
HAL Id: hal-01878646
https://hal.science/hal-01878646

Submitted on 21 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

How explainable plans can make planning faster
Antoine Grea, Laëtitia Matignon, Samir Aknine

To cite this version:
Antoine Grea, Laëtitia Matignon, Samir Aknine. How explainable plans can make planning faster.
Workshop on Explainable Artificial Intelligence, Jul 2018, Stockholm, Sweden. pp.58-64. �hal-
01878646�

https://hal.science/hal-01878646
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

How explainable plans can make planning faster∗

Antoine Gréa and Laetitia Matignon and Samir Aknine

Abstract

In recent years the ubiquity of artificial intelligence
raised concerns among the uninitiated. The misunder-
standing is further increased since most advances do
not have explainable results. For automated planning,
the research often targets speed, quality, or expressiv-
ity. Most existing solutions focus on one criteria while
not addressing the others. However, human-related ap-
plications require a complex combination of all those
criteria at different levels. We present a new method to
compromise on these aspects while staying explainable.
We aim to leave the range of potential applications as
wide as possible but our main targets are human in-
tent recognition and assistive robotics. We propose the
HEART planner, a real-time decompositional planner
based on a hierarchical version of Partial Order Causal
Link (POCL). It cyclically explores the plan space while
making sure that intermediary high level plans are valid
and will return them as approximate solutions when
interrupted. These plans are proven to be a guarantee of
solvability. This paper aims to evaluate that process and
its results compared to classical approaches in terms of
efficiency and quality.

Introduction
Since the early days of automated planning, a wide variety of ap-
proaches have been considered to solve diverse types of problems.
They all range in expressivity, speed, and reliability but often
aim to excel in one of these domains. This leads to a polariza-
tion of the solutions toward more specialized methods to tackle
each problem. All of these approaches have been compared and
discussed extensively in the books of Ghallab et al. [2004; 2016].

Partially ordered approaches are popular for their least com-
mitment aspect, flexibility and ability to modify plans using re-
finement operations [Weld 1994]. These approaches are often
used in applications in robotics and multi-agent planning [Lemai
and Ingrand 2004; Dvorak et al. 2014]. One of the most flexible
partially ordered approaches is called Partial Order Causal Link
planning (POCL) [Young and Moore 1994]. It works by refining

∗Univ Lyon, Université Lyon 1, CNRS, LIRIS, UMR5205, F-69621,
LYON, France (first.lastname@liris.cnrs.fr)

partial plans consisting of steps and causal links into a solution
by solving all flaws compromising the validity of the plan.

Another approach is Hierarchical Task Networks (HTN) [Sac-
erdoti 1974] that is meant to tackle the problem using composite
actions in order to define hierarchical tasks within the plan. Hi-
erarchical domains are often considered easier to conceive and
maintain by experts mainly because they seem closer to the way
we think about these problems [Sacerdoti 1975].

In our work, we aim combining HTN planning and POCL plan-
ning in such a way as to generate intermediary high level plans
during the planning process. Combining these two approaches
is not new [Young and Moore 1994; Kambhampati et al. 1998;
Biundo and Schattenberg 2001]. Our work is based on Hierarchi-
cal Partial Order Planning (HiPOP) by Bechon et al. [2014].
The idea is to expand the classical POCL algorithm with new
flaws in order to make it compatible with HTN problems and
allowing the production of abstract plans. To do so, we present
an upgraded planning framework that aims to simplify and fac-
torize all notions to their minimal forms. We also propose some
domain compilation techniques to reduce the work of the expert
conceiving the domain.

In all these works, only the final solution to the input problem is
considered. That is a good approach to classical planning except
when no solutions can be found (or when none exists). Our work
focuses on the case when the solution could not be found in time
or when high level explanations are preferable to the complete
implementation detail of the plan. This is done by focusing the
planning effort toward finding intermediary abstract plans along
the path to the complete solution.

In the rest of the paper, we detail how the HiErarchical Abstrac-
tion for Real-Time (HEART) planner creates abstract intermediary
plans that can be used for various applications. First, we discuss
the motivations and related works to detail the choices behind our
design process. Then we present the way we modeled our own
planning framework fitting our needs and then we explain our
method and prove its properties to finally discuss the experimental
results.

1 Motivations and Potential Applications
Several reasons can cause a problem to be unsolvable. The most
obvious case is that no solution exists that meets the requirements
of the problem. This has already been addressed by Göbelbecker
et al. [2010] where “excuses” are being investigated as potential
explanations for when a problem has no solution.

Our approach deals with the cases of when the problem is too
difficult to solve within tight time constraints. For example, in
robotics, systems often need to be run within refresh rates of
several Hertz giving the process only fractions of a second to give
an updated result. Since planning is at least EXPSPACE-hard for
HTN using complex representation [Erol et al. 1994], computing
only the first plan level of a hierarchical domain is much easier in
relation to the complete problem.

While abstract plans are not complete solutions, they still dis-
play a useful set of properties for various applications. The most
immediate application is for explainable planning [Fox et al.
2017; Seegebarth et al. 2012]. Indeed a high-level plan is more
concise and does not contain unnecessary implementation de-
tails that would confuse a non-expert. Recent works focus on
matching the domain to a separate human model [Sreedharan and
Chakraborti et al. 2018; Sreedharan and Srivastava et al. 2018].
This requires the creation and maintenance of expansive human
domains that are mostly used as dictionaries to explain technical
details. Our method will give coherent high level plans that are
more concise and simpler than any classical plans.

Another potential application for such plans is relative to do-
mains that work with approximative data. Our main example
here is intent recognition which is the original motivation for this
work. Planners are not meant to solve intent recognition problems.
However, several works extended what is called in psychology
the theory of mind. That theory is the equivalent of asking “what
would I do if I was them ?” when observing the behavior of
other agents. This leads to new ways to use inverted planning
as an inference tool. One of the first to propose that idea was
Baker et al. [2007] that use Bayesian planning to infer intentions.
Ramirez and Geffner [2009] found an elegant way to transform
a plan recognition problem into classical planning. This is done
simply by encoding temporal constraints in the planning domain
in a similar way as Baioletti et al. [1998] describe it to match
the observed action sequence. A cost comparison will then give
a probability of the goal to be pursued given the observations.
A new method, proposed by Sohrabi et al. [2016], makes the
recognition fluent centric. It assigns costs to missing or noisy
observed fluents, which allows finer details and less preprocessing
work than action-based recognition. Sohrabi et al. state that the
quality of the recognition is directly linked to the quality and
domain coverage of the generated plans.

2 Related Works
HTN is often combined with classical approaches since it al-
lows for a more natural expression of domains making expert
knowledge easier to encode. These kinds of planners are named
decompositional planners when no initial plan is provided [Fox
1997]. Most of the time the integration of HTN simply consists in
calling another algorithm when introducing a composite operator
during the planning process. In the case of the DUET planner
by Gerevini et al. [2008], it is done by calling an instance of
an HTN planner based on task insertion called SHOP2 [Nau et
al. 2003] to deal with composite actions. Some planners take
the integration further by making the decomposition of compos-
ite actions into a special step in their refinement process. Such
works include the discourse generation oriented DPOCL [Young
and Moore 1994] and the work of Kambhampati et al. [1998]

generalizing the practice for decompositional planners.
In our case, we chose a class of hierarchical planners based

on Plan Space Planning (PSP) algorithms [Bechon et al. 2014;
Dvorak et al. 2014; Bercher et al. 2014] as a reference approach.
The main difference here is that the decomposition is integrated
into the classical POCL algorithm by only adding new types of
flaws. This allows to keep all the flexibility and properties of
POCL while adding the expressivity and abstraction capabilities
of HTN. We also designed an improved planning framework based
on the one used by HiPOP to reduce further the number of changes
needed to handle composite actions and to increase the planner
efficiency.

Another work has already been done on another aspect of those
types of abstract plans. The Angelic algorithm by Marthi et al.
[2007] exploited the usefulness of such plans in the planning
process itself and used them as a heuristic guide. They also
proved that, for a given fluent semantics, it is guaranteed that such
abstract solutions can be refined into actual solutions. However,
the Angelic planner does not address the inherent properties of
such abstract plans as approximate solutions and uses a more
restrictive totally ordered framework.

3 Definitions
3.1 Domain
The domain specifies the allowed operators that can be used to
plan and all the fluents they use as preconditions and effects.
Definition 1 (Domain). A domain is a triplet 𝒟 = ⟨𝐸𝒟, 𝑅, 𝐴𝒟⟩
where:

• 𝐸𝒟 is the set of domain entities.
• 𝑅 is the set of relations over 𝐸𝑛𝒟. These relations are akin to

n-ary predicates in first order logic.
• 𝐴𝒟 is the set of operators which are fully lifted actions.
Fluents are signed first order logic n-ary predicates. Negative

fluents are noted ¬𝑓 and behave as a logical complement. We
do not use the closed world hypothesis: fluents are only satisfied
when another compatible fluent is provided.

Example: To describe an item not being held, we use the fluent
¬𝑡𝑎𝑘𝑒𝑛(𝑖𝑡𝑒𝑚). If the cup contains water, 𝑖𝑛(𝑤𝑎𝑡𝑒𝑟, 𝑐𝑢𝑝) is true.

3.2 Plan and hierarchical representation
Definition 2 (Partial Plan / Method). A partially ordered plan is
an acyclic directed graph 𝜋 = (𝑆, 𝐿), with:

• 𝑆 the set of steps of the plan as vertices. A step is an action
belonging in the plan. 𝑆 must contain an initial step 𝐼𝜋 and
goal step 𝐺𝜋.

• 𝐿 the set of causal links of the plan as edges. We note
𝑙 = 𝑎𝑠

𝑐
−→ 𝑎𝑡 the link between its source 𝑎𝑠 and its target 𝑎𝑡

caused by the set of fluents 𝑐. If 𝑐 = ∅ then the link is used
as an ordering constraint.

In our framework, ordering constraints are defined as the
transitive cover of causal links over the set of steps. We note
ordering constraints: 𝑎𝑎 ≻ 𝑎𝑠, with 𝑎𝑎 being anterior to its
successor 𝑎𝑠. Ordering constraints cannot form cycles, meaning
that the steps must be different and that the successor cannot
also be anterior to its anterior steps: 𝑎𝑎 ≠ 𝑎𝑠 ∧ 𝑎𝑠 ⊁ 𝑎𝑎. In
all plans, the initial and goal steps have their order guaranteed:

𝐼𝜋 ≻ 𝐺𝜋 ∧ ∄𝑎𝑥 ∈ 𝑆𝜋 ∶ 𝑎𝑥 ≻ 𝐼𝜋 ∨𝐺𝜋 ≻ 𝑎𝑥. If we need to enforce
order, we simply add a link without specifying a cause. The use of
graphs and implicit order constraints help to simplify the model
while maintaining its properties.

The central notion of planning is operators. Instantiated opera-
tors are usually called actions. In our framework, actions can be
partially instantiated. We use the term action for both lifted and
grounded operators.
Definition 3 (Action). An action is a parametrized tuple
𝑎(𝑎𝑟𝑔𝑠) = ⟨𝑛𝑎𝑚𝑒, 𝑝𝑟𝑒, eff , 𝑚𝑒𝑡ℎ𝑜𝑑𝑠⟩ where:

• 𝑛𝑎𝑚𝑒 is the name of the action.
• pre and eff are sets of fluents that are respectively the pre-

conditions and the effects of the action.
• 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 is a set of methods (partial order plans) that de-

compose the action into smaller ones. Methods, and the
methods of their enclosed actions, cannot contain the parent
action.

Example: The precondition of the operator 𝑡𝑎𝑘𝑒(𝑖𝑡𝑒𝑚) is sim-
ply a single negative fluent noted ¬𝑡𝑎𝑘𝑒𝑛(𝑖𝑡𝑒𝑚) ensuring the vari-
able 𝑖𝑡𝑒𝑚 is not already taken.
Composite actions are represented using methods. An action

without methods is called atomic. It is of interest to note the
divergence with classical HTN representation here since normally
composite actions do not have preconditions nor effects. In our
case we insert them into abstract plans.

In order to verify the input of the domain, the causes of the
causal links in the methods are optional. If omitted, the causes
are inferred by unifying the preconditions and effects with the
same mechanism as in the subgoal resolution in our POCL algo-
rithm. Since we want to guarantee the validity of abstract plans,
we need to ensure that user provided plans are solvable. We use
the following formula to compute the final preconditions and ef-
fects of any composite action 𝑎: pre(𝑎) = ⋃𝑎𝑠∈𝐿+(𝑎)

causes(𝑎𝑠)
and eff (𝑎) = ⋃𝑎𝑠∈𝐿−(𝑎)

causes(𝑎𝑠). An instance of the classical
POCL algorithm is then run on the problem 𝒫𝑎 = ⟨𝒟, 𝐶𝒫, 𝑎⟩ to
ensure its coherence. The domain compilation fails if POCL can-
not be completed. Since our decomposition hierarchy is acyclic
(𝑎 ∉ 𝐴𝑎, see definition 9) nested methods cannot contain their
parent action as a step.

3.3 Problem
Problem instances are often most simply described by two com-
ponents: the initial state and the goal.
Definition 4 (Problem). The planning problem is defined as a
tuple 𝒫 = ⟨𝒟, 𝐶𝒫, 𝑎0⟩ where:

• 𝒟 is a planning domain.
• 𝐶𝒫 is the set of problem constants disjoint from the domain

constants.
• 𝑎0 is the root operator of the problem which methods are

potential solutions of the problem.

Example: We use a simple problem for our example domain.
The initial state provides that nothing is ready, taken or hot and all
containers are empty (all using quantifiers). The goal is to have
tea made.

The root operator is initialized to 𝑎0 = ⟨””, 𝑠0, 𝑠∗, {𝜋𝑙𝑣(𝑎0)}⟩,
with 𝑠0 being the initial state and 𝑠∗ the goal specification. The

method 𝜋𝑙𝑣(𝑎0) is a partial order plan with the initial and goal
steps linked together via 𝑎0. The initial partial order plan is
𝜋𝑙𝑣(𝑎0) = ({𝐼, 𝐺}, {𝐼

𝑠0−→ 𝑎0
𝑠∗
−→ 𝐺}), with 𝐼 = ⟨”𝑖𝑛𝑖𝑡”, ∅, 𝑠0, ∅⟩

and 𝐺 = ⟨”𝑔𝑜𝑎𝑙”, 𝑠∗, ∅, ∅⟩.

3.4 Partial Order Causal Links
Our method is based on the classical POCL algorithm. It works
by refining a partial plan into a solution by recursively removing
all of its flaws.
Definition 5 (Flaws). Flaws have a proper fluent 𝑓 and a causing
step often called the needer 𝑎𝑛. Flaws in a partial plan are either:

• Subgoals, open conditions that are yet to be supported by
another step 𝑎𝑛 often called provider. We note subgoals
⤈𝑓 𝑎𝑛.

• Threats, caused by steps that can break a causal link with
their effects. They are called breakers of the threatened link.
A step 𝑎𝑏 threatens a causal link 𝑙𝑡 = 𝑎𝑝

𝑓
−→ 𝑎𝑛 if and only

if ¬𝑓 ∈ eff (𝑎𝑏) ∧ 𝑎𝑏 ⊁ 𝑎𝑝 ∧ 𝑎𝑛 ⊁ 𝑎𝑏. Said otherwise, the
breaker can cancel an effect of a providing step 𝑎𝑝, before it
gets used by its needer 𝑎𝑛. We note threats 𝑎𝑏⦻𝑙𝑡.

Example: Our initial plan contains two unsupported subgoals:
one to make the tea ready and another to put sugar in it. In this
case, the needer is the goal step and the proper fluents are each of
its preconditions.

These flaws need to be fixed in order for the plan to be valid.
In POCL it is done by finding their resolvers.
Definition 6 (Resolvers). Classical resolvers are additional causal
links that aim to fix a flaw.

• For subgoals, the resolvers are a set of potential causal links
containing the proper fluent 𝑓 in their causes while taking
the needer step 𝑎𝑛 as their target and a provider step 𝑎𝑝 as
their source.

• For threats, we usually consider only two resolvers: demo-
tion (𝑎𝑏 ≻ 𝑎𝑝) and promotion (𝑎𝑛 ≻ 𝑎𝑏) of the breaker
relative to the threatened link. We call the added causeless
causal link a guarding link.

Example: The subgoal for 𝑖𝑛(𝑤𝑎𝑡𝑒𝑟, 𝑐𝑢𝑝), in our example, can
be solved by using the action 𝑝𝑜𝑢𝑟(𝑤𝑎𝑡𝑒𝑟, 𝑐𝑢𝑝) as the source of
a causal link carrying the proper fluent as its only cause.

The application of a resolver does not necessarily mean
progress. It can have consequences that may require reverting
its application in order to respect the backtracking of the POCL
algorithm.
Definition 7 (Side effects). Flaws that are caused by the applica-
tion of a resolver are called related flaws. They are inserted into
the agenda1 with each application of a resolver:

• Related subgoals are all the new open conditions inserted
by new steps.

• Related threats are the causal links threatened by the inser-
tion of a new step or the deletion of a guarding link.

Flaws can also become irrelevant when a resolver is applied.
Those invalidated flaws are removed from the agenda upon de-
tection:

1An agenda is a flaw container used for the flaw selection of POCL.

• Invalidated subgoals are subgoals satisfied by the new causal
links or the removal of their needer.

• Invalidated threats happen when the breaker no longer
threatens the causal link because the order guards the threat-
ened causal link or either of them have been removed.

Example: Adding the action 𝑝𝑜𝑢𝑟(𝑤𝑎𝑡𝑒𝑟, 𝑐𝑢𝑝) causes a related
subgoal for each of the preconditions of the action which are: the
cup and the water must be taken and water must not already be in
the cup.

In algorithm 1 we present a generic version of POCL inspired
by Ghallab et al. [2004, sec. 5.4.2].

Algorithm 1 Partial Order Planner
1 function POCL(Agenda 𝑎, Problem 𝒫)
2 if 𝑎 = ∅ then ▹ Populated agenda needs to be provided
3 return Success ▹ Stops all recursion
4 Flaw 𝑓 ← choose(𝑎) ▹ Heuristically chosen flaw
5 Resolvers 𝑅 ← solve(𝑓, 𝒫)
6 for all 𝑟 ∈ 𝑅 do ▹ Non-deterministic choice operator
7 apply(𝑟, 𝜋) ▹ Apply resolver to partial plan
8 Agenda 𝑎′ ← update(𝑎)
9 if POCL(𝑎′, 𝒫) = Success then ▹ Refining recursively

10 return Success
11 revert(𝑟, 𝜋) ▹ Failure, undo resolver application
12 𝑎 ← 𝑎 ∪ {𝑓} ▹ Flaw was not resolved
13 return Failure ▹ Revert to last non-deterministic choice

Resolvers are picked non-deterministically for applications (this
can be heuristically driven). At line 7 the resolver is effectively
applied to the current plan. All side effects and invalidations are
handled during the update of the agenda at line 8. If a problem
occurs, line 11 backtracks and tries other resolvers. If no resolver
fits the flaw, the algorithm backtracks to previous resolver choices
to explore all the possible plans and ensure completeness.

In definition 7, we mentioned effects that aren’t present in
classical POCL, namely negative resolvers. All classical resolvers
only add steps and causal links to the partial plan. Our method
needs to remove composite steps and their adjacent links when
expanding them.

4 The Heart of the Method
In this section, we explain how our method combines POCL with
HTN planning and how they are used to generate intermediary
abstract plans.

4.1 Additional Notions
In order to properly introduce the changes made for using HTN
domains in POCL, we need to define a few notions.

Transposition is needed to define decomposition.

Definition 8 (Transposition). In order to transpose the causal
links of an action 𝑎′ with the ones of an existing step 𝑎 in a plan
𝜋, we use the following operation :

𝑎B−
𝜋 𝑎′ = {𝜙−(𝑙)

causes(𝑙)
−−−−−−→ 𝑎′ ∶ 𝑙 ∈ 𝐿−𝜋(𝑎)}

It is the same with 𝑎′
causes(𝑙)
−−−−−−→ 𝜙+(𝑙) and 𝐿+ for 𝑎B+ 𝑎′. This

supposes that the respective preconditions and effects of 𝑎 and 𝑎′
are equivalent. When not signed, the transposition is generalized:
𝑎B 𝑎′ = 𝑎B− 𝑎′ ∪ 𝑎B+ 𝑎′.
Example: 𝑎B− 𝑎′ gives all incoming links of 𝑎 with the target

set to 𝑎′ instead.
Definition 9 (Proper Actions). Proper actions are actions that are
“contained” within an entity. We note this notion 𝐴𝑎 = 𝐴𝑙𝑣(𝑎)𝑎 for
an action 𝑎. It can be applied to various concepts :

• For a domain or a problem, 𝐴𝒫 = 𝐴𝒟.
• For a plan, it is 𝐴0𝜋 = 𝑆𝜋.
• For an action, it is 𝐴0𝑎 = ⋃𝑚∈methods(𝑎) 𝑆𝑚. Recursively:
𝐴𝑛𝑎 = ⋃𝑏∈𝐴0

𝑎
𝐴𝑛−1𝑏 . For atomic actions, 𝐴𝑎 = ∅.

Example: The proper actions of 𝑚𝑎𝑘𝑒(𝑑𝑟𝑖𝑛𝑘) are the actions
contained within its methods. The set of extended proper ac-
tions adds all proper actions of its single proper composite action
𝑖𝑛𝑓𝑢𝑠𝑒(𝑑𝑟𝑖𝑛𝑘, 𝑤𝑎𝑡𝑒𝑟, 𝑐𝑢𝑝).
Definition 10 (Abstraction Level). This is a measure of the max-
imum amount of abstraction an entity can express:2

𝑙𝑣(𝑥) = (max
𝑎∈𝐴𝑥

(𝑙𝑣(𝑎)) + 1) [𝐴𝑥 ≠ ∅]

Example: The abstraction level of any atomic action is 0 while
it is 2 for the composite action 𝑚𝑎𝑘𝑒(𝑑𝑟𝑖𝑛𝑘). The example do-
main has an abstraction level of 3.

4.2 Abstraction In POCL
The most straightforward way to handle abstraction in regular
planners is illustrated by Duet [Gerevini et al. 2008] by managing
hierarchical actions separately from a task insertion planner. We
chose to add abstraction in POCL in a manner inspired by the
work of Bechon et al. [2014] on a planner called HiPOP. The
difference between the original HiPOP and our implementation of
it is that we focus on the expressivity and the ways flaw selection
can be exploited for partial resolution. Our version is lifted at
runtime while the original is grounded for optimizations. All
mechanisms we have implemented use POCL but with different
management of flaws and resolvers. The original algorithm 1 is
left untouched.

One of those changes is that resolver selection needs to be al-
tered for subgoals. Indeed, as stated by the authors of HiPOP : the
planner must ensure the selection of high-level operators in order
to benefit from the hierarchical aspect of the domain, otherwise,
adding operators only increases the branching factor. We also
need to add a way to deal with composite actions once inserted
in the plan to reduce them to their atomic steps.
Definition 11 (Decomposition Flaws). They occur when a partial
plan contains a non-atomic step. This step is the needer 𝑎𝑛 of the
flaw. We note its decomposition 𝑎𝑛⊕.

• Resolvers: A decomposition flaw is solved with a decom-
position resolver. The resolver will replace the needer
with one of its instantiated methods 𝑚 ∈ methods(𝑎𝑛) in
the plan 𝜋. This is done by using transposition such that:
𝑎𝑛⊕𝑚

𝜋 = ⟨𝑆𝑚∪(𝑆𝜋⧵{𝑎}), 𝑎𝑛B−𝐼𝑚∪𝑎𝑛B+𝐺𝑚∪(𝐿𝜋⧵𝐿𝜋(𝑎𝑛)).
2We use Iverson brackets here.

• Side effects: A decomposition flaw can be created by the
insertion of a composite action in the plan by any resolver
and invalidated by its removal :

𝑓∈pre(𝑎𝑚)

⋃
𝑎𝑚∈𝑆𝑚

𝜋′ ⤈𝑓 𝑎𝑚

𝑙∈𝐿𝜋′

⋃
𝑎𝑏∈𝑆𝜋′

𝑎𝑏⦻𝑙
𝑙𝑣(𝑎𝑐)≠0

⋃
𝑎𝑐∈𝑆𝑚

𝑎𝑐⊕

Example: When adding the step𝑚𝑎𝑘𝑒(𝑡𝑒𝑎) in the plan to solve
the subgoal that needs tea being made, we also introduce a de-
composition flaw that will need this composite step replaced by
its method using a decomposition resolver. In order to decompose
a composite action into a plan, all existing links are transposed to
the initial and goal step of the selected method, while the com-
posite action and its links are removed from the plan. The main
differences between HiPOP and HEART in our implementations
are the functions of flaw selection and the handling of the results
(one plan for HiPOP and a plan per cycle for HEART). In HiPOP,
the flaw selection is made by prioritizing the decomposition flaws.
Bechon et al. [2014] state that it makes the full resolution faster.
However, it also loses opportunities to obtain abstract plans in
the process.

4.3 Cycles

Ω hot(water), tea in cup, water in cup,
placed(spoon), placed(cup)

placed (~), taken (~),
hot (~), * ~(in) *

make(tea)I G

pour(water, cup)

take(spoon)

take(cup)

Ii Gi

Im Gminfuse(tea, water, cup)

heat(water)

taken(~)

put(spoon)

put(cup)

~(taken(spoon)) placed(spoon)

take(tea)

take(water)

pour(tea, cup)

placed(cup)

2

0

1

Level 3

…
…

…

Figure 1: Illustration of how the cyclical approach is applied on
the example domain. Atomic actions that are copied from a cycle
to the next are omitted.

The main focus of our work is toward obtaining abstract plans
which are plans that are completed while still containing com-
posite actions. In order to do that the flaw selection function will
enforce cycles in the planning process.
Definition 12 (Cycle). A cycle is a planning phase defined as a
triplet 𝑐 = ⟨𝑙𝑣(𝑐), 𝑎𝑔𝑒𝑛𝑑𝑎, 𝜋𝑙𝑣(𝑐)⟩ where : 𝑙𝑣(𝑐) is the maximum
abstraction level allowed for flaw selection in the 𝑎𝑔𝑒𝑛𝑑𝑎 of re-
maining flaws in partial plan 𝜋𝑙𝑣(𝑐). The resolvers of subgoals
are therefore constrained by the following: 𝑎𝑝 ↓𝑓 𝑎𝑛 ∶ 𝑙𝑣(𝑎𝑝) ≤
𝑙𝑣(𝑐).

During a cycle all decomposition flaws are delayed. Once no
more flaws other than decomposition flaws are present in the
agenda, the current plan is saved and all remaining decomposition
flaws are solved at once before the abstraction level is lowered for
the next cycle: 𝑙𝑣(𝑐′) = 𝑙𝑣(𝑐) − 1. Each cycle produces a more
detailed abstract plan than the one before.

Abstract plans allow the planner to do an approximate form of
anytime execution. At any given time the planner is able to return
a fully supported plan. Before the first cycle, the plan returned is
𝜋𝑙𝑣(𝑎0).

Example: In our case using the method of intent recognition
of Sohrabi et al. [2016], we can already use 𝜋𝑙𝑣(𝑎0) to find a
likely goal explaining an observation (a set of temporally ordered
fluents). That can make an early assessment of the probability of
each goal of the recognition problem.

For each cycle 𝑐, a new plan 𝜋𝑙𝑣(𝑐) is created as a new method of
the root operator 𝑎0. These intermediary plans are not solutions
of the problem, nor do they mean that the problem is solvable. In
order to find a solution, the HEART planner needs to reach the
final cycle 𝑐0 with an abstraction level 𝑙𝑣(𝑐0) = 0. However, these
plans can be used to derive meaning from the potential solution
of the current problem and give a good approximation of the final
result before its completion.
Example: In the figure 1, we illustrate the way our problem

instance is progressively solved. Before the first cycle 𝑐2, all we
have is the root operator and its plan𝜋3. Then within the first cycle,
we select the composite action 𝑚𝑎𝑘𝑒(𝑡𝑒𝑎) instantiated from the
operator 𝑚𝑎𝑘𝑒(𝑑𝑟𝑖𝑛𝑘) along with its methods. All related flaws
are fixed until all that is left in the agenda is the abstract flaws.
We save the partial plan 𝜋2 for this cycle and expand 𝑚𝑎𝑘𝑒(𝑡𝑒𝑎)
into a copy of the current plan 𝜋1 for the next cycle. The solution
of the problem will be stored in 𝜋0 once found.

5 Theoretical analysis
In this section, we prove several properties of our method and
resulting plans : HEART is complete, sound and its abstract plans
can always be decomposed into a valid solution.

The completeness and soundness of POCL has been proven
in [Penberthy et al. 1992]. An interesting property of POCL
algorithms is that flaw selection strategies do not impact these
properties. Since the only modification of the algorithm is the
extension of the classical flaws with a decomposition flaw, all we
need to explore, to update the proofs, is the impact of the new
resolver. By definition, the resolvers of decomposition flaws will
take into account all flaws introduced by its resolution into the
refined plan. It can also revert its application properly.
Lemma (Decomposing preserves acyclicity). The decomposi-
tion of a composite action with a valid method in an acyclic
plan will result in an acyclic plan. Formely, ∀𝑎𝑠 ∈ 𝑆𝜋 ∶ 𝑎𝑠 ⊁𝜋
𝑎𝑠 ⟹ ∀𝑎′𝑠 ∈ 𝑆𝑎⊕𝑚

𝜋 ∶ 𝑎′𝑠 ⊁𝑎⊕𝑚
𝜋 𝑎′𝑠.

Proof. When decomposing a composite action 𝑎 with a method
𝑚 in an existing plan 𝜋, we add all steps 𝑆𝑚 in the refined plan.
Both 𝜋 and𝑚 are guaranteed to be cycle free by definition. We can
note that ∀𝑎𝑠 ∈ 𝑆𝑚 ∶ (∄𝑎𝑡 ∈ 𝑆𝑚 ∶ 𝑎𝑠 ≻ 𝑎𝑡 ∧ ¬𝑓 ∈ eff (𝑎𝑡)) ⟹
𝑓 ∈ eff (𝑎). Said otherwise, if an action 𝑎𝑠 can participate a fluent
𝑓 to the goal step of the method 𝑚 then it is necessarily present
in the effects of 𝑎. Since higher level actions are preferred during
the resolver selection, no actions in the methods are already used
in the plan when the decomposition happens. This can be noted
∃𝑎 ∈ 𝜋 ⟹ 𝑆𝑚 ⊍ 𝑆𝜋 meaning that in the graph formed both
partial plans 𝑚 and 𝜋 cannot contain the same edges therefore
their acyclicity is preserved when inserting one into the other.

Lemma (Solved decomposition flaws cannot reoccur). The appli-
cation of a decomposition resolver on a plan 𝜋, guarantees that
𝑎 ∉ 𝑆𝜋′ for any partial plan refined from 𝜋 without reverting
the application of the resolver.

Proof. As stated in the definition of the methods (defini-
tion 3): 𝑎 ∉ 𝐴𝑎. This means that 𝑎 cannot be introduced in
the plan by its decomposition or the decomposition of its proper
actions. Indeed, once 𝑎 is expanded, the level of the following
cycle 𝑐𝑙𝑣(𝑎)−1 prevents 𝑎 to be selected by subgoal resolvers. It
cannot either be contained in the methods of another action that
are selected afterward because otherwise following definition 10
its level would be at least 𝑙𝑣(𝑎) + 1.

Lemma (Decomposing to abstraction level 0 guarantees solvabil-
ity). Finding a partial plan that contains only decomposition
flaws with actions of abstraction level 1, guarantees a solution
to the problem.

Proof. Any method 𝑚 of a composite action 𝑎 ∶ 𝑙𝑣(𝑎) = 1
is by definition a solution of the problem 𝒫𝑎 = ⟨𝒟, 𝐶𝒫, 𝑎⟩. By
definition, 𝑎 ∉ 𝐴𝑎, and 𝑎 ∉ 𝐴𝑎⊕𝑚

𝜋 (meaning that 𝑎 cannot reoccur
after being decomposed). It is also given by definition that the
instantiation of the action and its methods are coherent regarding
variable constraints (everything is instantiated before selection
by the resolvers). Since the plan 𝜋 only has decomposition flaws
and all flaws within 𝑚 are guaranteed to be solvable, and both are
guaranteed to be acyclical by the application of any decomposition
𝑎⊕𝑚

𝜋 , the plan is solvable.

Lemma (Abstract plans guarantee solvability). Finding a partial
plan 𝜋 that contains only decomposition flaws, guarantees a
solution to the problem.

Proof. Recursively, if we apply the previous proof on higher level
plans we note that decomposing at level 2 guarantees a solution
since the method of the composite actions are guaranteed to be
solvable.

From these proofs, we can derive the property of soundness
(from the guarantee that the composite action provides its effects
from any methods) and completeness (since if a composite action
cannot be used, the planner defaults to using any action of the
domain).

6 Experimental evaluation
In order to assess its capabilities, HEART was evaluated on two
criteria: quality and complexity. All tests were executed on an
Intel® Core™ i7-7700HQ CPU clocked at 2.80GHz. The Java
process used only one core and was not limited by time or mem-
ory.3 Each experiment was repeated between 700 and 10 000
times to ensure that variations in speed were not impacting the
results.

Figure 2 shows how the quality is affected by the abstraction
in partial plans. The tests are made using our example domain.
The quality is measured by counting the number of providing
fluents in the plan ||⋃𝑎∈𝑆𝜋

eff (𝑎)||. This metric is actually used
to approximate the probability of a goal given observations in
intent recognition (𝑃(𝐺|𝑂) with noisy observations, see [Sohrabi
et al. 2016]). The percentages are relative to the total number

3The source code of HEART will be available at genn.io/heart

0 1 2 3 4 5 6 7 8 9 10
0%

20%

40%

60%

80%

100%
87%

73%

Running time (ms)

Q
ua

lit
y

(p
ro

vi
di

ng
 fl

ue
nt

s)

HiPOP

POP

0
1

2
3

HEARTLV
1,429±0,39 ms
2,761±0,64 ms
3,366±0,76 ms

8,408±1,93 ms

3,214±0,66 ms

60%

Figure 2: Evolution of the quality with computation time.

of unique fluents of the complete solution. These results show
that in some cases it may be more interesting to plan in a leveled
fashion to solve HTN problems. For the first cycle of level 3,
the quality of the abstract plan is already of 60%. This is the
quality of the exploitation of the plan before any planning. With
almost three quarters of the final quality and less than half of the
complete computation time, the result of the first cycle is a good
quality/time compromise.

012345
10⁻⁴

10⁻³

10⁻²

0,1

1

10

100
-4,7574 f(x) = 146,8 x

-3,6123 f(x) = 2,821 x

-2,3642 f(x) = 0,036 x

Level

Ru
nn

in
g

ti
m

e
(s

)

Width

Figure 3: Impact of domain shape on the computation time by
levels. The scale of the vertical axis is logarithmic. Equations are
the definition of the trend curves.

In the second test, we used generated domains. These domains
consist of an action of abstraction level 5. This action has a single
method containing a number of actions of level 4. We call this
number the width of the domain. All needed actions are built
recursively to form a tree shape. Atomic actions only have single
fluent effects. The goal is the effect of the higher level action and
the initial state is empty. These domains do not contain negative
effects. Figure 3 shows the computational profile of HEART for
various levels and widths. We note that the behavior of HEART
seems to follow an exponential law with the negative exponent of
the trend curves seemingly being correlated to the actual width.
This means that computing the first cycles has a complexity that
is close to being linear while computing the last cycles is of the
same complexity as classical planning which is at least P-SPACE
(depending on the expressivity of the domain) [Erol et al. 1995].

Conclusion
In this paper, we have presented a new planner called HEART
based on POCL. An updated planning framework fitting the need
for such a new approach was proposed. We showed how HEART
performs compared to complete planners in terms of speed and
quality. While the abstract plans generated during the planning

https://genn.io/heart

process are not complete solutions, they are exponentially faster
to generate while retaining significant quality over the final plans.
They are also proof of solvability of the problem. By using these
plans, it is possible to generate explanations of intractable prob-
lems within tight time constraints.

References

[Baioletti et al. 1998] Baioletti Marco, Stefano Marcugini, and Alfredo
Milani Encoding planning constraints into partial order planning
domains. International Conference on Principles of Knowledge
Representation and Reasoning, 608–616 Morgan Kaufmann Pub-
lishers Inc., 1998.

[Baker et al. 2007] Baker Chris L., Joshua B. Tenenbaum, and Rebecca
R. Saxe Goal inference as inverse planning. Proceedings of the
Annual Meeting of the Cognitive Science Society, Vol. 29, 2007.

[Bechon et al. 2014] Bechon Patrick, Magali Barbier, Guillaume In-
fantes, Charles Lesire, and Vincent Vidal HiPOP: Hierarchical
Partial-Order Planning. European Starting AI Researcher Sym-
posium, 264,51–60 IOS Press, 2014.

[Bercher et al. 2014] Bercher Pascal, Shawn Keen, and Susanne Biundo
Hybrid planning heuristics based on task decomposition graphs.
Seventh Annual Symposium on Combinatorial Search, 2014.

[Biundo and Schattenberg 2001] Biundo S., and B. Schattenberg From
abstract crisis to concrete relief preliminary report on flexible inte-
gration on nonlinear and hierarchical planning. Proceedings of the
European Conference on Planning, 2001.

[Dvorak et al. 2014] Dvorak Filip, Arthur Bit-Monnot, Félix Ingrand,
and Malik Ghallab A flexible ANML actor and planner in robotics.
Planning and Robotics (PlanRob) Workshop (ICAPS), 2014.

[Erol et al. 1994] Erol Kutluhan, James Hendler, and Dana S. Nau HTN
planning: Complexity and expressivity. AAAI, 94,1123–1128 1994.

[Erol et al. 1995] Erol Kutluhan, Dana S. Nau, and Venkatramana S.
Subrahmanian Complexity, decidability and undecidability results
for domain-independent planning. Artificial intelligence, 76 (1-2),
75–88, 1995.

[Fox 1997] Fox Maria Natural hierarchical planning using operator de-
composition. European Conference on Planning, 195–207 Springer,
1997.

[Fox et al. 2017] Fox Maria, Derek Long, and Daniele Magazzeni
Explainable Planning. Proceedings of IJCAI Workshop on Explain-
able AI, Melbourne, Australia, August 2017.

[Gerevini et al. 2008] Gerevini Alfonso, Ugur Kuter, Dana S. Nau,
Alessandro Saetti, and Nathaniel Waisbrot Combining Domain-
Independent Planning and HTN Planning: The Duet Planner. Pro-
ceedings of the European Conference on Artificial Intelligence,
18,573–577 2008.

[Ghallab et al. 2004] Ghallab Malik, Dana Nau, and Paolo Traverso
Automated planning: Theory & practice, Elsevier, 2004.

[Ghallab et al. 2016] Ghallab Malik, Dana Nau, and Paolo Traverso
Automated Planning and Acting, Cambridge University Press, 2016.

[Göbelbecker et al. 2010] Göbelbecker Moritz, Thomas Keller, Patrick
Eyerich, Michael Brenner, and Bernhard Nebel Coming Up With

Good Excuses: What to do When no Plan Can be Found. Proceed-
ings of the International Conference on Automated Planning and
Scheduling, 20,81–88 AAAI Press, May 2010.

[Kambhampati et al. 1998] Kambhampati Subbarao, Amol Mali, and
Biplav Srivastava Hybrid planning for partially hierarchical domains.
AAAI/IAAI, 882–888 1998.

[Lemai and Ingrand 2004] Lemai Solange, and Félix Ingrand Interleaving
temporal planning and execution in robotics domains. AAAI, 4,617–
622 2004.

[Marthi et al. 2007] Marthi Bhaskara, Stuart J. Russell, and Jason
Andrew Wolfe Angelic Semantics for High-Level Actions. ICAPS,
232–239 2007.

[Nau et al. 2003] Nau Dana S., Tsz-Chiu Au, Okhtay Ilghami, Ugur
Kuter, J. William Murdock, et al. SHOP2: An HTN planning system.
J. Artif. Intell. Res.(JAIR), 20, 379–404, 2003.

[Penberthy et al. 1992] Penberthy J Scott, Daniel S Weld, and others
UCPOP: A Sound, Complete, Partial Order Planner for ADL. Kr,
92, 103–114, 1992.

[Ramirez and Geffner 2009] Ramirez Miquel, and Hector Geffner Plan
recognition as planning. Proceedings of the International Confer-
ence on International Conference on Automated Planning and
Scheduling, 19,1778–1783 AAAI Press, 2009.

[Sacerdoti 1974] Sacerdoti Earl D. Planning in a hierarchy of abstraction
spaces. Artificial intelligence, 5 (2), 115–135, 1974.

[Sacerdoti 1975] Sacerdoti Earl D. The nonlinear nature of plans, STAN-
FORD RESEARCH INST MENLO PARK CA, 1975.

[Seegebarth et al. 2012] Seegebarth Bastian, Felix Müller, Bernd Schat-
tenberg, and Susanne Biundo Making hybrid plans more clear to
human usersa formal approach for generating sound explanations.
Proceedings of the Twenty-Second International Conference on
International Conference on Automated Planning and Scheduling,
225–233 AAAI Press, 2012.

[Sohrabi et al. 2016] Sohrabi Shirin, Anton V. Riabov, and Octavian
Udrea Plan Recognition as Planning Revisited. Proceedings of the
International Joint Conference on Artificial Intelligence, Vol. 25,
2016.

[Sreedharan et al. 2018] Sreedharan Sarath, Tathagata Chakraborti, and
Subbarao Kambhampati Handling Model Uncertainty and Multi-
plicity in Explanations via Model Reconciliation. International
Conference on Automated Planning and Scheduling, 2018.

[Sreedharan et al. 2018] Sreedharan Sarath, Siddharth Srivastava, and
Subbarao Kambhampati Hierarchical Expertise-Level Modeling for
User Specific Robot-Behavior Explanations. International Joint
Conference on Artificial Intelligence, 2018.

[Weld 1994] Weld Daniel S. An introduction to least commitment plan-
ning. AI magazine, 15 (4), 27, 1994.

[Young and Moore 1994] Young R. Michael, and Johanna D. Moore
DPOCL: A principled approach to discourse planning. Proceedings
of the Seventh International Workshop on Natural Language Gen-
eration, 13–20 Association for Computational Linguistics, 1994.

	Introduction
	Motivations and Potential Applications
	Related Works
	Definitions
	Domain
	Plan and hierarchical representation
	Problem
	Partial Order Causal Links

	The Heart of the Method
	Additional Notions
	Abstraction In POCL
	Cycles

	Theoretical analysis
	Experimental evaluation
	Conclusion
	References

