVD), and is related to signal processing techniques that are commonly referred to as SVD signal enhancement methods, reduced-rank signal processing or more simply subspace methods (Andrews and Patterson 1973). The detailed presentation of the data pre-processing is not given in detail in this paper; a summarized description can be found in the Appendix B.

Figure 14. Comparison of the 3 rd order derivative of the deflection of the neutral fiber of the upper adherend obtained from raw and pre-processed experimental results.

Supervised experiments using virtual fields

To characterize the ability of the suggested data pre-processing and differentiation algorithm to determine the successive derivatives of the adherend-to-adherend displacement field with sufficient accuracy, we propose to use supervised virtual fields. It refers to the data pre-processing and data differentiation of a displacement field that is virtually generated so that the evolution of its successive derivatives is known in advance of the experiment. For simplification purpose, the comparison between the supervised data and those obtained from the data processing will be made in terms of the 3rd and 4th order derivatives of the transverse displacement of the adherend neutral axis only. However the results are similar with other derivatives

The virtual displacement field is generated using Matlab® R2012b and resumes the kinematic of a classical Euler-Bernoulli's beam in coupled in-plane tension/flexion, so that:

{ 𝑢(𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑦 = 0, 𝑡) -𝑦 𝜕𝑣(𝑥,𝑦=0,𝑡) 𝜕𝑥 𝑣(𝑥, 𝑦, 𝑡) = 𝑣(𝑥, 𝑦 = 0, 𝑡) (25) 
where the evolutions of u(x,y=0,t) and v(x,y=0,t) are arbitrary fixed as:

{ 𝑢(𝑥, 𝑦 = 0, 𝑡) = 𝑒 -0.005𝑡𝑥 𝑣(𝑥, 𝑦 = 0, 𝑡) = 𝑒 -0.15𝑡𝑥 (26) 
To model the effect of experimental noises, the virtual displacement field described in Eq. ( 25) and Eq. ( 26) is then degraded by adding a normal (Gaussian) noise using the normrand(0,σ) Matlab® function, where 0 refers to the prescribed zero mean value and σ to the configurable standard deviation of the normal (Gaussian) noise distribution.

- In order to test for the linear dependency between the successive derivatives of the supervised data and those obtained from the fitted polynomial series, the Pearson product-moment correlation coefficient is used:

𝑟 = 𝑛(∑ 𝑥𝑦)-(∑ 𝑥)(∑ 𝑦) √[𝑛 ∑ 𝑥 2 -(∑ 𝑥) 2 ][𝑛 ∑ 𝑦 2 -(∑ 𝑦) 2 ] (27)
where x refers to the set of supervised data, y to the set of simulated data and n to the total number of data pairs.

Chosen DOE and justification

A full factorial Design of Experiments (DoE) consists in the following: (i) vary one factor at a time, (ii) perform experiments for all levels and combination of levels for all factors, (iii) hence perform a large number of experiments (N), (iv) so that all effects and interactions are captured. Let k be the number of factor, n i the number of levels of the i th factor and p the number of replications to determine the impact of the measurement dispersion.

The total number of experiments N of a full factorial DoE is then:

𝑁 = 𝑝(∏ 𝑛 𝑖 𝑘 𝑖=1 ) (28)
Here is considered a full factorial DoE of five factors with respectively 3x3x3x3x2 levels, so that the linear Taguchi's graph of effects and interactions can be represented in the form of Figure 15. where SNR refers to the simulated Signal-to-Noise ratio, x=y to the spatial resolution of each displacement field instantaneous image, t to the number of instantaneous images taken during the experiment (i.e. thereafter referred as the temporal resolution), Degree to the degree of the polynomial series used to fit/differentiate the neutral fiber transverse displacement and Model to the model used for minimizing the vertical deviation with experimental data in the sense of the least squares method (1 means fitting independently on v(x) and on θ(x)=dv(x)/dx, 2 means fitting simultaneously v(x) and θ(x)=dv(x)/dx).

Y = M+E(A)+E(B)+E(C)+E(D)+E(E) +I(AB)+I(AC)+I(AD)+I(AE)+I(BC)+I(BD)+I(BE)+I(CD)+I(CE)+I(DE)

Synthesis of the results

The initial SNR appears as a key parameter in increasing the accuracy of measuring the successive derivatives of the upper adherend displacement field (see Figure 16-(a)), then suggesting that a significant attention has to be given into reducing the noise of the measured signal before any pre-processing of the data. This can be achieved in various ways so that it results in improving the overall quality of the displacement measures. Similarly to the initial SNR or the spatial resolution of the displacement images, the degree of the polynomial series used for fitting/differentiating the pre-processed displacements also appears as a parameter that has to be chosen with extreme caution. Indeed, although increasing the degree of the polynomial series from 4 to 6 appears as negligibly influencing the overall accuracy of the measure, increasing it from 6 to 8 results in a serious degradation of the accuracy of the measure (see Figure 16-(d)). This degradation of the accuracy of the measurement using high order polynomials is a well-known issue, and is due to the oscillation of the polynomial series around the experimental set of data points for increasing degrees (i.e. Runge's phenomenon). A particular attention has then to be given in choosing the best compromise between fitting the experimental data points using high order polynomials functions and preserving the overall accuracy of the measurement of its successive derivatives.

(c) (d) (e) (f) (g) (h) (i) (j)
Finally, the choice of the Moore-Penrose pseudo inverse model for minimizing in the sense of the least squares method the vertical deviation between the polynomial function (i.e. used for fitting/differentiating the set of experimental data points) and the experimental data points themselves appears as a worthwhile way of influencing the accuracy of the measured displacement derivatives (see Figure 16-(e)). It is then suggested that simultaneously accounting for both v(x) and θ(x)=dv(x)/dx when fitting/differentiating the experimental set of data points significantly increases the accuracy of the measurement.

Experimental test campaign

The entire test campaign is performed on an electro-mechanical test machine (Ref: Instron AI735-1325).

Adherend bulk specimens

Each specimen is manufactured from a laminated aluminum-magnesium-silicon alloy (6060 series). A total of three specimens are tested. The manufactured specimens are measured before the tests (see Figure 18). The evolution of both the applied load and the resulting displacement are measured using the build-in machine load and displacement cells. The loading speed is fixed at 0.5mm/min. The evolution of the specimen displacement field is measured using the Digital Image Correlation (DIC) technique (see Figure 19). Both the evolution of the axial deformation and the Poisson's ratio of the samples are computed from the evolution of the specimen displacement field. The specimens are displacement loaded using the build-in machine displacement command instruction. The results obtained in terms of (a) the axial stress-strain evolution law and (b) the evolution of the measured Poisson's ratio as a function of the axial deformation in Figure 20. The aluminum alloy exhibits two distinct phases. The first one, the linear elastic phase, appears as extremely limited compared to the whole deforming capability of the material (i.e. ~3% of the whole deforming capability of the material). The second phase, the plasticization phase, appears on another side as extremely important (i.e. ~97% of the whole deforming capability of the material). To model the effective stress-strain evolution law of each adherend, it is then decided to fit a trilinear elastic-plastic evolution law onto the results obtained (see Figure 21). The material law identified is provided in Table 4. A Poisson's ratio of 0.35 is considered. 
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Overview of the experimental setting

The adhesive used is the SAF30 MIB adhesive from AEC Polymers / BOSTIK (ARKEMA Group). It is a methacrylate-based two-component adhesive paste. In order to enhance the adhesion properties between the adhesive layer and each adherend before bonding, both adherends are cleaned using the AEC Polymers T700 dry cleaning spray. In order to ensure a constant adhesive thickness along the overlap, two calibrated anti-adhesive tapes are stuck at each side of the bonded overlap (see Figure 3). The dimensions of each specimen are controlled after bonding (see Table 5). The applied load, the resulting displacement and the adherend-to- adherend displacement field at crack tip are measured during the tests. The evolution of both the applied load and the resulting displacement are measured using the build in machine load and displacement cells. The load speed is 0.5 mm.min -1 . The evolution of the adherend-to-adherend displacement field is measured using the DIC technique (see Figure 22 and Figure 23). The pure mode deformations of the adhesive layer are computed from the relative displacement of the adherends neutral fibers (see Figure 24). Both DIC and build-in machine measures are synchronized using an analogical-to-numerical National Instrument acquisition card, so that it facilitates the processing of the adhesive CZM constitutive relationships. The mechanical stiffness of the tensile test machine is characterized so that the resulting displacement measured by the build-in machine displacement cell is corrected to fit the true displacement of the adhesive test specimens. Four specimens of each configuration (e.g. ENF, DCB, MMB and SLJ) are tested. The SLJ specimens are tested for relevance assessment purposes only. Correlations between experimental and numerical force versus resulting displacement curves are used to assess the ability of the direct approach to characterize the CZM properties. A particular emphasis is given to the ability of the suggested approach to provide both the experimental stiffness and the maximum load bearing capability of each adhesive specimen. All the numerical tests presented in this paper are based on the simplified stress analyses using ME, already presented in details in [START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF]. 

Test results and modelling under pure modes

The constitutive traction separation law of the adhesive layer obtained in the case of pure mode I and pure mode II loadings is presented in Figure 25-( 6 and Table 7 respectively. On each pure mode, the model obtained is composed by 3 parts: an elastic part, a plastic part and a softening part. The identification of CZM parameters is performed on the envelope curves built from the cyclic response, using the elastic stiffness of adherends. The hypothesis underlying is that the Young's modulus does not vary significantly during the plastic phase. Even if this hypothesis does not hold at large strain of adherends, it allows drastic simplification of the identification process. It means that the adherend stiffnesses used for the identification in Eqs. ( 18), ( 21), ( 23) and ( 24) correspond to the initial elastic values. A numerical test is then performed assuming a nonlinear behavior for both the adherends (following the trilinear approximation in Table 4, 

                            1 1 ln exp 1 ln S S S e e k S     1 1 , 1       S k S S   2 3 3 2         S S
    2 1      3 2     
                            1 1 ln exp 1 ln T T T e e k T     1 1 , 1       T k T T   3 2 3 3 3 3 3 2         T T -7.5 -2.
    2 1      3 2     

Test results and modelling under mixed-mode I/II

As previously, the constitutive relationships of the adhesive layer when facing mixed-mode I/II solicitations are investigated using the direct method. Nevertheless, the exploitation of test results fails, due to the limited axial displacements of both upper and lower adherends nearby the adhesive crack tip. It results in badly conditioned measures of the adherends axial displacements, from which the differentiation with respect to x is insufficiently accurate. An alternative characterization method is then developed for determining the effective mixed-mode I/II properties of the tested MMB specimens. It is suggested to use an inverse characterization method based on numerical tests. The CZM properties in pure mode I and pure mode II are considered as well as the nonlinear adhered behavior. Both initiation and propagation mixed-mode criteria are assumed as following power law energetical relationships (see Eq. ( 7)). The idea is then to adjust the value of the value of the exponent n=m in order numerical prediction fit the experimental tests. In this study, the identification was made according to tests 

Conclusion

In this paper, a direct method for the assessment of the CZM parameters of a thin adhesive layer is presented and then implemented. This method is based on the measurement of the displacement field of adherends at the crack tip of classical adhesively bonded specimens (i.e.: ENF, DCB, MMB), allowing for pure mode I, pure mode II and mixed-mode I/II loadings. Nevertheless, the identification presented remains dependent of the modelling framework. The experimental implementation makes use of a methacrylate-based two-component adhesive paste, found under the commercial reference SAF30 MIB manufactured by AEC Polymers / Bostik (ARKEMA Group). The adherends are made in aluminum alloy (6060 series). The adhesive constitutive stress-strain relationships are derived from the monitoring of the evolution at crack tip of both the relative displacement of interfaces and the displacement field of the adherend, using the DIC technique. The main difficulty encountered within the experimental implementation concerns the experimental measurements. Indeed, a dedicated data preprocessing (see Appendix B) is developed to best fit the experimental data coming from the DIC technique.

The use of experimental measurement providing a higher resolution such as Speckle interferometry could be more suitable.

In pure mode I and pure mode II, it is shown that the adhesive layer experiences three distinct phases. The first one, the linear elastic phase, appears as extremely limited compared to the whole deforming capability of the adhesive layer. A mathematical model is then provided for each mode. Under mixed-mode, the data preprocessing fails in interpreting the experimental measurements, so that a dedicated method is suggested. The mathematical models are then implemented to perform numerical tests using a simplified stress analysis based on properties presented in this paper involves specimens, the adherends of which experienced plasticization. Even if the simplified stress analysis based on ME allowing for numerical tests supports both nonlinear adhesive and adherend material behavior, the embedded level of complexity in the experimental test procedure appears as elevated. The implementation of the direct method should be then tested through various combinations of adherends and adhesive materials and various geometries, some of which should prevent the adherends to plasticize, to assess the reliability of the experimental procedure. The effect of the adhesive thickness on the material law could be investigated using measurement means with a better performance.
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Appendix A

Considering the local equilibrium equations Eqs. ( 8), the adhesive stresses are replaced by their expressions as functions of adherend displacements Eqs. ( 9). In conjunction Eqs (10), it results in a system of twelve linear first-order ordinary differential:

{ 𝑑𝑢 1 𝑑𝑥 = 𝐷 1 Δ 1 𝑁 1 + 𝐵 1 Δ 1 𝑀 1 𝑑𝑢 2 𝑑𝑥 = 𝐷 2 Δ 2 𝑁 1 + 𝐵 2 Δ 2 𝑀 2 𝑑𝑣 1 𝑑𝑥 = 𝜃 1 𝑑𝑣 2 𝑑𝑥 = 𝜃 2 𝑑𝜃 1 𝑑𝑥 = 𝐵 1 Δ 1 𝑁 1 + 𝐴 1 Δ 1 𝑀 1 𝑑𝜃 2 𝑑𝑥 = 𝐵 2 Δ 2 𝑁 2 + 𝐴 2 Δ 2 𝑀 2 𝑑𝑁 1 𝑑𝑥 = 𝑏𝑘 𝐼𝐼 𝑢 1 + 𝑏𝑘 𝐼𝐼 ℎ 1 𝜃 1 -𝑏𝑘 𝐼𝐼 𝑢 2 + 𝑏𝑘 𝐼𝐼 ℎ 2 𝜃 2 𝑑𝑁 2 𝑑𝑥 = -𝑏𝑘 𝐼𝐼 𝑢 1 -𝑏𝑘 𝐼𝐼 ℎ 1 𝜃 1 + 𝑏𝑘 𝐼𝐼 𝑢 2 -𝑏𝑘 𝐼𝐼 ℎ 2 𝜃 2 𝑑𝑉 1 𝑑𝑥 = 𝑏𝑘 𝐼 𝑣 1 -𝑏𝑘 𝐼 𝑣 2 𝑑𝑉 2 𝑑𝑥 = -𝑏𝑘 𝐼 𝑣 1 + 𝑏𝑘 𝐼 𝑣 2 𝑑𝑀 1 𝑑𝑥 = 𝑏ℎ 1 𝑘 𝐼𝐼 𝑢 1 + 𝑏𝑘 𝐼𝐼 ℎ 1 ℎ 1 𝜃 1 -𝑏ℎ 1 𝑘 𝐼𝐼 𝑢 2 + 𝑏𝑘 𝐼𝐼 ℎ 1 ℎ 2 𝜃 2 -𝑉 1 𝑑𝑀 2 𝑑𝑥 = 𝑏ℎ 2 𝑘 𝐼𝐼 𝑢 1 + 𝑏𝑘 𝐼𝐼 ℎ 2 ℎ 2 𝜃 1 -𝑏ℎ 2 𝑘 𝐼𝐼 𝑢 2 + 𝑏𝑘 𝐼𝐼 ℎ 2 ℎ 2 𝜃 2 -𝑉 2 (A1)
This system can be written as 𝑑𝑋 𝑑𝑥 = 𝐴𝑋 where A is 12x12 matrix with real constant components and the unknown vector

X such that t X=(u 1 u 2 v 1 v 2  1  2 N 1 N 2 V 1 V 2 M 1 M 2 ).
But the elementary stiffness matrix corresponds to the relationship between the vector of nodal forces and the vector of nodal displacements (Paroissien 2006a, Paroissien 2006b[START_REF] Paroissien | Analytical two-dimensional model of a hybrid (bolted/bonded) single-lap joint[END_REF][START_REF] Paroissien | A simplified stress analysis of bonded joints using macro-elements[END_REF][START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF], such as:

( -𝑁 1 (0) -𝑁 2 (0) 𝑁 1 (Δ) 𝑁 2 (Δ) -𝑉 1 (0) -𝑉 2 (0) 𝑉 1 (Δ) 𝑉 2 (Δ) -𝑀 1 (0) -𝑀 2 (0) 𝑀 1 (Δ) 𝑀 2 (Δ) ) = 𝐾 𝐵𝐵𝑒 ( 𝑢 1 (0) 𝑢 2 (0) 𝑢 1 (Δ) 𝑢 2 (Δ) 𝑣 1 (0) 𝑣 2 (0) 𝑣 1 (Δ) 𝑣 2 (Δ) 𝜃 1 (0) 𝜃 2 (0) 𝜃 1 (Δ) 𝜃 2 (Δ)) (A2)
The fundamental matrix of A, termed  A , is computed at x=0 and x=; using the SCILAB software, the associated command is "expm": where i (j) indicates the line (row) number.

{ Φ 𝐴 (𝑥 = 0) = 𝑒𝑥𝑝𝑚(𝐴. 0) Φ 𝐴 (𝑥 = Δ) = 𝑒𝑥𝑝𝑚(𝐴. Δ) ( 
As K BBe is defined according to ([u 1 (0) u 2 (0) u 1 () u 2 () v 1 (0) v 2 (0) v 1 () v 2 ()  1 (0)  2 (0)  1 ()  2 ()]), a simple rearrangement of the order of lines of M' is performed to produce the matrix M. Similarly, the matrix N' is submitted to the same operation. In a same way, the terms related to nodal forces at x=0 are multiplied by -1 to follow the arrangement ([-N 1 (0) -N 2 (0 Even if it is not the topic of this paper, it is obvious that this previous approach can be easily used to develop ME, under different local equilibrium equations (e.g. Hart-Smith (Hart-Smith 1973[START_REF] Luo | Analytical solutions for nonlinear analysis of composite singlelap joints[END_REF][START_REF] Paroissien | Simplified stress analysis of functionally graded single-lap joints subjected to combined thermal and mechanical loads[END_REF] or under different constitutive equations (e.g. Tsaï et al. (Tsaï et al. 1998)) and/or including different number layers of adhesives and adherends (e.g. double lap joint configuration). It is indicated that the resolution using the exponential matrix was already been used in previous works [START_REF] Gustafson | A macroscopic joint finite element for a symmetric double lap joint[END_REF], [START_REF] Gustafson | A macroscopic finite element for a symmetric double lap joint subjected to mechanical and thermal loading[END_REF][START_REF] Gustafson | [END_REF], Gustafson and Waas 2009, Stapleton and Waas 2009[START_REF] Stapleton | [END_REF], Stapleton 2012, Stapleton et al. 201, Stapleton et al. 2017). The use of the resolution scheme using the exponential matrix is suitable in the case of nonlinear analysis since a mesh is required. It is suitable in the case of non-homogeneous elastic adhesive properties too [START_REF] Paroissien | Simplified stress analysis of functionally graded single-lap joints subjected to combined thermal and mechanical loads[END_REF]. Besides, it is useful for the formulation of new macro-elements under various simplified hypotheses [START_REF] Paroissien | Simplified stress analysis of functionally graded single-lap joints subjected to combined thermal and mechanical loads[END_REF]).

) N 1 () N 2 () -V 1 (0) -V 2 (0) V 1 () V 2 () - 1 (0) - 2 (0)  1 ()  2 ()]). It
(ii) The spatial resolution of the instantaneous images of the upper adherend displacement field also appears as a key parameter in increasing the accuracy of the estimation of the successive derivatives of the upper adherend displacements. A particular attention has then to be given to measuring the displacements of the upper adherend with a sufficient enough spatial resolution.

(iii) On another side, the time resolution (i.e. number of images of the upper adherend displacement field taken during the experiment) appears as negligibly influencing the accuracy of the estimation of the successive derivatives of the upper adherend displacements. Its own effect as well as its respective interactions with other factors can be legitimately neglected at first sight.

(iv) Similarly to the initial signal to noise ratio or the spatial resolution of the displacement images, the degree of the polynomial series used for fitting/differentiating the pre-processed displacements also appears as a parameter that has to be chosen with extreme caution. Indeed, although increasing the degree of the polynomial series from four to six appears as negligibly influencing the overall accuracy of the measure, increasing it from six to eight results in a serious degradation of the accuracy of the measure. This degradation of the accuracy of the measurement using high order polynomials is a well-known issue, and is due to the oscillation of the polynomial series around the experimental set of data points for increasing degrees. A particular attention has then to be given in choosing the best compromise between fitting the experimental points using high order polynomials functions and preserving the overall accuracy of the measurement of its successive derivatives.

(v) Finally, the choice of the Moore-Penrose pseudo inverse model for minimizing in the sense of the least squares method the vertical deviation between the polynomial function (i.e. used for fitting/differentiating the set of experimental data points) and the experimental data points themselves appears as a worthwhile way of influencing the accuracy of the measured displacement derivatives. It is then suggested that simultaneously accounting for both v(x) and θ(x)=dv(x)/dx when fitting/differentiating the experimental set of data points significantly increases the accuracy of the measurement. 

Appendix C

The beam model use for the adherends allows for the consideration of the Young's modulus graduation in the thickness. The constitutive equations for the normal force and bending moment are derived as it follows.

Using the Euler-Bernoulli kinematics, the normal force N j of the adherend j is written such as: The same approach is used for the bending moment: 
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  the adhesive shear stress is obtained from experimental tests under pure mode II loading as (Alfredsson et al.

  the adhesive peel and shear stresses are obtained from experimental tests under mixed-mode I/II loading as(Högberg 2006, Högberg and[START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF] 

Figure 2 .

 2 Figure 2. Schematic representation for the (a) End Notched Flexure (ENF), (b) Double Cantilever Beam (DCB) adhesive joint specimens. Idealized adhesive stress distributions, (c) Mixed-mode Cantilever Beam (MCB) and (d) Mixed-Mode Bending (MMB) adhesive joint specimens.
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 3 Figure 3. Schematic representation for the manufacturing process of the ENF, DCB, MMB and SLJ joint specimens.
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 4 Figure 4. Modelling of a bonded overlap by a bonded-beams element.
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 5 Figure 5. Free body diagram of infinitesimal elements of the adherend 1 (top) and adherend (bottom)

Figure 6 .

 6 Figure 6. Applied displacement H and fixed displacements for the MCB test configuration.

Figure 7 .

 7 Figure 7. Norm of the reaction force on the loaded section of the upper adherend

  the full model. The boundary conditions are relevant to those applied in the previous ME model. Only one half of specimen is modelled and symmetry conditions are applied. The adherends are clamped at one extremity and loaded under displacement at the other extremity (see Figure8). It is indicated that the boundary conditions applied on the FE element model are relevant to those applied on the ME model. In particular, at the loaded extremity, the longitudinal displacement at the interface with the adhesive layer is the one at the neutral axis.Nonlinear computation. The nonlinear computation is based on a Newton Raphson scheme, for which the stiffness matrix is updated at each iteration with the secant properties concerning the adhesive layer. The computation remains geometric linear, due the level of displacements and rotation. The applied displacement is H=0.074 mm as for the simulations based on ME model. It is sufficient to apply the inverse method. As for the simulations based on the ME model, each numerical test result is obtained from a simulation run involving one hundred constant time steps  t .

Figure 8 .

 8 Figure 8. View of the 3D FE model on the symmetry plane including the mesh (two MEs per mm) and the boundary conditions.
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 10 Figure 9. Maximal peel and shear stresses at x=L reached during the run as a function of the mesh density for the FE and ME models.

Figure 11 .

 11 Figure 11. Evolution of the adhesive shear stress as a function of the sliding displacement at x=L for the FE and ME models with a mesh density of eight elements per mm.
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 1213 Figure 12. Evolution of the adhesive peel stress as a function of the opening displacement at x=L as computed by the ME model with a mesh density of eight elements per mm and predicted by the inverse method.
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 15 Figure 15. Linear Taguchi's graph of main effects and interactions.

Figure 16 .

 16 Figure 16. Effect of factor i (i=A,B,C,D,E) on the correlation coefficient r 2 . Influence of the experimental (algorithmic) parameters on the accuracy of the experimental measures. Red= Significant effects. Black= Negligible effects.

Figure 17 .

 17 Figure17. First order interaction between factors i-j (i,j=A,B,C,D,E) on the correlation coefficient r 2 . Influence of the experimental (algorithmic) parameters on the accuracy of the experimental measures. Red= Significant interactions. Black= Negligible interactions.
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 181920 Figure 18. Geometry of the aluminum bulk specimens.

Figure 21 .

 21 Figure 21. Experimental characterization of aluminum bulk specimens. Representation for the optimized trilinear elastic plastic stress-strain evolution law.

Figure 22 .

 22 Figure 22. Experimental monitoring of the adherend-to-adherend displacement field using Digital Image Correlation (DIC) techniques. (a) End Notched Flexure (ENF) joint specimen. (b) Double Cantilever Beam (DCB) joint specimen. (c) Mixed-Mode Bending (MMB) joint specimen. (d) Single-Lap Joint (SLJ) joint specimen

Figure 24 .

 24 Figure24. Schematic representation for the geometrical relationships between both shear and peel deformations of the adhesive layer and the relative displacement of the surrounding adherends. : adhesive shear strain. ε:

  a) and Figure 26-(a) respectively. The CZM parameters for pure mode I and pure mode II l are then provided in Table

Figure 26

 26 Figure 25. (a) Experimental adhesive traction separation law in pure mode I. (b) Comparison between

Figure 27 .

 27 Figure 27. Determination of the effective mixed-mode properties of the adhesive layer using the inverse method. Comparison between experimental results and semi-analytical predictions in terms of load versus displacement curve.

Figure 28 .

 28 Figure 28. Comparison between experimental results and semi analytical predictions in terms of load versus displacement curve.

  terms of global behavior, the predictions of numerical tests are in a close agreement with the results of experimental tests, up to the final failure of specimens. Besides, it is indicated that the identification of CZM

  A3)From these both 12*12 matrices, two matrices M' and N' are extracted. M' (N') is composed of the lines related to the nodal displacements (forces). For each, a first block of six lines and twelve rows comes from  A (x=0) and the second block of six lines and twelve rows come from  A (x=), such that:

  leads to the definition of the matrix N. The elementary stiffness matrix K BBe is equal to the product of N and the inverse of M[START_REF] Paroissien | A simplified stress analysis of bonded joints using macro-elements[END_REF][START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF]: K BBe =N.M -1 .

Figure B- 1 .

 1 Figure B-1. Digital mapping of the adherend-to-adherend axial and transverse displacement fields.

  𝑵 𝒋 = ∫ 𝝈 𝒙𝒙 𝒅𝑺 = ∫ 𝑬 𝒋 (𝒚)𝜺 𝒙𝒙 𝒅𝑺 = ∫ 𝑬 𝒋 (𝒚) [

  𝑴 𝒋 = ∫ -𝒚𝝈 𝒙𝒙 𝒅𝑺 = ∫ -𝒚𝑬 𝒋 (𝒚)𝜺 𝒙𝒙 𝒅𝑺 = ∫ -𝒚𝑬 𝒋 (𝒚) [

Table 1 .

 1 Geometrical parameters of the MCB specimen. G Ic and G IIc are the critical strain energy release rate in mode I and mode II, G Ie and G IIe are the elastic strain energies stored in mode I and mode II and G I and G II are related to the strain energy release rates in mode I and mode II, respectively. For this numerical test campaign, n=1 is chosen. The fracture energies in mode I and mode II and the elastic stiffnesses under peel and shear, termed k I MPa, instead of 20 MPa. The choice consisting in keeping S max to its original value instead of T max does not change qualitatively the results provided in his paper. The material parameters of the adhesive layer are given in Table2. In the following, the 3D FE model and the ME model are presented. Then the results of the numerical test campaign are provided including those relating to the convergence study of numerical models. Finally, the direct method is described.

		a in mm		b in mm	e in mm	t in mm	L in mm
			0			4	0.2	8	100
	The adherends are made of steel with a Young's modulus E=200 GPa and a Poisson's ratio =0.3. The design is
	such that the adherends will remain in their linear elastic domain. The adhesive is assumed to have a classical
	bilinear damage evolution law following (Allix and Ladevèze 1996), involving interaction energy laws for both
	initiation and propagation under mixed-mode:	
	{	( ( 𝐺 𝐼 𝐺 𝐼 𝐺 𝐼𝑒 𝐺 𝐼𝑐 ) ) 𝑚 𝑛	+ ( + (	𝐺 𝐼𝐼 𝐺 𝐼𝐼𝑒 𝐺 𝐼𝐼 𝐺 𝐼𝐼𝑐	) ) 𝑚 𝑛	= 1 = 1		(7)
	where n=m is a material parameter to be identified, and k II respectively are the same as those used by Högberg and Stigh (Högberg and Stigh 2006). Nevertheless,
	the adhesive maximal peel and shear stresses, termed S max and T max , is different, to ensure a right energy
	dissipation during loading (Turon et al. 2010). It is indicated that the law by Allix and Ladevèze (Allix and
	Ladevèze 1996) already includes this condition. It is then chosen to keep the same maximal shear stress T max =26
	MPa, resulting in a maximal peel stress S max =36.6	

Table 2 .

 2 Adhesive material parameters.

	G Ic in N/mm	G Ie in N/mm	G IIe in N/mm	G IIc in N/mm
	0.76	3.128 E-2	3.464 E-2	2.30
	 ve in mm	 vf in mm	 ue in mm	 uf in mm
	1.71 E-3	4.15 E-2	7.28 E-3	1.77 E-1
	k I in GPa/mm	S max in MPa	k II in GPa/mm	T max in MPa
	21.4	36.6	3.57	26

Table 3 .

 3 Factor versus levels matrix.

		SNR -1 (A) x=y (B) t (C) Degree (D) Model (E)
	Low (-1)	0.00175	201	51	4	1
	Medium (0) 0.00350	401	101 6	N.A
	High (+1)	0.00700	801	201 8	2

Table 4 .

 4 Definition of aluminum bulk material law identified. σ= true stress. ε= true strain.

	Elastic	Plastic 1	Plastic 2
	Model (EPB)		

Table 5 .

 5 Controlled geometries of the ENF, DCB, MMB and SLJ joint specimens.

		a	L	l	t	e	b
	ENF 29.82mm 71.43mm	N.A.	3.96mm 0.230mm 22.0mm
	DCB 30.69mm 70.0mm	N.A.	3.96mm 0.180mm 22.0mm
	MMB 30.21mm 70.89mm	N.A.	3.96mm 0.180mm 22.0mm
	SLJ	N.A.	51.4mm 29.35mm 3.96mm 0.120mm 22.0mm

Table 6 .

 6 CZM properties in pure mode I.

	Elastic	Plastic	Softening
	Model (CZM)		

Table 7 .

 7 CZM properties in pure mode II

	Elastic	Plastic	Softening
	Model (CZM)		

Appendix B

The data pre-processing algorithm used to reduce experimental noises from the measured adherend-to-adherend displacement fields then lies on the digital mapping of the adherend-to-adherend axial (transverse) displacement fields as a set of 2D matrices. First, the evolution of the axial (transverse) displacement field of each adherend is mapped as 3D tensors resuming both the distributions of the adherend axial (transverse) displacements nearby the adhesive crack tip as well as their respective evolutions. Then, the constructed 3D tensors of dimensions x, y and t are rearranged in the form of simpler 2D matrices so that their new dimensions are respectively y and x*t (see Figure B-1). The constructed 2D matrices are then filtered using the rank-R reduction approximation based on the SVD of the raw experimental results, so that R is chosen to capture 95% of the original data energy in the sense of the Frobenius norm (see Figure B-2). The evolution of each adherend axial and transverse displacement fields are then reconstructed from their respective decompositions and rearranged in the form of 3D tensors, so that the displacements of the upper (lower) neutral fiber are finally extracted from the reconstructed axial and transverse displacement fields and formatted into the relevant beam or plate theory (see Figure B-3). Finally, the differentiation of the adherends cross-section rotation is ensured by fitting a polynomial series so that the vertical deviation with experimental data is minimized in the sense of the least squares method by using the Moore-Penrose pseudo inverse technique.

Besides, a full factorial design of experiments is performed in order to assess the algorithmic parameters on the accuracy of the measure. It consists in the following: (i) vary one factor at a time, (ii) perform experiments for all levels and combination of levels for all factors, (iii) hence perform a large number of experiments, (iv) so that all effects and interactions are captured. The main results for each of five factors selected are presented hereafter.

(i) The initial signal to noise ratio appears as a key parameter in increasing the accuracy of measuring the successive derivatives of the upper adherend displacement field. It suggests that a significant attention has to be given into reducing the noise of the measured signal before any pre-processing of the data. This can be achieved in various ways so that it results in improving the overall quality of the displacement measures (DIC). To take into account for the nonlinear behavior of adherends, the iterative Newton-Raphson procedure associated with the secant stiffness matrix is used, which is detailed in [START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF]. The secant Young's modulus of adherends is then updated following the behavior law identified in Table 4. As a result the stiffness parameters A j , B j and D j are updated consequently. In particular, when the isotropic adherends begin to plasticize, the coupling membrane-bending stiffness B j could become different from zero. Fract. Mech. 76, 2039-2055.