Miren Illarramendi
email: millarramendi@mondragon.edu

Eskola Mondragon Goi

S Politeknikoa

Coop Mondragon

Leire Etxeberria
email: letxeberria@mondragon.edu

Mondragon Goi

Eskola Politeknikoa

S Coop

Rd Xabier Elkorobarrutia
email: xelkorobarrutia@mondragon.edu

Models adaptation at runtime: enhancing the safety of software systems in uncertain scenarios

In current industrial environments, the software of embedded systems have to cope with the increasing complexity, uncertain scenarios and safety requirements at runtime. One approach to managing these requirements is having the software components information in model terms at runtime (models@run.time). Adaptation of models at runtime is one of the challenges to enhance the safety level in uncertain scenarios.

I. INTRODUCTION

An embedded system is a self-contained system that incorporates elements of control logic and real-world interaction. The UML State Machine is a powerful formalism to model the logical behaviour of these types of systems, and in Model-Driven Engineering (MDE) we can generate code automatically from these models.

MDE aims to overcome the complexity of software construction by allowing developers to work at the high-level models of software systems instead of low-level codes [START_REF] Elkorobarrutia | Model-driven software evolution: A research agenda[END_REF]. However, determining and evaluating the runtime behaviour and performance of models of embedded systems using commercial MDE tools is a challenging task. Such tools provide little support to observe at model-level the execution of the code generated from the model, and to collect the runtime information necessary to, for example, check whether defined constraints are met or not [START_REF] Ahmadi | Runtime monitoring of a rover: Mde research with open source software and low-cost hardware[END_REF].

One approach to managing these requirements is having the software components information in model terms at runtime (models@run.time). Work on models@run.time seeks to extend the applicability of models produced in MDE approaches to the runtime environment. Having the model at runtime is the first step towards the runtime verification.

Runtime verification can be performed using the information of model elements (current state, event, next state,etc.) of the UML-SM model of the software component under study. This enables using a common language to design and verify at runtime the software components. Besides, UML-SM is commonly used in industry, thereby avoiding the cost of learning formal languages.

In the next sections, we present a model-driven approach to automatically generate UML-SM code with the ability to provide information of the software component in terms of model elements at runtime and the possibility to adapt this model at runtime when an uncertain or hazard scenario is detected.

II. CRESCO FRAMEWORK

Figure 1 shows the workflow of the approach. First, the behaviour of the components is modelled using UML-SMs by Papyrus [START_REF][END_REF] and the states to be observable at runtime are annotated using the observability profile. This first step is performed by the designer. Once the designer has specified the behaviour of the component, the RESCO model-driven framework will add all the needed infrastructure to allow having the state machine model at runtime. This will be transparent for the designer.

Having these software components with introspection ability, we can design a solution that enables the developers Figure 2 shows the overall architecture of the Runtime Verification solution. In this architecture, on the one hand, we have a software component based system which is compound by an EventReceiver, a software controller designed by UML-SM models, sensors and actuators. On the other hand, we have another execution environment which acts as a safety bag called "Runtime Verification Module" (RVM).

The sensor's events go to the EventReceiver and it performs a preprocessing to check the received events and send them to the dispatcher of the state machine based software components. The dispatcher analyzes the current status of the software component and calculates if a transition to a new state has to be performed.

Additionally, in a reception of an event in an observed state, this information is sent to the Runtime Verification Module by the Observer of the software component. The ObserverReceiver element receives this information and sends it to the RuntimeChecker to check if it is in a safe scenario or not.

When the Runtime Checker checks the information, if the software component is in a safe scenario, it sends an acknowledgment event to the EventReceiver of the software component. The latter performs the corresponding transition and, when needed, it updates output signals to be sent to the actuator. The system continues working in a normal mode. If the RuntimeChecker detects an unsafe scenario the RVM starts the safeModeProcess to change the software component to a safeMode operation mode and it sends the corresponding error event to the EventReceiver of the software-component based system. The software component updates the actuators based on the safeModeProcess indications. This last process is application-specific and has to be defined by the safety engineer.This process could be called as runtime adaptation but in this case this model adaptation was designed at development phase.

III. FUTURE WORKING LINES AND CONCLUSIONS

In [START_REF] Abmann | A reference architecture and roadmap for models@run.time systems[END_REF] they describe open research challenges for models@run.time. Tools for MDE approach, uncertainty management and safety assurance at runtime are some of the open challenges. Our solution is focused on solving the safety assurance and uncertainty management at runtime.

The presented solution manages uncertain or hazardous situations adapting the current model to a predefined safeMode model at runtime. As future work, dynamic runtime model adaptation will be analized. In [START_REF] Trapp | Safety assurance of open adaptive systems a survey[END_REF] they analized which is the current status of the safety assurance of Open Adaptive Systems. They conclude that there are not V&V at Runtime approaches that follows the Models@Runtime approach.

The next step of our research is focused on filling this gap. For that, our approach will be based on deep learning approach to generate new models at runtime. In addition, in order to assure that the suggested dynamic model adaptations are safe, we will need MDE based runtime testing tools. In [START_REF] Helle | Testing of autonomous systemschallenges and current state-of-the-art[END_REF], they suggest a list of "things to do" to test autonomous systems. Some of them, such as the Use of Models, Test Continuously and Virtually and Think Ahead, are on our future research lines.

Fig. 1 .

 1 Fig. 1. Model-driven workflow

Fig. 2 .

 2 Fig. 2. Overall architecture of the Runtime Verification solution scenario.

TABLE I

 I generate software systems able to check their software components in model terms at runtime.For runtime checking, some decisions must be taken about what to observe. TableIprovides the information available from the CRESCO SW components at runtime.

		CRESCO OBSERVED DATA
	Data	Description
	Component Name Identification of the current component
	Current State	Identification of the current state
	Next State	Identification of the next/target state
	Father State	Identification of the father state
	Event Id	Identification of the current event

to

ACKNOWLEDGMENT

The project has been developed by the Embedded System Group of MGEP and supported by the Department of Education, Universities and Research of the Basque Government under the projects Ikerketa Taldeak (Grupo de Sistemas Embebidos) and by the European H2020 research and innovation programme, ECSEL Joint Undertaking, and National Funding Authorities from 19 involved countries under the project Productive 4.0 with grant agreement no. GAP-737459 -999978918.