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Abstract. Intravitreal injection is one of the most common treatment
strategies for chronic ophthalmic diseases. The last decade has seen the
number of intravitreal injections dramatically increase, and with it, ad-
verse effects and limitations. To overcome these issues, medical assistive
devices for robotized injections have been proposed and are projected to
improve delivery mechanisms for new generation of pharmacological solu-
tions. In our work, we propose a method aimed at improving the safety
features of such envisioned robotic systems. Our vision-based method
uses a combination of 2D OCT data, numerical simulation and machine
learning to estimate the range of the force applied by an injection needle
on the sclera. We build a Neural Network (NN) to predict force ranges
from Optical Coherence Tomography (OCT) images of the sclera directly.
To avoid the need of large training data sets, the NN is trained on images
of simulated deformed sclera. We validate our approach on real OCT im-
ages collected on five ex vivo porcine eyes using a robotically-controlled
needle. Results show that the applied force range can be predicted with
94% accuracy. Being real-time, this solution can be integrated in the
control loop of the system, allowing for in-time withdrawal of the needle.

1 Introduction

Intravitreal injections are one of the most frequent surgical interventions in
opthalmology with more than 4 million injections in 2014 alone [1]. This proce-
dure is used, for instance, in the treatment of age-related macular degeneration
for injecting vascular endothelial growth factor inhibitors. Similarly, intravitreal
therapy is also used in the treatment of diabetic maculopathy and retinopathy.
With the increasing prevalence of diabetic patients and aging demographics, the
demand for such intravitreal therapy is growing significantly.

At the same time, robotic assistance in ophthalmology offers the ability to
improve manipulation dexterity, along with shorter and safer surgeries [2]. Ull-
rich et al. [1] has also proposed a robotized intravitreal injection device capable
of assisting injections into the vitreous cavity, whereby faster injections in safer
conditions are projected. Designing such robotic systems involves significant hur-
dles and challenges however. Among others, accurate force sensing represents an
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important topic, whereby the force required to puncture the sclera with a needle
is very small and measuring this force is essential for the safety of the patient.

For many devices, force sensing plays a central role in the control loop and
safety system of surgical robots [3]. The use of force sensors and force-based
control algorithms allows for higher quality human-machine interaction, more
realistic sensory feedback and telepresence. Beyond this, it can facilitate the
deployment of important safety features [4]. Considerable amount of work rely-
ing on force sensors has previously been done, focusing on the development of
miniaturized sensors to ease their integration with actual systems. In addition,
they must be water resistant, sterilizable and insensitive to changes in temper-
ature [5]. The major limitation of standard force sensors is thus the associated
cost, since most surgical tools are disposable [4]. Alternatively, qualitative esti-
mation of forces based on images has been proposed in the past [6, 5]. Mura et
al. presented a vision-based haptic feedback system to assist the movement of
an endoscopic device using 3D maps. Haouchine et al. estimates force feedback
in robot assisted surgery using a biomechanical model of the organ in addition
to the 3D maps. In contrast, including detailed material characteristics allows
precise quantitative assessment of forces but calculating the properties of the ma-
terials still remains highly complex [7]. Recent research have proposed the use of
neural networks for force estimation, such as in [8] where interaction forces us-
ing recurrent neural networks are estimated from camera acquisitions, kinematic
variables and the deformation mappings. In a follow up, [7] used a neuro-vision
based approach for estimating applied forces. In this approach tissue surface
deformation is reconstructed by minimizing an energy functional.

In contrast, our method consists in estimating the force, based only on an
OCT image of the deformation of the eye sclera. The method relies on a deep
learning classifier for estimating quantiles of forces during robotized intravit-
real injections. Our contribution hence consists of two critical stages. We first
build a biomechanical model of the sclera in order to generate virtually infinite
force-OCT image pairs for training any supervised machine learning method. In
particular, we will show that this allows us to avoid the need for large data sets
of real OCT images. Second, we train end-to-end, a two-layer image classifier
algorithm with the synthetic images and the corresponding forces. This allows a
very simple estimation process to take place, without the need of a specific image
feature extraction method beforehand [7, 8]. The consequence of this two-stage
process to produce synthetic data for training a NN is the ability to classify force
ranges with 94% accuracy. We validate this claim on real OCT images collected
on five ex vivo porcine eyes using a robotically-controlled needle.

2 Method

Deep learning has already been proposed to improve existent features of robotic
assisted surgeries such as instrument detection and segmentation [9]. A key re-
quirement for deep learning methods to work is the high amount of data to train
on. Since for the moment, intravitreal injections are manually performed, there
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is no available information on the force applied by the needle. In this paper, we
build a numerical model of the relevant part of the eye to generate images of the
deformed sclera under needle-induced forces. The simulations are parametrized
to match experimental results and compensate for the lack of real data.

2.1 Numerical simulation for fast data generation

Biomechanical model: The deformation of the sclera under needle-induced forces
can be approximated by modeling the eye as an elastic material, shaped like a
half-sphere subject to specific boundary conditions. Since applied forces and
resulting deformations remain small, we choose a linear relationship between
strain ε and stress σ, known as Hooke’s law (1):

σ = 2µε+ λtr(ε)I (1)

where λ and µ are the Lamé coefficients that can be determined from the Young’s
modulus E and Poisson’s ratio ν of the material. The linearity of Hooke’s law
leads us to a simple relation σ = Cε where C is the linear elasticity constitutive
matrix of homogeneous and isotropic materials. Boundary conditions are then
added. Dirichlet boundary conditions are used to prevent rigid body motion of
the sclera, while a constant pressure is applied on the inner domain boundary
to simulate the intraocular pressure (IOP). The IOP plays an important role
in the apparent stiffness of the eye and its variability is well studied, as high
eye pressure can be an indication for glaucoma. The external force due to IOP
is simply given by F = S × P where S is the surface area of the eye given in
m2 and P the IOP in Pa. The external forces of the system are formed by the
IOP, the force induced by the needle and gravity. Scleral thickness also plays an
important role in the deformation of the sclera so it has to be taken into account.

Finite Element simulation: We solve the equation for the constitutive model us-
ing a finite element method. To discretize the eyeball, which we consider as nearly
spherical, we generated a quadrilateral surface mesh of a half sphere of radius
12 mm, discretized using the Catmull-Clark subdivision method. This quadrilat-
eral surface is then extruded according to the scleral thickness to generate almost
regular hexahedra. The deformation is specified by the nodal displacements u
and the nodal forces f, according to the following equation:

Ku = fp + fg + fn (2)

The matrix K is the stiffness matrix, and can be computed thanks to the elastic
parameters of the material E and ν. E is Young’s modulus and is a measure of
the stiffness of the material while ν is Poisson’s ratio and estimates the com-
pressibility of the material. According to the values in the literature [10] we set
E = 0.25 MPa and ν = 0.45. To model the needle pushing on the sclera, we
apply a local force fn on a subset of nodes within a small region of interest near
the virtual needle tip. fg is the force due to gravity, and fp the force normal
to the surface due to the IOP. To compute accurately the deformation of the
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Fig. 1. Real OCT images of the sclera and their corresponding simulated images for
the three different force ranges.

sclera, the finite element mesh needs to be sufficiently fine (14, 643 hexahedral
elements in our case), resulting in about 5 seconds of computation to obtain the
solution of the deformation. Since we need to repeat thousands of times this type
of computation in order to generate the training data set, we take advantage of
the linearity of the model and pre-compute the inverse of K. This significantly
speeds up the generation of the training data. In Fig. 1 are shown different exam-
ples of the output of the simulation (bottom) matching the OCT images (top).
The simulated images correspond to a 2D cross-section of the entire 3D mesh.

2.2 Neural network image classification

Our goal is to create an artificial NN model to predict the force based solely
on a single OCT image of the deformation. Using cross sectional OCT images
allows one to visualize millimeters beneath the surface of the sclera and therefore
provides information about the induced deformation. Using 2D OCT B-scans
over 3D scans is preferred here as can be acquired at high-frame rates using low
cost hardware [11]. Instead of estimating the force as a scalar value, we opt to
estimate an interval of forces in order to be less sensitive to exact force values. As
such, we set up our inference problem as a classification task where a probability
for a class label (i.e. a force interval) is desired.

Given our above simulation model, we can now train our prediction model
with virtually an infinite amount of data. In our case, the forces applied in
the experiments varied between 0.0 N to 0.08325 N . To ensure quality of the
simulations (i.e. small displacements) forces going from 0.0 N to 0.06 N were
applied on the Finite Element mesh of the sclera. The objective being the in-
time withdrawal of the needle to limit scleral damage, we decided to label the
forces only using three classes. The classes are such that the first one translates
no danger at damaging the sclera, the second means that a considerable force is
being applied and the last class triggers the alarm to withdraw the needle. If we
set the alarm threshold to 0.03 N , we have the following class ranges (see Fig. 1
for the deformation corresponding to each class):

– Class 0: force values smaller than 0.005 N
– Class 1: force values from 0.005 N to 0.03 N
– Class 2: force values bigger than 0.03 N
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Our NN then consists of three layers (an input layer, a fully connected hidden
layer and an output layer). The input layer has 5600 neurons and the hidden
and output layers have 600 neurons. The output layer is softmax activated. ReLu
activation was used as well as a 0.8 dropout factor between layers. For training,
we used Gradient descent optimization and the cross-entropy loss function. The
network was implemented using Tensorflow and the Keras Python library and
was trained from scratch. Validation was performed on unseen simulated images.

3 Results

In this section we first report the real data acquisition on ex vivo porcine eyes.
Then, the virtually generated data set and the following training are presented.
And last, we validate the NN on unseen real data.

3.1 Experimental set-up

To validate the ability of the NN on real data, we collected pairs of force-OCT
images from ex vivo porcine eyes. Five porcine eyes were obtained from the local
abattoir and transported in ice. Experiments began within 3 hours of death and
were completed between 4 and 10 hours postmortem. During the experiments
the eyes were moisturized with water. For the experiments, the eyes were fixed
with super glue on a 3D-printed holder to ensure fixed boundary conditions on
the lower half of the eyeball. The IOP was measured with a tonometer. For all
the eyes the IOP was close to 2 mmHg (i.e. 266 Pa). The IOP is low since it
decreases dramatically after death [12] and no fluid injection was made during
the experiments. A medical robot [3] was used to guide a needle while measuring
the applied force. A 22G Fine-Ject needle (0.7 × 30 mm) was mounted at the
tip of the end effector of the robot. The needle was placed as close as possible
to the B-scan but without intersecting it to avoid shadows on OCT images.
The margin between the needle and the B-scan was taken into account in the
simulation. The robot moved towards the center of the eye (i.e. normally to the
sclera) and forces in the direction of movement were continuously recorded with
a sensor. To collect OCT images an imaging system was used to record B-scans
over time. The OCT device used 840 nm± 40 nm wavelength light source, with
an A-scan rate of 50 kHz and 12 bits per pixel. The resulting 2D image had
a resolution of 512 × 512 pixels, corresponding to roughly 15 × 4 mm. As the
images were acquired at a lower rate than the forces, the corresponding forces
were averaged over the imaging time for each frame (i.e. two seconds after the
starting moment of the line move). Overall, 54 trials were performed. For each
eye, one position near the corneal-scleral limbus was chosen and several line
moves were performed in the same direction.

3.2 Data generation for neural network training

Measurements on ten porcine eyes are made to estimate the thickness of the
sclera at the locations where the forces are applied. The values range from
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Fig. 2. (a) Loss and Accuracy curves for training and validation sets. (b) Fragment of
the training data set generated by our numerical simulation.

460 µm to 650 µm with a mean value of 593 µm. From the literature [13],
the thickness near corneal-scleral limbus is estimated to be between 630 µm
and 1030 µm. Hence, we simulated scleras of five different thicknesses : 400 µm,
500 µm, 600 µm, 700 µm and 800 µm. The IOP is the same for all the eyes
in the experiments so it is fixed at 266 Pa for all simulations. For the smallest
thickness, we generated 3200 images of deformed scleras undergoing the stated
IOP and forces going from 0.0 N to 0.045 N . For each of the other four thick-
nesses, we generated 4000 images of deformed scleras where the forces vary from
0.0 N to 0.06 N at different random locations. For each thickness, the simulation
took approximatively half an hour. Overall, a data set of 19200 synthetic images
was generated within 2 hours and a half (see Fig. 2(b)). The generated images
look like images in Fig. 1 below. This images are post-processed with a contour
detection algorithm using OpenCV functions and binarized to obtain the images
used to train the NN (see Fig. 2(b)).

To train the NN, the data set is split such that 90% of the images are for
training and the remaining 10% for validating. Hence, the NN is trained on 17280
images and validated on the other 1920 images. In Fig. 2(a) the accuracy and
loss of the model are shown on both training and validation data sets over each
epoch. The validation accuracy curve shows 100% accuracy when classifying un-
seen synthetic images. This curve is above the training accuracy curve probably
because of the high dropout applied during the training.

3.3 Tests on unseen data

The aim of our work is to classify force ranges from real OCT images of the
deformed scleras. All the OCT images obtained during the experiments (see
Fig. 3(a)) are blurred and thresholded to obtain similar images to the synthetic
ones (see Fig. 3(b) and Fig. 2(b)).

Now that the OCT images look like the simulated ones they can be given as
input to the NN for predictions. For each OCT acquisition, the force measured
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Fig. 3. (a) Unprocessed OCT image. (b) Blurred and thresholded OCT image.

by the robot is converted into a class label (going from 0 to 2) and is considered
as the ground truth (target class). The performance of the classification is given
in the confusion matrix in table 1. Each raw of the table gives the instances in a
target class and each column the instances in a predicted class. For each class,
the correct decisions are highlighted in red. Overall the accuracy of the classifier
is 94%.

A force class with label 0 is understood as a very small force meaning that
there is no risk of damaging the sclera. On the contrary, a force class with
label 1 means the sclera is being considerably deformed (forces in this range go
from 0.005 N to 0.03 N) and a force class with label 2 means that the sclera
is potentially being damaged and a withdrawal of the needle is advised. With
the eyes used during the experiments, the lowest precision of the NN was found
for target class 0 (71%). For target class 2, the precision is of 100%. It is not
dramatic if forces of range 0 and 1 are misclassified since the risk of damaging
the sclera with forces so close to the alarm threshold is almost null (assuming
the threshold is correctly set). On the other hand it is essential that the forces
of range 2 are predicted correctly.

Target
Prediction

Class 0 Class 1 Class 2 Precision

Class 0 5 2 0 0.71

Class 1 0 14 1 0.93

Class 2 0 0 32 1.00

Recall 1.00 0.88 0.97

Table 1. Confusion matrix

4 Conclusion and Discussion

In this paper, we have proposed a method aimed at improving the safety features
of upcoming robotized intravitreal injections. Our vision-based method combin-
ing numerical simulation and Neural Networks, predicts the range of the force
applied by a needle using only 2D images of the scleral deformation with high
accuracy. It indicates in real-time the need to withdraw the needle as soon as a
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certain alarm threshold is reached. To avoid the need of large training data sets,
the NN is trained on synthetic images from a simulated deformed sclera.

It is worth mentioning that more complex scenarios could be simulated such
as different eye sizes, variable needle insertion angles and different intraocular
pressures. We also propose to improve the simulated images to better match real
surgical scenarios. In particular it seems important to add the shadows induced
by the needle in the OCT image. From an imaging point of view, we know that
the predictions of the NN are very sensitive to the image framing and scaling. To
address this issue, we plan to randomly crop each simulated image, and enlarge
the data set with it. We might also train a Convolutional Neural Network to
reduce sensitivity to image properties and allow for more accurate predictions.
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