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From Identification using Rejection Sampling to
Signatures via the Fiat-Shamir Transform:

Application to the BLISS Signature

Pauline Bert and Adeline Roux-Langlois

Univ Rennes, CNRS, IRISA
first.last@irisa.fr

Abstract. In this paper, we present a reduction from non-lossy/lossy
identification scheme using rejection sampling to signature in the Random
Oracle Model (ROM). The rejection sampling is used to ensure that the
last step in the identification scheme does not leak information about
the secret key of the scheme. This last step may fail, and to hide these
failures to an adversary we use a Fiat-Shamir transform where we rerun
the identification protocol until we get a valid output. We also apply
our result for non-lossy identification scheme to the well-known BLISS
signature [DDLL13] and compare with the original proof.
Keywords. Signature schemes, Identification schemes, Fiat-Shamir trans-
form, Rejection Sampling, Lattices.

1 Introduction

The Fiat-Shamir transform [FS86] is a well-studied transform from an iden-
tification scheme to a digital signature. In the lattice literature, Fiat-Shamir
signatures are probably the most efficent ones [Lyu12,GLP12,DDLL13], com-
pared to hash-and-sign, or even standard model signatures. In this paper, we
propose a reduction where almost every Fiat-Shamir transform on lattices can fit
into, and we apply our reduction to the BLISS signature [DDLL13].

From Identification to Signature. An identification scheme ID is a three-move
protocol Commitment-Challenge-Response. The prover, using its secret key, sends
a commitment Cmt to the verifier. The verifier responds a random challenge
Ch. The prover finally sends a response Rsp. The verifier, having access to the
corresponding public key, accepts or not the complete transcript Cmt||Ch||Rsp.
The Fiat-Shamir (FS) transform [FS86] is a way to construct a digital signature
scheme in the Random Oracle Model (ROM) from an identification scheme. The
signer runs the identification scheme by itself by choosing the challenge via a hash
function Ch← H(Cmt,m). The signature of a message m is σ = (Cmt,Rsp),
and to verify such a signature, we recompute the challenge Ch ← H(Cmt,m)
and check whether Cmt||Ch||Rsp is a valid transcript or not.
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Security. A basic security for an identification scheme is the security against
passive impersonation. The adversary, often called the impersonator, has access
to the public key of the scheme and to a transcript generation oracle [AABN02].
This oracle, depending on the identification scheme ID and on a key pair (pk, sk),
outputs a random transcript of a honest execution. The goal of the adversary is
to impersonate the prover. By interacting with an honest verifier, the adversary
wants the verifier to accept at the end of the execution of the protocol. The
signature scheme obtained by applying the FS transform is secure against chosen-
message attack in the ROM if, and only if, the underlying identification scheme is
secure against impersonation under passive attack (and non-trivial meaning that
the challenge space is super-polynomial) [AABN02]. This transformation is not
tight, it looses a factor at least qH (number of queries to the random oracle H)
in the advantage of the impersonator compared to the advantage of the forger.

Lossy/Non-Lossy Identification Scheme. Motivating by the work of Katz and
Wang [KW03], Abdalla et al. in [AFLT12] introduced the idea of lossy identifica-
tion scheme and give a tight analogous of the reduction of [AABN02], starting
from a lossy identification scheme. A lossy identification scheme comes with an
additional lossy key generation algorithm which outputs a lossy public key, which
is computationally indistinguishable from a honestly generated one. Such scheme
has also a property of simulatability, meaning that we can construct a simulated
transcript generation oracle, with no access to the secret key of the identification
scheme but still outputs transcripts whose distribution is statistically close to
those from the original transcript generation oracle. The security of a lossy iden-
tification scheme is a notion of impersonation with respect to lossy keys, where
the adversary has access to a lossy public key of the scheme and to the simulated
variant of the transcript generation oracle. In the lattice literature, we can find
some lossy identification schemes: the lattice instantiation at the end of [AFLT12],
the underlying identification scheme of NIST submissions TESLA, and Dilithium.
In [ABB+17], the authors showed that the TESLA signature is secure in the
Quantum Random Oracle Model (QROM) and recently in [KLS17], the proof is
generalized to Fiat-Shamir signature starting from lossy identification scheme
with an application to Dilithium. There exist also non-lossy lattice-based identifi-
cation schemes, for example the ones underlying the signatures [Lyu12,DDLL13].
To prove the security of such schemes, a solution is to use the Forking Lemma
[PS00,BN06], resulting in a non-tight proof.

Rejection Sampling. The use of rejection sampling in lattice constructions is due
to Lyubashevsky [Lyu08,Lyu12]. He first describes an abort technique, allowing
the prover to abort the protocol instead of returning its response. The idea
behind the abort technique is to shorten the response by allowing it to fall in a
smaller space/interval. This will happen with small probability, and if it does
the prover simply aborts the protocol. When we construct a signature via the
Fiat-Shamir transform from such identification scheme, the aborts can be hidden
by simply rerun the protocol. The abort/rejection sampling technique is also
used to ensure that the response of the prover is independent from its secret
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key. Rejection sampling is a method to sample from an arbitrary distribution f ,
given the access to a family of probability distributions gv indexed by some v.

A sample x
$← g drawn from g is accepted with probability f(x)

M ·gv(x) where M is

a constant satisfying M · gv(x) ≥ f(x) for all x drawn from f . This procedure
succeeds with probability at least 1

M .

Identification Scheme using Rejection Sampling. In an identification scheme
using rejection sampling, the probability distribution f corresponds to the target
output distribution of the prover responses. Unlike the distribution f , the family
of probability distribution gv will depend on the prover secret key; and will
be indexed by a random value v, being a function of the prover secret key
and a uniformly random challenge. For example in [Lyu12], the distribution of

Fig. 1: Identification Scheme using Rejection Sampling

Psk Vpk

Cmt

−−−−→
Ch

←−−−− Ch
$← {0, 1}c(k)

Rsp
$← gv

With proba f(x)
M·gv(x) , output Rsp

Otherwise output Rsp← ⊥
Rsp

−−−−→ Dec← V(pk,Cmt||Ch||Rsp)

the responses f is a known discrete Gaussian distribution Dm
σ of parameter σ.

However, the distribution gv is a shifted discrete Gaussian distribution Dm
v,σ with

the same parameter σ but centered on a vector v = Sc depending on the prover
secret key S and on a particular uniformly random challenge c.

Our contribution. In this paper, we give a definition of an identification scheme
using rejection sampling starting from the definition of rejection sampling from
[Lyu12]. This kind of identification scheme has two inherent and quite classical
properties:

1. Correctness Error: The probability that a honestly generated transcript
contains a non-valid response is negligible, here it corresponds to

(
1− 1

M

)
.

2. Simulatability: There exists a simulated transcript generation oracle, who
does not have access to the secret key and is able to output transcripts
statistically close to those from the original transcript generation oracle.

The security we consider for such identification scheme is the impersonation
against passive attacks where the adversary has access to the real public key of
the scheme and also to the simulated transcript oracle.
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Our main result is a transformation from an identification scheme using
rejection sampling to an existentially unforgeable signature in the ROM. This
signature is obtained by applying the Fiat-Shamir transform on an identification
scheme using rejection sampling. The only significant modification from existing
Fiat-Shamir transform [AFLT12,KLS17] is that we repeat the execution of the
identification protocol in the signing algorithm as long as the response of the
prover is non-valid. We then discuss whether or not the identification scheme
is also lossy. If the identification scheme is lossy, we get a tight proof as in
[AFLT12] and if not, we get a non-tight proof loosing a factor of roughly qH
as in [AABN02]. To link the advantage of the impersonator and the advantage
against the underlying search problem, we use a propriety of soundness, i.e. if we
have access to two valid transcripts on a same commitment, we can extract a
solution of a instance of this search problem. Next, by using the Reset Lemma
[BP02] we can link the advantage of the impersonator playing the impersonation
experiment to the advantage of an adversary playing twice this experiment with
different randomness and getting two valid transcripts on a same commitment.

We give an example of this by applying our main result to the well-known
BLISS signature [DDLL13] with its underlying non-lossy identification scheme.
We choose the BLISS signature because the construction follows exactly our Fiat-
Shamir transform (i.e. rerun the identification scheme in the signing algorithm
to get a valid response) and we remark that the BLISS paper does not take into
account this feature in the proof.

Overview of our main result. The idea behind this proof is to use honest
transcripts of the identification scheme to answer the signing queries of the
forger. If we have a valid transcript Cmt||Ch||Rsp, we will set the random oracle
H(Cmt||m) ← Ch to ensure that σ = (Cmt,Rsp) is a valid signature for the
message m. The first step of our proof is to limit the number of signing attempts
to l, where we can take l greater than M . Doing this modification implies that
the forger might see invalid signatures, when after l tries, the response of the
prover is non-valid. This happens for each signing query, so the probability that
a signature is non-valid is at most qS(1− 1

M )l where
(
1− 1

M

)
is the probability

that an honestly generated transcript contains a non-valid response.
On sign query m, we may overwrite the value H(Cmt,m). Such collisions

happen with probability at most l(qS+qH+1)qS
2β

where β corresponds to the min-
entropy of commitments.

Then we apply a series of small changes to get a signing algorithm that no
longer needs the secret key sk. To do that the major change is to switch from
the transcript generation algorithm to its simulated counterpart thanks to the
use of rejection sampling. If the statistical distance between the distribution of
the transcripts outputted by this two oracles is at most εrs, the advantage of the
forger changes by at most qSεrs due to the rejection sampling technique.

Non-Lossy Identification Scheme. If the identification is non-lossy, we can link
the advantage of the forger to the advantage of the impersonator. For this step,
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we make a guess about which hash query will be used in the forgery. If our guess
is correct, we are able to break the underlying impersonation problem, that’s
why we loose at least a factor qH in the advantage of the impersonator compared
to the advantage of the forger, like [AABN02].

Lossy Identification Scheme. If the identification is lossy, we can add another step
which involves switching the real public key of the scheme to a lossy one. The
advantage of the adversary is modified by at most the advantage in distinguishing
a real public key from a lossy one. The reduction is tight because the advantage
of the forger is tightly related to the advantage of breaking the underlying search
problem, for example the decision-LWE problem in [AFLT12]. Finally, the last
step link the advantage of the forger to the advantage of the impersonator with
respects to lossy keys as with non-lossy identification scheme.

2 Preliminaries

Notation. Let A(·, ·, · · · ) be a randomized algorithm, then x← A(a, b, · · · ;R) is

the unique output on inputs a, b, · · · and coins R, while x
$← A(a, b, · · · ) means

that we first pick a random R
$← Coins(k) and then assigned x← A(a, b, · · · ;R).

2.1 Identification Scheme using Rejection Sampling

To hide the secret key of a prover in a identification scheme, Lyubashevsky
[Lyu12] proposed to use a rejection technique. Informally, the prover generates a
candidate for its response and rejects it with a certain probability to ensure that
the distribution of the response is independent from the prover secret key.

Lemma 1 (Rejection Sampling [Lyu12]). Let V be an arbitrary set, h :
V → R and f : Zm → R be probability distributions. If gv : Zm → R is a family
of probability distributions indexed by all v ∈ V with the property that there exists

a constant M ∈ R such that ∀v,Pr
[
M · gv(x) ≥ f(x), x

$← f
]
≥ 1 − εrs, then,

the output distribution of

v
$← h

x
$← gv

return (x, v) with probability min
(

f(x)
M ·gv(x) , 1

)
is within statistical distance εrs/M of the output distribution of

v
$← h

x
$← f

return (x, v) with probability 1/M

Moreover, the probability pout that the first algorithm output something is bounded
by (1− εrs)/M ≤ pout ≤ 1/M .
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ID. An identification scheme using rejection sampling (Fig. 1) is a classical one
using rejection sampling to ensure that responses follow a probability distribution
f , by first generating them following a family of probability gv.

Definition 1. An identification scheme using rejection sampling ID is defined
by ID = (KeyGen,P,V, c, gv, f) where:

– KeyGen(1k) is the key generation algorithm, taking the security parameter
k ∈ N of the scheme and outputting a pair of keys (pk, sk). The secret key sk
is given to the prover algorithm P, and the public pk is given to the verifier
algorithm V.

– P is the prover algorithm, which takes as input the secret key sk and the
current conversation transcript and outputs the next message to be sent to
the verifier.

– V is a deterministic algorithm which takes as input the public key pk and
the complete transcript conversation Cmt||Ch||Rsp and outputs a boolean
decision Dec.

– c(k) is a function of the security parameter k, which corresponds to the length
of the challenge.

– gv is a family of probability distributions indexed by v, a function of the
secret key sk, a particular challenge Ch and in some case v can also depend
on a particular commitment Cmt or on the secret used to construct the
commitment,

– f is the output distribution of the prover responses such that there exists a
constant M ∈ R verifying ∀Ch ∈ {0, 1}c(k),∀x,M · gv(x) ≥ f(x).

Transcript generation oracle. Like in [AABN02,AFLT12], we associate a tran-
script generation oracle TrIDpk,sk,k to an identification scheme ID. The transcript

generation oracle TrIDpk,sk,k returns a random transcript Cmt||Ch||Rsp of an
honest execution of ID with key pair (pk, sk) and security parameter k. In
an identification scheme using rejection sampling, the prover may output a re-
sponse Rsp = ⊥, in this case the transcript generation oracle will output ⊥||⊥||⊥.

TrIDpk,sk,k :

Cmt
$← P(sk),

Ch
$← {0, 1}c(k), Rsp

$← gv
return Cmt||Ch||Rsp with probability f(x)

M ·gv(x) , otherwise ⊥||⊥||⊥.

Inherent properties. Thanks to the rejection sampling (Lemma 1) we can sim-

ulate the transcript generation oracle TrIDpk,sk,k by an algorithm T̃r
ID
pk,k with no

access to the secret key sk. It proceeds by first generating Cmt
$← P(sk) and

Ch
$← {0, 1}c(k) and outputting Cmt||Ch||Rsp with Rsp

$← f with probability
1
M , and otherwise ⊥||⊥||⊥. This property is called Non-Abort Honest-Verifier
Zero-Knowledge (naHVZK) in [KLS17].
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Definition 2 (naHVZK). ID is said to be ε-perfect naHVZK if there exists

an algorithm T̃r
ID
pk,k, given only the public key pk and the security parameter k,

outputs Cmt||Ch||Rsp such that the following conditions hold:

1. The distribution of Cmt||Ch||Rsp
$← T̃r

ID
pk,k has statistical distance at most

ε from Cmt′||Ch′||Rsp′
$← TrIDpk,sk,k,

2. The distribution of Ch from Cmt||Ch||Rsp
$← T̃r

ID
pk,k is uniform in the

challenge set {0, 1}c(k).

Our identification scheme also satisfy the correctness property from [KLS17],
with εc = 1− 1/M .

Definition 3 (Correctness Error). An identification scheme ID has correct-

ness error ε if for all (pk, sk)
$← KeyGen(1k) the following holds:

1. All possible transcripts Cmt||Ch||Rsp satisfying Rsp 6= ⊥ are valid,
2. The probability that a honestly generated transcript Cmt||Ch||Rsp contains

Rsp = ⊥ is bounded by ε.

Security. The security of the identification scheme we consider here is a security
against passive impersonation where the goal of the adversary is to impersonate
the prover without the knowledge of the secret key sk. This impersonator is
modeled as a probabilistic algorithm I which is given as input the public key
pk of the identification scheme and also has access to the simulation of the

transcript oracle T̃r
ID
pk,k described above. After looking at these transcripts, the

impersonator I interacts with an honest verifier in the three-move protocol and
wants the verifier to accept at the end of this protocol.

Expimp-pa-sim
ID,I (k):

(pk, sk)
$← KeyGen(1k), st‖Cmt

$← IT̃r
ID
pk,k(pk)

Ch
$← {0, 1}c(k), Rsp

$← I(st,Ch), Dec← V(pk,Cmt||Ch||Rsp)
return Dec

The advantage of I playing the game above is

Advimp-pa-sim
ID,I (k) = Pr

[
Expimp-pa-sim

ID,I (k) = 1
]
.

An ID is polynomially-secure against impersonation under passive attack if
Advimp-pa-sim

ID,I (·) is negligible for every poly(k)-time impersonator I.

2.2 Lossy Identification Scheme using Rejection Sampling

A lossy identification scheme using rejection sampling is defined like a classical
identification scheme plus an algorithm LossyKeyGen(1k) which takes the security
parameter k ∈ N and outputs a lossy public key pk. We will replace a truly
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generated public key in Expimp-pa-sim
ID,I (k) by a lossy one in the impersonation

experiment with respect to lossy keys Explos-imp-pa
ID,I (k) and we have no need of a

secret key in this case. A lossy identification scheme satisfies two properties, a
simulatability property like the naHVZK defined above and the following one:

Definition 4 (Indistinguishability of keys). Consider the two experiments

Expind-keys-real
ID,D (k) and Expind-keys-lossy

ID,D (k) in which we respectively generate pk

via KeyGen(1k) and via LossyKeyGen(1k), and provide it as input to the distin-
guishing algorithm D. We say that D can (t, ε)-solve the key-indistinguishability
problem if D runs in time t and∣∣∣Pr

[
Expind-keys-real

ID,D (k) = 1
]
− Pr

[
Expind-keys-lossy

ID,D (k)
]∣∣∣ ≥ ε.

We say that ID is (t, ε)-key-indistinguishable if no algorithm (t, ε)-solve the
key-indistinguishability problem.

Min-Entropy of commitments. Let C(sk) = {P(sk;R) : R ∈ Coins(k)} be
the set of commitments associated to sk, where Coins(k) is a set of binary
string depending on the security parameter k. The maximum probability that a
commitment takes a particular value is:

α(sk) = max
Cmt∈C(sk)

{
Pr
[
P(sk;R) = Cmt : R

$← Coins(k)
]}

.

Then, the min-entropy function associated to ID is β(sk) = minsk

{
log2

1
α(sk)

}
,

where the minimum is taken over all the (pk, sk) generated by KeyGen(1k).

2.3 Reset Lemma

Here we recall the Reset Lemma from [BP02] which apply to identification scheme
in the same way the Forking Lemma [PS00,BN06] applies to signature scheme.

Lemma 2 (Reset Lemma [BP02]). Let P be a prover in a canonical iden-
tification scheme with verifier V and let q, v be inputs for the prover and ver-
ifier respectively. Let acc(p, v) be the probability that V accepts after its in-
teraction with P, i.e. the probability that the following experiment returns 1:

R
$← Coins(k), st||Cmt← P(p;R)

Ch
$← {0, 1}c(k), Rsp

$← P(st,Ch), Dec← V(v,Cmt||Ch||Rsp)
return Dec

Let res(q, v) be the probability that the following reset experiment outputs 1:

R
$← Coins(k), st||Cmt← P(p;R)

Ch1
$← {0, 1}c(k), Rsp1

$← P(st,Ch1), Dec1 ← V(v,Cmt||Ch1||Rsp1)

Ch2
$← {0, 1}c(k), Rsp2

$← P(st,Ch2), Dec2 ← V(v,Cmt||Ch2||Rsp2)
return Dec1 ∧Dec2 ∧Ch1 6= Ch2

Then acc(q, v) ≤ 1
2c(k)

+
√

res(q, v).
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2.4 Lattice Background

Lattices. An m-dimensional full-rank lattice Λ is a discrete additive subgroup
of Rm. A lattice is the set of all integer combinations of some linearly independent
basis vectors, B = {b1, · · · ,bm} ∈ Rm×m, Λ(B) = {

∑m
i=1 zibi : zi ∈ Z}.

Gaussian distribution. The continuous Gaussian distribution of center c ∈ Rm
and width parameter σ is defined as ρmc,σ(x) = 1√

2πσ2
exp(−‖x−c‖

2

2σ2 ). The discrete

Gaussian distribution over the lattice Zm is defined as Dm
c,σ =

ρmc,σ(x)

ρmσ (Zm) where

ρmσ (Zm) =
∑

x∈Zm ρ
m
σ (x).

Lemma 3 ([Lyu12]). For any η > 1, Prz←Dmσ [‖z‖ > ησ
√
m] < ηm exp

m
2 (1−η2).

SIS. A classical hard problem in lattice based literature is the Short Integer
Solution (SIS) problem, introduced by Ajtai [Ajt96] where he also gives a reduction
from worst-case lattice problems to the average-case SIS problem.

Definition 5 (SISq,n,m,β). Given an uniformly random matrix A
$← Zn×mq ,

find a non-zero vector x ∈ Zm such that Ax = 0 mod q and 0 < ‖x‖ ≤ β.

3 Signature Scheme using Rejection Sampling

In this part, we will describe formally the Fiat-Shamir transform we use to
construct a digital signature from our definition of an identification scheme
using rejection sampling. Will we show that applying this Fiat-Shamir to such
identification scheme gives us a secure digital signature in the ROM.

3.1 Fiat-Shamir Transform

Definition 6. Let ID = (KeyGen,P,V, c, gv, f) be an identification scheme using
rejection sampling, and H : {0, 1}∗ → {0, 1}c(k) be a hash function modeled as
a random oracle, then we can construct a signature DS = (KeyGen,Sign,Verify).
The signature has the same key generation algorithm as the identification scheme,
and the output length of the hash function equals the challenge length. The signing
and verifying algorithms are defined as follows:

Sign(sk,m):

while Rsp = ⊥ do
Cmt← P(sk)
Ch← H(Cmt,m)

Rsp
$← gv

return σ = (Cmt,Rsp) with

probability f(x)
M ·gv(x) , otherwise

Rsp← ⊥

Verify(pk,m, σ):

parse σ as (Cmt,Rsp)
Ch← H(Cmt,m)
return V(pk,Cmt||Ch||Rsp)
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3.2 General Result from Non-Lossy Identification Scheme

Our first and main result gives us a reduction from non-lossy identification scheme
using rejection sampling to an existential unforgeable secure signature in the
ROM by supposing that the underlying ID scheme satisfies the two properties
naHVZK and correctness error defined in definitions 2 and 3.

Theorem 1. Let ID = (KeyGen,P,V, c, gv, f) be an identification scheme us-
ing rejection sampling whose commitment space has min-entropy β(k), let H :
{0, 1}∗ → {0, 1}c(k) be a hash function modeled as a random oracle, and let
DS = (KeyGen,Sign,Verify) be the associated signature as in Def. 6. If ID is
εrs-perfect naHVZK, has correctness error εc and is secure against impersonation
under passive attacks then DS is existentially unforgeable secure against adaptive
chosen-message attack in the random oracle model such that:

Advuf-cma
DS,F (k) ≤ (qH + 1)Advimp-pa-sim

ID,I (k) + qSεrs +
l(qS + qH + 1)qS

2β
+ qSε

l
c.

Furthermore, if I runs in at most time t′, then F runs in times t = t′−O(qStSign),
where tSign designed the average time of the signing algorithm.

Proof. This proof uses code-based game-playing à la [AABN02,AFLT12], by
constructing a sequence of experiments Exp0, · · · ,Exp7 starting with the ex-
periment catching the existentially unforgeability of the signature scheme. We
defined δi as the event that experiment Expi returns 1, i.e. that the adversary
F outputs a valid forgery. We will assume that before outputting a forgery
(m∗, σ∗ = (Cmt∗,Rsp∗)), F already queried the corresponding hash query on
Cmt∗,m∗, which increase the number of hash query by one.

Exp0. In this first experiment, the challenger generates the pair of keys (pk, sk)
$←

KeyGen(1k), sets the hash counter hc and the sign counter sc to zero, and
also initializes the set of queried messages M to empty in Initialize and re-
turns the public key pk to F . On hash query Cmt,m, the challenger checks
if H(Cmt,m) has already been set. If H(Cmt,m) = ⊥, the counter hc is in-

cremented by one, the challenger chooses a random challenge Ch
$← {0, 1}c(k)

and sets H(Cmt,m)← Ch. The challenger finally outputs H(Cmt,m). On sign
query m, the counter sc is incremented by one, the queried message m is added
to the set M and the challenger computes the signature σ = (Cmt,Ch) as
in the signing algorithm. During the signing phase, the challenger also checks
if H(Cmt,m) = ⊥, if so it performs the same steps as for an hash query
on Cmt,m. Finally, when F outputs a forgery (m∗, σ∗), the challenger runs
Dec ← V(pk,Cmt∗||Ch∗||Rsp∗) and returns Dec ∧ (m∗ 6∈ M). By definition,
Pr [δ0] = Advuf-cma

DS,F (k).

Exp1. Let bad be a boolean variable initialize to false. In Exp1, we limit the
number of signing attempts to l, with l ≥ M in practice. We also set bad to
true if after l signing attempts, we do not output a valid signature. For each
signature, the probability that Rsp = ⊥ after at most l attempts is equal to εlc
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Fig. 2: Exp0 and Exp1

Initialize:

1: (pk, sk)
$← KeyGen(1k)

2: hc← 0, sc← 0, M← {}
3: return pk

On Hash-query Cmt,m:

1: if H(Cmt,m) = ⊥ then
2: hc← hc+ 1

3: Ch
$← {0, 1}c(k)

4: H(Cmt,m)← Ch
5: return H(Cmt,m)

Finalize(m∗, σ∗):

1: Parse σ∗ as Cmt∗,Rsp∗

2: Ch∗ ← H(Cmt∗,m∗)
3: Dec← V(pk,Cmt∗||Ch∗||Rsp∗)
4: return Dec ∧ (m∗ 6∈ M)

On Sign-querym:

1: sc← sc+ 1, M←M∪ {m}
2: ctr ← 0

3: while Rsp = ⊥ and ctr ≤ l do

4: ctr ← ctr + 1
5: Cmt← P(sk)
6: if H(Cmt,m) = ⊥ then
7: hc← hc+ 1

8: Ch
$← {0, 1}c(k)

9: H(Cmt,m)← Ch
10: Ch← H(Cmt,m)

11: Rsp
$← gv

12: return σ = (Cmt,Rsp) with prob-

ability f(x)
M·gv(x) , otherwise Rsp← ⊥

13: if Rsp = ⊥ then

14: bad← true

15: return σ = (⊥,⊥)

where we recall that εc corresponds to the error correctness of the scheme. We get

|Pr [δ1]− Pr [δ0]| ≤
qS∑
i=1

Pr [bad = true in the i-th sign query] = qSε
l
c (Fig. 2).

Exp2. In this experiment, the challenger no longer sets bad to true due to a non-
valid signature. This modification does not change the output of the experiment,
we have Pr [δ2] = Pr [δ1].

Exp3. In this experiment, on sign query m, the challenger sets bad to true if
the value H(Cmt,m) has already been defined. If bad is set, the challenger also

chooses a new value Ch
$← {0, 1}c(k) and overwrites the old value H(Cmt,m)←

Ch (Fig. 3). To compute the probability of bad sets to true, we assume that all the
hash queries have been already ask at the beginning of the experiment. The proba-
bility that during the i-th signing query bad sets to true is (l(i− 1) + qH + 1) /2β

where we recall that l is the number of signing attempts we introduce in

Exp1. So we get |Pr [δ3]− Pr [δ2]| ≤
qS∑
i=1

Pr [bad = true in the i-th sign query] ≤
l(qS+qH+1)qS

2β
.

Exp4. In this experiment, the challenger no longer sets bad to true due to an
overwriting of the value H(Cmt,m). This modification does not change the
output of the experiment, we have Pr [δ4] = Pr [δ3].

Exp5. In the previous experiment, to answer signing query, the challenger gener-

ates a new uniform challenge Ch
$← {0, 1}c(k) like in the transcript generation

11



Fig. 3: Exp2 and Exp3

Initialize:

1: (pk, sk)
$← KeyGen(1k)

2: hc← 0, sc← 0, M← {}
3: return pk

On Hash-query Cmt,m:

1: if H(Cmt,m) = ⊥ then
2: hc← hc+ 1

3: Ch
$← {0, 1}c(k)

4: H(Cmt,m)← Ch
5: return H(Cmt,m)

Finalize(m∗, σ∗):

1: Parse σ∗ as Cmt∗,Rsp∗

2: Ch∗ ← H(Cmt∗,m∗)
3: Dec← V(pk,Cmt∗||Ch∗||Rsp∗)
4: return Dec ∧ (m∗ 6∈ M)

On Sign-querym:

1: sc← sc+ 1, M←M∪ {m}
2: ctr ← 0
3: while Rsp = ⊥ and ctr ≤ l do
4: ctr ← ctr + 1
5: Cmt← P(sk)
6: if H(Cmt,m) = ⊥ then
7: hc← hc+ 1

8: Ch
$← {0, 1}c(k)

9: H(Cmt,m)← Ch
10: else
11: bad← true

12: Ch
$← {0, 1}c(k)

13: H(Cmt,m)← Ch

14: Ch← H(Cmt,m)

15: Rsp
$← gv

16: return σ = (Cmt,Rsp) with prob-

ability f(x)
M·gv(x) , otherwise Rsp← ⊥

oracle TrIDpk,sk,k (Fig. 4). So in this experiment, we change the simulation of the
signing algorithm such that the value Cmt||Ch||Rsp are generated thanks to
TrIDpk,sk,k. This change does not affect the output of the game, Pr [δ5] = Pr [δ4].

Exp6. We can go further, by generating all the transcripts needed to answer
signing queries at the beginning of the experiment which does not change the
output of the experiment, Pr [δ6] = Pr [δ5].

Exp7. In the last experiment, we replace the transcript generation oracle TrIDpk,sk,k

by its simulated counterpart T̃r
ID
pk,k. Since the statistical distance between the

distribution outputted by TrIDpk,sk,k and by T̃r
ID
pk,k is at most εrs, we have

|Pr [δ7]− Pr [δ6]| ≤ qSεrs (Fig. 5).

The last step of the proof is to show that we can use the forger from Exp7

to construct an impersonator I playing the experiment Expimp-pa-sim
ID,I (k). The

impersonator receives a public key pk from an honest verifier V, chooses an index
fp uniformly at random from [1, qH + 1] and sends pk to F . It also generates the

transcripts (Cmti,Chi,Rspi) for i = 1, · · · , qS thanks to T̃r
ID
pk,k. On the j-th hash

query (Cmtj ,mj) of F , it first checks if j 6= fp. If so, I works like in Exp7 and if
not, I returns Cmtfp as the first interaction with the verifier V. In that case, the
verifier outputs a challenge Ch∗, the impersonator sets H(Cmtfp,mfp)← Ch∗

and returns this value to F . On the i-th signing query, I returns σ = (Cmti,Rspi)
as in Exp7. Eventually, the forger F outputs a forgery (m∗, σ∗ = (Cmt∗,Rsp∗))

12



Fig. 4: Exp5

Initialize:

1: (pk, sk)
$← KeyGen(1k)

2: hc← 0, sc← 0, M← {}
3: return pk

On Sign-querym:

1: sc← sc+ 1, M←M∪ {m}
2: ctr ← 0
3: while Rsp = ⊥ and ctr ≤ l do
4: ctr ← ctr + 1
5: hc← hc+ 1

6: Cmt||Ch||Rsp
$← TrIDpk,sk,k

7: return σ = (Cmt,Rsp) if Rsp 6=
⊥

On Hash-query Cmt,m:

1: if H(Cmt,m) = ⊥ then
2: hc← hc+ 1

3: Ch
$← {0, 1}c(k)

4: H(Cmt,m)← Ch
5: return H(Cmt,m)

Finalize(m∗, σ∗):

1: Parse σ∗ as Cmt∗,Rsp∗

2: Ch∗ ← H(Cmt∗,m∗)
3: Dec← V(pk,Cmt∗||Ch∗||Rsp∗)
4: return Dec ∧ (m∗ 6∈ M)

Fig. 5: Exp6 and Exp7

Initialize:

1: (pk, sk)
$← KeyGen(1k)

2: hc← 0, sc← 0, M← {}
3: for i = 1, · · · , qS do
4: ctr ← 0
5: while Rspi = ⊥ and ctr ≤ l do

6: (Cmti,Chi,Rspi)
$←

 TrIDpk,sk,k

T̃r
ID
pk,k

7: return pk

On Sign-querym:

1: sc← sc+ 1, M←M∪ {m}
2: return σ = (Cmtsc,Rspsc)

On Hash-query Cmt,m:

1: if H(Cmt,m) = ⊥ then
2: hc← hc+ 1

3: Ch
$← {0, 1}c(k)

4: H(Cmt,m)← Ch
5: return H(Cmt,m)

Finalize(m∗, σ∗):

1: Parse σ∗ as Cmt∗,Rsp∗

2: Ch∗ ← H(Cmt∗,m∗)
3: Dec← V(pk,Cmt∗||Ch∗||Rsp∗)
4: return Dec ∧ (m∗ 6∈ M)

13



and I outputs Rsp∗ to the verifier as the last step of the identification protocol. If
(Cmt∗,m∗) = (Cmtfp,mfp), then the probability that Exp7 outputs one is the

that Expimp-pa-sim
ID,I (k) outputs one. We get Pr [δ7] ≤ (qH + 1)Advimp-pa-sim

ID,I (k).
Putting everything together and we get the expected result.

ut

3.3 Result from Lossy Identification Scheme

To prove the security of the underlying identification scheme we can either
use a decision hard problem, or a search hard problem. By using a decision
hard problem, we can replace the public key pk by a ”lossy” version in the
impersonation experiment like in [AFLT12]. Then if the identification is lossy
(see definition in part 2.2), we can add another step to the proof of Theorem 1
and we get the following result:

Theorem 2. Let ID = (KeyGen, LossyKeyGen,P,V, c, gv, f) be a lossy identifi-
cation scheme using rejection sampling whose commitment space has min-entropy
β(k), let H : {0, 1}∗ → {0, 1}c(k) be a hash function modeled as a random oracle,
and let DS = (KeyGen,Sign,Verify) be the associated signature as in Def. 6. If ID
is εrs-perfect naHVZK, has correctness error εc, is (t′, εk)-key-indistinguishable,
and is secure against impersonation under passive attacks with respect to lossy
keys then DS is existentially unforgeable secure against adaptive chosen-message
attack in the random oracle model such that:

Advuf-cma
DS,F (k) ≤ (qH +1)Advlos-imp-pa

ID,I (k)+εk+qSεrs+
l(qS + qH + 1)qS

2β
+qSε

l
c.

Furthermore, F runs in times t = t′ −O(qStSign).

Proof. The beginning of the proof is the same as for Thm. 1, we use the same
sequence of experiments Exp0, · · · ,Exp7 plus another experiment Exp8.

Exp8. In this experiment, the challenger generates the public key thanks to the
LossyKeyGen(1k) instead of KeyGen(1k). Distinguishing these two experiments cor-
responds to the key-indistinguishability property of ID, we get |Pr [δ8]− Pr [δ7]| ≤
εk. To conclude the proof, as in the proof of Thm. 1, we show that we can use
the forger from Exp8 to construct an impersonator I playing the experiment

Explos-imp-pa
ID,I (k).

14



Fig. 6: Exp7 and Exp8

Initialize:

1:

 (pk, sk)
$← KeyGen(1k)

pk
$← LossyKeyGen(1k)

2: hc← 0, sc← 0, M← {}
3: for i = 1, · · · , qS do
4: ctr ← 0
5: while Rspi = ⊥ and ctr ≤ l do
6: (Cmti,Chi,Rspi)

$← T̃r
ID
pk,k

7: return pk

On Sign-querym:

1: sc← sc+ 1, M←M∪ {m}
2: return σ = (Cmtsc,Rspsc)

On Hash-query Cmt,m:

1: if H(Cmt,m) = ⊥ then
2: hc← hc+ 1

3: Ch
$← {0, 1}c(k)

4: H(Cmt,m)← Ch
5: return H(Cmt,m)

Finalize(m∗, σ∗):

1: Parse σ∗ as Cmt∗,Rsp∗

2: Ch∗ ← H(Cmt∗,m∗)
3: Dec← V(pk,Cmt∗||Ch∗||Rsp∗)
4: return Dec ∧ (m∗ 6∈ M)

ut

4 Application to the BLISS Signature

In this part, we apply our result from Theorem 1 to the non-lossy identifica-
tion scheme of the BLISS signature. We describe this identification scheme, its
properties and we compare our result to the original BLISS proof.

4.1 Description of the BLISS Identification and Signature Schemes

The BLISS signature was introduced by Ducas et al. [DDLL13] follows directly
from the work of [Lyu12], where the authors improved the rejection sampling by
taking a bimodal Gaussian instead of a shifted Gaussian. The secret key sk is
a short matrix S ∈ Zm×n2q and the public key is a matrix A ∈ Zn×m2q such that
AS = qIn mod 2q. The challenge set is the set of binary vectors of length n and
weight κ, C = {v : v ∈ {0, 1}n, ‖v‖1 ≤ κ}. The hash function H : {0, 1}∗ → C
outputs uniform elements in the challenge set C. The underlying identification
scheme of the BLISS signature works as follows:

Psk=(A,S) Vpk=A

y
$← Dm

σ , u← Ay mod 2q
u

−−−−→

b
$← {0, 1}, z← (−1)bSc + y

c
←−−−− c

$← C

Output z with probability
z

−−−−→ Output 1 iff ‖z‖∞ < q/4,

1
/(

M exp
(
−‖Sc‖

2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
‖z‖ ≤ ησ

√
m, and

otherwise output z← ⊥ Az + qc = u mod 2q.
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4.2 Properties of the Identification Scheme

We give an high level overview of the properties achieve by the BLISS identification
scheme (for more details, see [DDLL13]).

Perfect Rejection Sampling. The target output distribution of the prover responses
is f(z) = Dm

σ . The responses in the above identification scheme follow the family of

distribution gSc(z) = 1
2D

m
Sc,σ(z)+ 1

2D
m
−Sc,σ(z) = f(z) exp

(
−‖Sc‖

2

2σ2

)
cosh

(
〈Sc,z〉
σ2

)
.

To ensure that M · gSc(z) ≥ f(z) for all z, the authors of [DDLL13] choose
M = exp

(
1

2α2

)
where α is such that σ ≥ α‖Sc‖.

naHVZK. We describe the transcript generation oracle TrIDpk,sk,k, and the sim-

ulated one T̃r
ID
sk,k. Thanks to Lemma 1 the outputs of these to algorithm are

statistically closed.

TrIDpk,sk,k :

y← Dm
σ , u← Ay mod 2q

c
$← C, b $← {0, 1}, z← (−1)bSc + y

return (u, c, z) with probability

1
/(

M exp
(
−‖Sc‖

2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
,

otherwise return (⊥,⊥,⊥).

T̃r
ID
pk,k :

z← Dm
σ

c
$← C

u← Az + qc mod 2q
return (u, c, z) with probability 1

M ,
otherwise return (⊥,⊥,⊥)

Correctness Error. The prover uses a rejection sampling technique to ensure
that its response z is independent from its secret key, and by Lemma 1, we know
that the prover outputs z 6= ⊥ with probability at least 1− 1/M . If the prover
outputs a valid response, we have Az− qc = A((−1)bSc + y) + qc = u and by
Lemma 1, z is distributed according to Dm

σ and hence has norm ‖z‖ ≤ ησ
√
m

with high probability.

Impersonation/Soundness. We want here to have an idea of the advantage of an

impersonator I playing the experiment Expimp-pa-sim
ID,I (k), where the impersonator

I has access to the real public key of the scheme pk = A and to the simulated tran-

script generation oracle T̃r
ID
pk,k described above. If we apply the Reset Lemma 2,

the advantage of I corresponds to the probability acc and we get two valid
transcripts on a same commitment (u, c, z) and (u, c′, z′) with probability frk.
With these two transcripts, we get Az + qc = Az′ + qc′ mod 2q which gives
A(z−z′) = 0 mod q. Then z−z′ is a solution of norm at most ≤ 2ησ

√
m of a SIS

instance of parameters n, m, q, and β = 2ησ
√
m. If AdvSIS denotes the advantage

against such SIS instance, we finally get Advimp-pa-sim
ID,I ≤ 1

|C| +
√

AdvSIS.

Min-Entropy of commitments. To get an idea of the min-entropy, we consider
the probability that a commitment takes a particular value,

Pr [Ay = u; y← Dm
σ ] ≤ 2−n.
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Conclusion. Applying our result from Thm. 1 to the BLISS signature, we get

Advuf-cma
DS,F ≤ (qH + 1)

(
1

|C|
+
√

AdvSIS

)
+ l(qS + qH + 1)qS2−n+ qS(1−1/M)l.

4.3 Original BLISS proof

The original BLISS proof is summarized in [DDLL13, Thm 3.3] but proved
through two lemmas. The first lemma [DDLL13, Lem. 3.4], states that the
advantage in distinguishing the actual signing algorithm from an hybrid one
constructed using the rejection sampling is at most qS(qS + qH)2−n. And the
second lemma [DDLL13, Lem. 3.5] is a direct application of the General Forking
Lemma of [BN06], which says that the advantage against the SIS problem with

parameters n, m, q, and β = 2ησ
√
m is at least AdvSIS ≥ acc ·

(
acc

qS+qH
− 1
|C|

)
where acc = Advuf-cma

DS,F − 1
|C| . Thanks to the General Forking Lemma, we can

rewrite this equation as acc ≤ qH+qS
|C| +

√
(qH + qS)AdvSIS. Putting the two

lemmas together and we get

Advuf-cma
DS,F ≤

qS + qH + 1

|C|
+
√

(qH + qS)AdvSIS + qS(qS + qH)2−n.

Comparison. In the original BLISS paper, the proof does the identification scheme
only once during the signing algorithm instead of repeating the identification
scheme until the response is non-valid. So we need to add a factor l to the term
qS(qS+qH)2−n and add the term qS(1−1/M)l in the previous equation to better
fit the Fiat-Shamir transform from Def. 6. For concrete parameters, we would
have qH � qS , for example in the NIST submission qH = 2128 and qS = 264, and
our reduction looses a factor roughly

√
qH (we looses at least qH in the reduction

but gains roughly
√
qH by applying the Reset Lemma instead of the Forking

Lemma).
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