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I. INTRODUCTION

In this fast abstract, we aim at presenting our first ideas
on the verification of autonomous self-driving cars with, in
particular, the Artificial Intelligence (AI) algorithm parts and
corresponding implementations. We derive our ideas with a
special consideration of the system development to given
standards and their assessability.

We focus, therefore, on learning-based algorithms enabling
an autonomous car to percept its environment, i.e., learning-
based algorithms for the visual perception. This mainly con-
tains Artificial Neural Networks [ 1] with different manifesta-
tions, e.g., Generative Adversarial Nets [2] or Convolutional
Neural Networks (CNN) [3]].

Their analysis is in particular essential for the certification
of future autonomous cars since they define the perceptive
machine interface and therefore generate relevant input for
most following control and steering algorithms. As a conse-
quence, these perception Al-algorithms become safety-relevant
functions. Especially when dealing with autonomous systems
of autonomy level three and above, the criticality of those
components gets ASIL-D, the highest criticality level imply-
ing several specific requirements for the system development
process.

Fig. [I| shows the schema of a Convolutional Neural Net-
work, one of the currently most important algorithms for visual
perception. The basic idea is to define a set of classes, e.g.,
cars, trucks, or pedestrians, and training data with several
pictures, containing instances of those classes. Based on the
training data, the CNN “learns” to classify an input image
correlating to its content (e.g., car or pedestrian).

In a first step, several convolution blocks, each representing
a set of image filters, are applied to the previous block’s output.
After the set of convolutions, each entry of the last convolution
block is mapped to the input vector of the fully connected
layer, i.e., the neural net for the classification. The final output
of the neural network is a specificator function containing
correspondence values for the input to each class (label). This
is a value between zero and one whereas the sum of all values
(one per label) is one. The specific weights and threshold are
learned by minimizing the error of the value in the specificator
function for the respective image <> classification tuple.

When implementing a CNN, the basic architecture is fixed.
Specific parameters and design decision, however, can be

made. This includes, e.g., the convolutions and filters as well
as their order, the number and granularity of the classes, or
the training data and its distribution.
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Fig. 1. Example of a Convolutional Neural Network [4].

II. ON ENSURING SAFETY FOR AI-ALGORITHMS

In our point of view, a first step for analyzing such
learning-based algorithms would be taken by implementing
safety guarantee mechanisms and measures in the follow-
ing three abstract system (design) layers: Algorithmic Layer,
Software/Implementation Layer, and Validation Layer. These
different layers correspond to different abstract stages in the
system development process.
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Fig. 2. System and design layers of interest for the analysis.

The Algorithm Layer focus on the selection of the algorithm,
it’s training, and the interpretation of the classification results.
In the Software/Implementation Layer the Al-algorithm is
integrated within the remaining software infrastructure, its
results are verified for their plausibility and then compared
to those of other algorithms. In contrast to that, the Validation
Layer focus on the traceability of the safety requirements to
the design decisions and implementations.



A. Validation Layer

In the validation layer, one major task would be the defini-
tion of new traceability associations from system and safety
requirements to architecture elements and corresponding code.
The important part here is that we neither want to develop
the architecture nor implement the neural network, but use a
specific architecture and implementation. However, we have
to choose the, in most cases predefined, Al-algorithm archi-
tecture, defining the corresponding distribution for the input
function and training data, specify a loss function, i.e., a
quantification to map the prediction values to specific classes
as well as corresponding guarantees. So, we must focus on
arguing the design decision with traceable associations back
to the initial system or safety requirements (cf. [5]).

An example of an important design decision is given in
Fig. 3] This is the specificator function, mapping the values
of the last layer of the neural net to the predefined classes.
Here we can see, that in many cases there exists a level
of uncertainty in the decision since often we do not have a
100% decision. An essential step in the validation layer would
therefore be to argue about the level of guarantee required and
how to achieve this, e.g., in combination with other algorithms
and distinct training data for different algorithms.
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Fig. 3. Classification of an image with corresponding specificator funtion [4].

B. Implementation Layer

For the safety assessment, we think especially two parts
are important in the implementation layer: the application
of several independent algorithms (e.g., differently trained
and different architecture) and the comprehensibility of the
algorithm as an understandable plausibility check.

As given in the previous section, it is possible that the
perception algorithms has a specific level of uncertainty.
Therefore, it is essential to define some voting process weight-
ing the outputs of the networks and decide whether the
reliability of the computed output is high enough. Taking into
account the single specificator function values, we could derive
specific weights in combination with a so-called ensemble
voting approach, where results from different networks, trained
with different data or implementing different architectures are
included in the classification process [6].

Another important fact is that, even though we understand
the general behavior of a training-based algorithm, it is hard
to validate the specific learned values. Especially since images
can be manipulated with noise that is not visible to the human
but can totally mislead the neural network [7]. Therefore,
we propose to use parallel, dynamically assembling watch-
dog components implementing a behavior redundant to the
learning-based algorithm but in a comprehensible way. It is

not necessary that the redundant component is as good as the
neural network, but it should be able to identify completely
outlying computed values and make the decision procedure of
the net more comprehensible to a human engineer.

C. Algorithmic Layer

Even though we do not implement the basic network, we
must choose several parameters for its implementation.

It is, for example, quite significant in which order we apply
with convolution and how are the input-output constraints for
each convolution layer. From this, we can abstract particular
formulae specifying, e.g., input requirements and output as-
surances (comparable to software code contract). By encoding
these contracts into a SAT problem, it should be possible to
verify whether these convolutions can be applied together in
the specific order and combination as well as whether they fit
the overall score function.

Another critical point is the definition of classification sets
and the corresponding training data since it has an impact
on the neural net if, e.g., the sets of images are sufficiently
different in their specific features and the classes have sharp
distinctions based on recognizable image features. Therefore,
specific feature distributions must be defined stating the train-
ing images are sufficiently specific for the recognition [S§]]
but also cover all important possible external environmental
influences (e.g., rain, cloudy weather, or sunshine).

III. CONCLUSION

Summarizing, we think that there are several stages on the
different layers for ensuring safety for learning-based artificial
intelligent algorithms within autonomous driving cars. This
does not necessarily correspond to formal verification of the
implemented algorithm itself, but also to providing a traceable
and comprehensible system description and behavior which
can be assessed by an external expert or increasing the
reliability of the output by diversifying the decision strategies.
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