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Homography Observer Design on Special Linear Group SL(3) with
Application to Optical Flow Estimation

Ninad Manerikar, Minh-Duc Hua, Tarek Hamel

Abstract— In this paper we present a novel approach for
homography observer design on the Special Linear group
SL(3). This proposed approach aims at computing online, the
optical flow estimation extracted from continuous homography
obtained by capturing video sequences from aerial vehicles
equipped with a monocular camera. The novelty of the paper
lies in the linearization approach undertaken to linearize a
nonlinear observer on SL(3). Experimental results have been
presented to show the performance and robustness of the
proposed approach.

I. INTRODUCTION

Originated from computer vision, the homography repre-
sents a mapping that relates two views of the same planar
scene. It encodes the camera’s pose (i.e. position and orienta-
tion), the distance between the camera and the scene and the
scene’s normal vector in a single matrix. The homography
has played an important role in various computer vision
and robotics applications, where the scenarios involve man-
made environments that are composed of planar surfaces [1],
[2]. It is also suitable for applications where the camera is
sufficiently far from the viewed scene, such as the situations
when ground images are taken from an aerial drone.

The homography estimation problem has been extensively
studied in the past [3], [4], [9]. Most existing works consider
the homography as an incidental variable and tend to solve a
system of algebraic constraints on the frame-by-frame basis
[9]. The quality of the homography estimates is strongly
dependant on the algorithm used as well as the nature of
the image features used for estimation. Image features for
homography estimation are typically geometric (points, lines,
conics, etc.) or texture. For a well textured scene, state-
of-the-art methods can provide high quality homography
estimates at the cost of high computational complexity
(see [4]). For a scene with poor texture, while significant
computational effort is still required, the poor quality of
homography estimates is often an important issue. This is
particularly the case in varying lighting conditions and in
presence of specular reflections or moving shadows, where
photogrammetric error criteria used in texture-based methods
become ill-posed. Feature-based methods of image-to-image
homography estimation are robust to these issues as long as
good features and good matching are obtained. They have
been the mainstay of robust computer vision in the past.

In a previous work [5], [6] by some authors of this paper, a
nonlinear observer for homography estimation was proposed
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based on the group structure of the set of homographies,
the Special Linear group SL(3). This nonlinear observer
enhances the overall homography estimate between any two
given images by using the velocity information in order
to interpolate across a sequence of images. However, this
observer still requires the pre-computation of the individual
image homographies, which are then smoothed using filter-
ing techniques, thus making this approach computationally
expensive. Also one of the drawbacks of this approach is that
in order to obtain improved homography estimates, each pair
of images needs to have a sufficient amount of data features
for the computation of homography. In another work [7] by
some of the authors of the paper, the question of deriving an
observer that directly uses point correspondences from an
image sequence without requiring the prior reconstruction
of the individual homographies has been addressed. This
approach is not only computationally more efficient but also
works for scenarios where there is lack of data features for
the reconstruction of the homography matrix.

In the present paper, we address the same problem as
[7] but with a different approach that directly exploits the
basis of the Lie algebra of the group SL(3) for observer
design. The simplicity of the resulting observer makes it
suitable for real-time implementation. The proposed observer
is also ideal for the estimation of the so-called “continuous
homography” and the optical flow by exploiting the homog-
raphy estimated from every two consecutive images obtained
from a combined Camera-IMU (Inertial Measurement Unit)
system.

The paper is structured into six sections including the
introduction and the concluding sections. Section II gives
a brief description of the notation and the math related to
homography. In section III a linear approach for observer
design on SL(3) is proposed using point correspondences
and the knowledge of the group velocity. In section IV
the computation of the optical flow estimate extracted from
continuous homography is presented. Experimental results
supporting the proposed approach are presented in section
V. Finally, some concluding remarks and future works are
provided in section VI.

II. NOTATION AND THEORETICAL BACKGROUND

A. Mathematic background

The special linear group SL(3) and its Lie algebra sl(3)
are defined as

SL(3) :=
{
H ∈ R3×3 | det(H) = 1

}
sl(3) :=

{
U ∈ R3×3 | tr(U) = 0

}



Since the Lie algebra sl(3) is of dimension 8, it can be
spanned by 8 generators so that for any ∆ ∈ sl(3) there
exists a unique vector δ ∈ R8 such that

∆ =

8∑
i=1

δiBi (1)

where the basis of sl(3) are chosen as follows:

B1 = e1e
>
2 , B2 = e2e

>
1 , B3 = e2e

>
3

B4 = e3e
>
2 , B5 = e3e

>
1 , B6 = e1e

>
3

B7 = e1e
>
1 −

1

3
I, B8 = e2e

>
2 −

1

3
I

with I the identity element of R3×3 and {e1, e2, e3} the
canonical basis of R3.

B. Homographies

Let Å (resp. A) denote projective coordinates for the
image plane of a camera Å (resp. A), and let {Å} (resp. {A})
denote its frame of reference. The position of the frame {A}
with respect to {Å} expressed in {Å} is denoted by ξ ∈ R3.
The orientation of the frame {A} with respect to {Å} is
represented by a rotation matrix R ∈ SO(3). Let d̊ (resp.
d) and η̊ ∈ S2 (resp. η ∈ S2) denote the distance from the
origin of {Å} (resp. {A}) to the planar scene and the normal
vector pointing to the scene expressed in {Å} (resp. {A}).
Hence the coordinates of the same point in the reference
frame (P̊ ∈ {Å}) and in the current frame (P ∈ {A}) can
be expressed by the relation

P̊ = RP + ξ

If the intrinsic parameters of the camera are known meaning
that the camera is calibrated one can write1

P̊ ∼= K−1p̊, P ∼= K−1p

where K is the camera calibration matrix and p̊ ∈ Å (resp.
p ∈ A) is the image of the point P̊ (resp. P ) when the
camera is aligned with frame {Å} (resp. {A}) and can
be written in the form (u, v, 1)> using the homogeneous
coordinate representation for that 2D image point. The image
homography matrix that maps pixel coordinates from the
current frame to the reference frame is given by

Him = γK

(
R+

ξη>

d

)
K−1

where γ is a scale factor that, without loss of generality, can
be chosen so that Him ∈ SL(3). In this case, γ is equal

to
(
d/d̊
) 1

3

and corresponds to the second singular value of
Him [8]. The Euclidean Homography H ∈ SL(3) is related
to Him by the following relation

H = K−1HimK = γ

(
R+

ξη>

d

)
1Equalities in projective geometry are defined up to a multiplicative

constant using the notation ∼=.

C. Homography kinematics

Let Ω and V denote the rigid body angular velocity and
linear velocity of the current frame {A} w.r.t the reference
frame {Å}, both expressed in {A}. Then the rigid body
kinematics are {

Ṙ = RΩ×
ξ̇ = RV

(2)

with [·]× denoting the skew-symmetric matrix associated
with the cross product, i.e. u×v = u× v, ∀u, v ∈ R3.

Let us consider that the stationary planar scene is viewed
by a camera attached to the rigid body with kinematics (2).
Let H ∈ SL(3) denote the associated homography matrix.
Then, its kinematics are given by

Ḣ = HU (3)

where the group velocity U ∈ sl(3) induced by the relative
motion between the camera and the stationary planar scene
satisfies [5]

U = Ω× +
V η>

d
− η>V

3d
I (4)

The group velocity U given by (4) is often referred to as
“Continuous Homography” in the literature [8].

III. OBSERVER DESIGN ON SL(3) FOR HOMOGRAPHY
ESTIMATION

The equation of the proposed homography estimator can
be expressed as a kinematic filter system on SL(3) as

˙̂
H = ĤU + ∆Ĥ (5)

where the innovation term ∆ ∈ (3) has to be designed in
order to drive the group error H̃ := ĤH−1 to identity,
based on the assumption that we have a collection of n
measurements yj =

H−1ẙj
|H−1ẙj | ∈ S2 (j = 1, . . . , n), with

ẙj ∈ S2 known and constant. Here yj and ẙj represent
calibrated image points normalized onto the unit sphere and
can be computed as

yj =
K−1pj
|K−1pj |

, ẙj =
K−1p̊j
|K−1p̊j |

The output errors ej are defined as

ej :=
Ĥyj

|Ĥyj |
=

H̃ẙj

|H̃ẙj |
(6)

which thus can be viewed as the estimates of ẙj .
In order to design the innovation term ∆, we first develop

linear approximations of both the dynamics of H̃ and the
system output errors ei. Taking the time derivative of H̃ (=
ĤH−1) and using first order approximation H̃ ≈ I one
obtains

˙̃H = ∆H̃ =
8∑
i=1

δiBiH̃ ≈
8∑
i=1

δiBi (7)

where the linear representation δ ∈ R8 of ∆ via the relation
(1) has been used.



Let x ∈ R8 denote the linear representation of H̃ . One
then deduces the following approximation

H̃ = exp(
8∑
i=1

xiBi) ≈
(
I +

8∑
i=1

xiBi

)
(8)

Using (8) one obtains

˙̃H ≈
8∑
i=1

ẋiBi (9)

From (7) and (9) it is obvious that

ẋ ≈ δ (10)

Now we focus on the linearization of the output vectors.
From (6) and (8) the output errors ej can be expressed as

ej ≈
ẙj +

8∑
i=1

xiBiẙj

|̊yj +
8∑
i=1

xiBiẙj |

≈
(
ẙj +

8∑
i=1

xiBiẙj

)(
1− ẙ>j

8∑
i=1

xiBiẙj

)
Neglecting high order terms one gets

ej ≈ ẙj +
8∑
i=1

xiBiẙj −
8∑
i=1

xiẙj ẙ
>
j Bi

⇒ ej − ẙj ≈
8∑
i=1

xiπẙjBiẙj = Cjx

with πy := I−yy>, ∀y ∈ S2, the projection operator on the
plane orthogonal to y and

Cj :=
[
πẙjB1ẙj | · · · | πẙjB8ẙj

]
∈ R3×8

Stacking all n measurements in a vector as follows

Y :=

e1 − ẙ1

...
en − ẙn

 ∈ R3n

one obtains
Y ≈ Cx (11)

with C :=

C1

...
Cn

 ∈ R3n×8.

From here, the innovation term δ (i.e. ∆) can be directly
designed on the linear approximation system (10) using the
linear approximation (11) of the output vector Y . In fact,
if the matrix C is of rank 8 (it is well known that the
homography is observable from the measurements of at least
4 linearly independent points [7]), then the design of the
innovation term δ is straightforward. An obvious solution is

δ = −kC>Y

with k > 0, resulting in the following stable closed-loop
system, in first order approximations,

ẋ = δ = −kC>Cx

Finally, ∆ ∈ sl(3) is computed from δ ∈ R8 using relation
(1).

IV. APPLICATION TO OPTICAL FLOW ESTIMATION

Using a moving Camera-IMU (i.e. a combined system
composed of a Camera and an Inertial Measurement Unit)
that observes a stationary planar scene, the previously pro-
posed algorithm can be applied to estimate the homography
matrix H related to every two consecutive images. If the
camera frequency is fast enough, then the continuous ho-
mography U defined by (4) can be approximately computed
via logarithm operator as

U ≈ 1

T
log(H)

with T the camera sample time. Since H is normally close to
the identity matrix, log(H) can then be approximated using
Taylor expansions as follows:

log(H) = log(I−W ) ≈ l̃og(H) := −W −W
2

2
−W

3

3
−· · ·

with W := I−H . However, such an approximation no longer
ensures that both l̃og(H) and the resulting U will remain in
sl(3). Hence a reprojection on sl(3) is needed

U ≈ 1

T

(
l̃og(H)− 1

3
tr(l̃og(H))I

)
Denoting φ := V

d and φ⊥ := V >η
d = −ḋ

d , which
respectively correspond to the so-called translational optical
flow and its projection along the normal vector η. Our
objective consists in obtaining the estimation of both φ
and φ⊥ from the decomposition of the already computed
continuous homography U .

Using the fact that the angular velocity of the Camera-
IMU is measured by the gyrometers, one deduces

Ū :=
V η>

d
= U − 1

2
γ2(U + U>)I − Ω×

with γ2(U + U>) the second largest eigenvalue of U + U>

[8]. Taking into account the fact that η ∈ S2 one deduces

Φ := φφ> = Ū Ū>

Defining β as the vector of the diagonal elements of Φ as
follows

β =

Φ11

Φ22

Φ33


one verifies that

Ū>β = η(φ3
1 + φ3

2 + φ3
3)

From here, the estimate of φ is calculated as follows

φ̂ =

Ū
Ū>β

|Ū>β|
if |Ū>β| > εη

0 if |Ū>β| < εη

with εη > 0 being a small given threshold. Finally, the
estimate of φ⊥ is straightforwardly obtained by

φ⊥ = tr(Ū)



Fig. 1. Experimental setup

Fig. 2. Textured planar horizontal ground (target) used for experiment
validations

V. EXPERIMENTAL RESULTS

A. Experimental Setup

A Visual-Inertial (VI) sensor developed by the company
Skybotix and the Autonomous Systems Lab (ETH Zurich)
has been used to perform experimental validation (see Fig.
1). This VI-sensor consists of two cameras and two IMU’s
(composed of a 3-axis gyrometer and a 3-axis accelerom-
eter). However, in order to validate the proposed approach
only one camera and one IMU are sufficient. One of the main
reasons for using the VI-sensor is the possibility to obtain
perfectly time-synchronized images and IMU measurments
(20Hz for camera and 200Hz for IMU). For validation
purposes, the ground truth is obtained by using the highly
accurate Optitrack Motion Capture system available at the
I3S lab that provides the full pose of the Camera-IMU system
at 120Hz.

The proposed algorithm has been implemented using C++
on an Intel Core i7 CPU running at 3.40Ghz. A high speed
ethernet cable is used to carry out the transmission of data
from the camera to the PC. The Linux based PC is in charge
of carrying out two principal software tasks:
• Acquisition of data (images as well as IMU data) by

interfacing with the camera hardware.

• Continuous homography estimation based on two con-
secutive images that is further decomposed to obtain the
estimation of φ(= V

d ) and φ⊥(= − ḋd ) in real-time.
The detection of features and extraction of descriptors from
the images has been carried out by using FAST Feature
Detector and ORB Descriptor Extractor algorithms that have
been already implemented in the OpenCV library. These
algorithms are used for the simple reason that they are very
time-efficient and thus more suited for real-time implemen-
tation.
Remark 1 The continuous homography estimate is obtained
at 20Hz due to the fact that the VI-sensor only provides
images at that frequency. However, our offline tests have
shown that the continuous homography and the optical flow
φ and φ⊥ estimates can be obtained at a higher frequency of
50Hz. This has suggested us to develop our proper hardware
Camera-IMU using a fast camera in the near future.

B. Experimental Results

The experiment reported below has been performed online
with the VI-sensor camera looking downward to observe a
well textured planar horizontal ground (see Fig. 2). A video
showing this experiment is provided as a supplementary
material and is also available at https://goo.gl/i8zGj2.

From Figs. 3 and 4, one can observe that the estimation
of the optical flow φ and its perpendicular component φ⊥
obtained from the decomposition of the estimated continu-
ous homography are pretty accurate when compared to the
corresponding ground-truth data.
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Fig. 3. Optical flow components estimated from images (blue curves) and
derived from ground truth pose (red curves) versus time (s)

VI. CONCLUSION

This paper presents a general analysis on a novel linear
approach for observer design posed directly on the special
linear group SL(3) and its application for translational
optical flow estimation. In order to support the theoretical
approach, the performance of this observer was demonstrated

https://goo.gl/i8zGj2
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Fig. 4. φ⊥ = −ḋ
d

estimated from images (blue curve) and derived from
ground truth pose (red curve) versus time (s)

with a set of real world experiments. The experiments
showed the good quality of estimates that could be obtained
in real time. The proposed approach for the estimation of
optical flow can also be used as a cue for haptic force
feedback [10]. In the near future, the idea is to perform this
experiment with a camera which gives images at a much
higher frequency (for e.g. 100Hz) in order to obtain the
optical flow estimates at a much faster rate (50Hz).
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