Najib Idrissi 
email: najib.idrissi-kaitouni@imj-prg.fr
  
Formality of a higher-codimensional Swiss-Cheese operad

We study bicolored configurations of points in the Euclidean n-space that are constrained to remain either inside or outside a fixed Euclidean m-subspace, with n -m ≥ 2. We define a higher-codimensional variant of the Swiss-Cheese operad, called the complementarily constrained disks operad CD mn , associated to such configurations. The operad CD mn is weakly equivalent to the operad of locally constant factorization algebras on the stratified space {R m ⊂ R n }. We prove that this operad is formal over R.

Introduction

The little disks operads D n (for n ≥ 1) represent operations acting on n-fold loop spaces. They have had many applications in homotopy theory over the years (see e.g. [START_REF] Benoit Fresse | Little discs operads, graph complexes and Grothendieck-Teichmüller groups[END_REF] for a survey). Elements of D n (k) consist of configurations of k disks inside the unit n-disk. Voronov's Swiss-Cheese operads SC n [START_REF] Voronov | The Swiss-cheese operad[END_REF] (for n ≥ 2) are relative versions of the little disks operads. They encode central actions of D n -algebras on D n-1 -algebras. Elements of SC n (k, l) are given by configurations of k half-disks and l full disks in the unit upper half-disk.

In this article, we introduce higher-codimensional variants of the Swiss-Cheese operads CD mn (for n -2 ≥ m ≥ 1), called the "complementarily constrained (little) disks operads". 1 These operads encode actions of D n -algebras on a D m -algebras by central derivations (see Section 3.2). Elements of CD mn (k, l) are given by configurations of k "terrestrial" disks centered on D m ⊂ D n and l "aerial" entirely contained in D n \ D m .

A fundamental property of D n is its formality [START_REF] Kontsevich | Operads and motives in deformation quantization[END_REF][START_REF] Dmitry | Formality of chain operad of little discs[END_REF][START_REF] Lambrechts | Formality of the little N -disks operad[END_REF][START_REF] Petersen | Minimal models, GT-action and formality of the little disk operad[END_REF][START_REF] Fresse | The intrinsic formality of E n -operads[END_REF]: the cohomology H * (D n ; Q) is quasi-isomorphic (as a cooperad in CDGAs) to the forms on D n . Unlike the little disks operads, the Swiss-Cheese operads are not formal [START_REF] Livernet | Non-formality of the Swiss-cheese operad[END_REF][START_REF] Willwacher | Non-)formality of the extended Swiss Cheese operads[END_REF]. In this paper, we establish the following result:

Theorem A (See Theorem 5.35). For n -2 ≥ m ≥ 1, the complementarily constrained disks operad CD mn is formal over R.

The operad CD (n-1)n contains the Swiss-Cheese operad SC n as a suboperad of connected components. It thus follows from arguments of Livernet [START_REF] Livernet | Non-formality of the Swiss-cheese operad[END_REF] that CD (n-1)n is not formal (Remark 3.22). By [55, Section 5.1], nonformality of SC n is equivalent to nonformality of the inclusion D n-1 → D n (established in [START_REF] Turchin | Relative (non-)formality of the little cubes operads and the algebraic Cerf Lemma[END_REF]). Since the inclusion D m → D n is formal for n ≥ m + 2, Theorem A might not be a surprise. However, Willwacher studied another generalization of the Swiss-Cheese operad, the "extended Swiss-Cheese operad" ESC mn [START_REF] Willwacher | Non-)formality of the extended Swiss Cheese operads[END_REF]. He proved that its formality is equivalent to the formality of D m ⊂ D n [55, Section 5.1]. The difference with CD mn is that in CD mn , the aerial disks are forbidden from touching the "ground" D m , whereas this is allowed in ESC mn (see Remark 2.11). The argument used for the formality of ESC mn thus does not seem easily adaptable: CD mn is obtained by removing a subspace from ESC mn , an operation which is usually difficult to deal with in homotopy theory. It is not clear that formality of D m ⊂ D n directly implies formality of CD mn , or conversely.

Motivation

The general motivation for this article comes from the study of configuration spaces started in previous works. Campos-Willwacher [START_REF] Campos | A model for configuration spaces of points[END_REF] and the author [START_REF] Idrissi | The Lambrechts-Stanley Model of Configuration Spaces[END_REF] provided combinatorial models for the real homotopy types of configuration spaces of simply connected closed smooth manifolds. Campos, Lambrechts, Willwacher, and the author [START_REF] Campos | Configuration Spaces of Manifolds with Boundary[END_REF] provided similar models for configuration spaces of compact, simply connected smooth manifolds of dimension ≥ 4. Campos, Ducoulombier, Willwacher, and the author [START_REF] Campos | A model for framed configuration spaces of points[END_REF] studied framed configuration spaces of orientable closed manifolds, i.e. configurations of points equipped with trivializations of the tangent spaces.

In each of these articles, knowing models for the little disks operads or their variants was essential. Configuration spaces of R n are intimately linked to the little disks operad D n , and closed manifolds are locally homeomorphic to R n . The formality of D n , and more precisely its proof by Kontsevich and Lambrechts-Volić, was thus essential in finding models for configurations spaces of closed manifolds in [START_REF] Campos | A model for configuration spaces of points[END_REF][START_REF] Idrissi | The Lambrechts-Stanley Model of Configuration Spaces[END_REF]. Similarly, a manifold with boundary is locally homeomorphic to the upper half-space H n ⊂ R n , and configuration spaces of H n are linked to the Swiss-Cheese operad SC n . While SC n is not formal, Willwacher [START_REF] Willwacher | Models for the n-Swiss Cheese operads[END_REF] defined a model for the real homotopy type of SC n which was used extensively in [START_REF] Campos | Configuration Spaces of Manifolds with Boundary[END_REF]. For framed configuration spaces [START_REF] Campos | A model for framed configuration spaces of points[END_REF], we used the model for the framed little disks operad due to Khoroshkin-Willwacher [START_REF] Khoroshkin | Real models for the framed little n-disks operads[END_REF].

Our goal is to study the configuration spaces of the complement N \ M , where N is a closed n-manifold and M is a closed sub-m-manifold of codimension ≥ 2 (e.g. the complement of a knot S 3 \ K). Such a pair (N, M ) is locally homeomorphic to the stratified space (R n , R m ). Using the analogy above, configuration spaces of (R n , R m ) are linked to the operad CD mn . Based on the previous works cited above, we are led to expect that models for CD mn will produce models for Conf N \M by adapting and generalizing the proof, just like models for D n produced to models for configuration spaces of closed manifolds. In this article, we find that models for CD mn are as simple as possible: the operad is formal, i.e. the cohomology H * (CD mn ) is a model.

Proof strategy and outline

The proof of our theorem is inspired by Kontsevich's [START_REF] Kontsevich | Operads and motives in deformation quantization[END_REF] proof of the formality of the little disks operad and its improvement by Lambrechts-Volić [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]. We first define the compactifications CFM mn (k, l) of Conf R m (k) ×Conf R n \R m (l), inspired by the Fulton-MacPherson compactification [START_REF] Axelrod | Chern-Simons perturbation theory. II[END_REF][START_REF] Fulton | A compactification of configuration spaces[END_REF][START_REF] Dev | Manifold-theoretic compactifications of configuration spaces[END_REF]. These compactifications form an operad with the homotopy type of CD mn . We build an intermediate cooperad, cgraphs mn , which serves as a bridge between the cohomology H * (CFM mn ) and the piecewise semi-algebraic forms (see [START_REF] Hardt | Real homotopy theory of semi-algebraic sets[END_REF]) Ω * PA (CFM mn ). The definition of cgraphs mn is inspired by Willwacher's model for the Swiss-Cheese operad [START_REF] Willwacher | Models for the n-Swiss Cheese operads[END_REF] and by [START_REF] Khoroshkin | Real models for the framed little n-disks operads[END_REF]Section 8]. The map cgraphs mn → Ω * PA (CFM mn ) is defined by integrals. We cannot find a direct map cgraphs mn → H * (CFM mn ), as the differential of cgraphs mn depends on non-explicit integrals. Using vanishing results on the cohomology of some graph complex, we are able to simplify cgraphs mn up to homotopy, and then map it to H * (CFM mn ).

Section 1 contains background on operads, the little disks operads, and piecewise semialgebraic forms. In Section 2, we define the compactifications CFM mn and we compare them with CD mn . We give examples of CD mn -algebras based on relative iterated loop spaces. In Section 3, we compute the cohomology of CD mn . We give a presentation of its homology cd mn = H * (CD mn ). In Section 4, we start by reviewing Kontsevich's proof of the formality of the little disks operad, and we define the cooperad cgraphs mn that will be used to adapt that proof to CFM mn . We moreover construct the map from cgraphs mn to Ω * PA (CFM mn ) using integrals. In Section 5, we first show that certain integrals used in the definition of cgraphs mn can be simplified. We construct the map into H * (CFM mn ) and we show that all our maps are quasi-isomorphisms. In Appendix A, we define twisting of relative cooperads. In Appendix B, we sketch a proof that CFM mn (U, V ) is an SA manifold and that canonical projections are SA bundles.

Prerequisites

We work with cohomologically graded modules over the base field R (except in Section 3.1 which is over Z). The cohomology (resp. homology) of a space is concentrated in nonnegative (resp. nonpositive) degrees. For a graded vector space V , the free graded symmetric algebra S(V ) is R[V even ] ⊗ Λ(V odd ), i.e. the tensor product of the polynomial algebra on even elements by the exterior algebra on odd elements. Homogeneous elements x, y satisfy yx = (-1) (deg x)(deg y) xy.

Operads

We work extensively with operads and cooperads and we assume basic proficiency with the theory. General references include [START_REF] Loday | Algebraic operads[END_REF] and [START_REF] Benoit Fresse | Homotopy of Operads and Grothendieck-Teichmüller Groups[END_REF]Part I(a)]. We will usually label inputs by elements of arbitrary finite sets rather than numbers. Briefly, let Bij be the category of finite sets and bijections. A symmetric collection is a functor Bij → C where C is a symmetric monoidal category. For k ≥ 0, we let k = {1, . . . , k}. A symmetric collection M can equivalently be seen as a symmetric sequence {M(n) := M(n)} n≥0 with actions of Σ n = Aut Bij (n) on M(n).

For a pair of finite sets W ⊂ U , we define the quotient U/W := (U \W ) { * } (note that U/∅ = U { * }). For u ∈ U , we let [u] ∈ U/W be its class in the quotient. An operad P is a symmetric collection equipped with composition maps • W : P(U/W ) ⊗ P(W ) → P(U ), for each pair W ⊂ U , satisfying the usual axioms. A cooperad C is a symmetric collection equipped with cocomposition maps • ∨ W : C(U ) → C(U/W ) ⊗ C(W ). A Hopf cooperad [START_REF] Benoit Fresse | Homotopy of Operads and Grothendieck-Teichmüller Groups[END_REF] a cooperad in the category of commutative differential-graded algebras (CDGAs).

We also deal with some special particular bicolored operads called "relative operads" [START_REF] Voronov | The Swiss-cheese operad[END_REF] or "Swiss-Cheese type operads" [START_REF] Willwacher | The Homotopy Braces Formality Morphism[END_REF]. Given an operad P, a relative P-operad is an operad in the category of right P-modules. Equivalently, a relative P-operad is a bisymmetric collection, i.e. a functor Q : Bij × Bij → C, equipped with composition maps:

• T : Q(U, V /T ) ⊗ P(T ) → Q(U, V ) for V ⊂ T, • W,T : Q(U/W, V ) ⊗ Q(W, T ) → Q(U, V T ) for W ⊂ U.
We will often write "the operad Q" when P is implicit from the context. Relative cooperad are defined dually. We also apply the adjective "Hopf" to refer to such cooperads in the category of CDGAs.

Little disks and variants

Fix some n ≥ 0 and let D n = {x ∈ R n | x ≤ 1} be the closed disk. The space D n (r) is the space of maps c : (D n ) r → D n such that: (i) each c i : D n → D n is an embedding given by the composition of a translation and a positive rescaling; (ii) the interiors of two different little disks are disjoint, i.e. c i ( Dn ) ∩ c j ( Dn ) = ∅ for i = j. Using composition of embeddings, the collection D n = {D n (r)} r≥0 forms a topological operad called the little n-disks operad.

Let us now fix notations for the (Axelrod-Singer-)Fulton-MacPherson operad [START_REF] Fulton | A compactification of configuration spaces[END_REF][START_REF] Axelrod | Chern-Simons perturbation theory. II[END_REF] (see also [START_REF] Dev | Manifold-theoretic compactifications of configuration spaces[END_REF] and [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]Chapter 5]). Given some space X, and a finite set U , we define the configuration space:

Conf X (U ) := {(x u ) u∈U ∈ X U | ∀u = v, x u = x v }.
(1.1) 

Consider the quotient Conf n (U ) := Conf R n (U )/R n R

Semi-algebraic sets and PA forms

For technical reasons, we will use the technology of semi-algebraic (SA) sets and piecewise semi-algebraic (PA) forms. We use [START_REF] Hardt | Real homotopy theory of semi-algebraic sets[END_REF] as a general reference. Recall in particular that the CDGA Ω * PA (X) of all PA forms on a compact SA set X is a model for the real homotopy type of X [24, Theorem 6.1].

If P is an operad in compact SA sets, then the symmetric sequence Ω * PA (P) is not a Hopf cooperad: the Künneth quasi-isomorphisms go in the wrong direction. However, for a Hopf cooperad C, we can define a "morphism" C → Ω * PA (P) as a collection of maps C(U ) → Ω * PA (P(U )) making the obvious diagrams commute [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]Chapter 3]. We call it a quasi-isomorphism if it is a quasi-isomorphism in each arity. For simplicity, we will treat Ω * PA (P) as if it were an actual Hopf cooperad; when we write a morphism into Ω * PA (P), we actually have a "morphism" as defined above. Results of Fresse [16, Discussion after Proposition 4.4] can be adapted to Ω * PA : if P is cofibrant in the category of operads satisfying P(0) = { * } (e.g. P = FM n ), then any Hopf cooperad quasi-isomorphic to Ω * PA (P) encodes the real homotopy type of P. Briefly, there is an operadic upgrade of the functor Ω * PA which turns operads into Hopf cooperads, and this operadic upgrade is part of a Quillen adjunction. We will thus say that an operad P in compact SA sets is formal if there exists a zigzag of quasi-isomorphisms of Hopf cooperads H * (P; R) ← • → Ω * PA (P).

These constructions can be extended to relative operads over a given base, as they can be seen as operads in a given symmetric monoidal category (of right operadic modules).

Definition of CFM mn and comparison

From now on and until the end of the article, we fix integers n -2 ≥ m ≥ 1. (In some tangential remarks, we will consider n = m + 1.) We identify R m as the subspace of R n given by R m × {0} n-m .

The compactification and its boundary

Let U and V be finite sets. We define the colored configuration spaces by:

Conf mn (U, V ) := Conf R m (U ) × Conf R n \R m (V ) ⊂ Conf R n (U V ). (2.1)
Roughly speaking, Conf mn (U, V ) is the set of configurations of bicolored of points in R n : U "terrestrial" points in R m , and V "aerial" points in R n \ R m . We will reuse the terminology "aerial/terrestrial" throughout the document.

The group R m R >0 of translations and positive rescalings acts on Conf mn (U, V ). Let Conf mn (U, V ) be the quotient. Elements of Conf mn (U, V ) can be seen as configurations of radius 1 (i.e. max( (2)×V using the maps:

x i ) i∈U V = 1) with a barycenter in {0} m × R n-m ⊂ R n . Since R m R >0 is contractible, the quotient map is a weak homotopy equivalence. If #U + 2#V ≥ 2,
(U, V ) is a manifold of dimension m#U + n#V -m -1. However, if #U ≤ 1 and #V = 0, then Conf mn (U, V ) is merely a point. We embed Conf mn (U, V ) into (S n-1 ) Conf U V (2) × [0, +∞] Conf U V (3) × (S n-m-1 ) V × [0, +∞] Conf V (2) × [0, +∞] Conf U V
θ ij (x) := (x i -x j )/ x i -x j , for i = j ∈ U V ; (2.2) δ ijk (x) := x i -x j / x i -x k , for i = j = k = i ∈ U V ; (2.3) α v (x) := p (R m ) ⊥ (x v )/ p (R m ) ⊥ (x v ) , for v ∈ V ; (2.4) ρ vv (x) := p (R m ) ⊥ (x v ) / p (R m ) ⊥ (x v ) , for v, v ∈ V ; (2.5) σ ijv (x) := x i -x j / p (R m ) ⊥ (x v ) , for i, j ∈ U V, v ∈ V ; (2.6)
where

p (R m ) ⊥ is the orthogonal projection on (R m ) ⊥ = {0} m × R n-m ⊂ R n .
Definition 2.7. The space CFM mn (U, V ) is the closure of the image of the embedding

(θ ij , δ ijk , α v , ρ vv , σ ijv ).
Example 2.8. We have CFM mn (U, ∅) = FM m (U ) and CFM mn (0, 1) = S n-m-1 .

Proposition 2.9 (Appendix B). The space CFM mn (U, V ) is a compact semi-algebraic manifold and a smooth manifold with corners.

Its dimension is m#U + n#V -m -1 if #U + 2#V ≥ 2
, and zero otherwise. The projections p U,V : CFM mn (U I, V J) → CFM mn (U, V ) are SA bundles.

Proposition 2.10. The collection CFM mn forms a relative FM n -operad.

Proof. On the coordinates θ ij and δ ijk , the formulas are identical to FM n , see [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]Section 5.2]. For v ∈ V , one simply define

α v (x• T y) = α [v] (x); and α v (x • W,T y ) = α v (x ) if v / ∈ T , or α v (y ) if v ∈ T . For v = v ∈ V , then ρ vv (x • T y) = 1 if v, v ∈ T , or ρ [v][v ] (x) otherwise; and ρ vv (x • W,T y ) = ρ vv (x ) if v, v / ∈ T , or ρ vv (y ) if v, v ∈ T , or 0 if v ∈ T , v / ∈ T , or +∞ if v ∈ T , v / ∈ T . Finally, σ ijv (x • T y) = 0 if i, j ∈ T , or σ [i][j][v] (x) otherwise; and σ ijv (x • W,T y ) = σ ijv (y ) if i, j, v ∈ W ∪ T , or 0 if i, j ∈ W ∪ T , v / ∈ T , or σ [i][j]v (x ) if v / ∈ T and #({i, j} ∩ (W ∪ T )) = 1, or ∞ otherwise.
Remark 2.11. The operad CFM mn is not homotopy equivalent to the operad ESC mn considered by Willwacher [START_REF] Willwacher | Non-)formality of the extended Swiss Cheese operads[END_REF]. Recall that ESC mn (U,

V ) := D n (U V ) × Dn(U ) D m (U ), where D n (U V ) → D n (U )
is the projection that forgets disks and D m (U ) → D n (U ) is the usual embedding. The difference is that we do not allow "aerial" points to be on R m , so e.g. CFM mn (0, 1) = S n-m-1 ESC mn (0, 1) * , and

CFM mn (1, 1) S n-m-1 ESC mn (1, 1) S n-1 .
Proposition 2.12. We have a decomposition in terms of faces:

∂CFM mn (U, V ) = T ∈BF (V ) (im • T ) ∪ (W,T )∈BF (U ;V ) (im • W,T ),
where the subsets BF (V ) ⊂ V and BF (U ; V ) ⊂ U × V are respectively defined by the conditions #T ≥ 2 and by

(W ∪ T U ∪ V and 2 • #T + #W ≥ 2)
. Each of these boundary faces is a compact SA subset of the boundary, and the intersection of two distinct faces is of positive codimension in ∂CFM mn (U, V ). PA (B) is integration along fibers. Proposition 2.13. The fiberwise boundary of the projection p U,V : CFM mn (U I, V J) → CFM mn (U, V ) is the subset of CFM mn (U I, V J) given by:

CFM ∂ mn (U I, V J) = T ∈BF (V,J) (im • T ) ∪ (W,T )∈BF (U,I;V,J) (im • W,T ),
where the subsets BF (V, J) ⊂ BF (V J) and BF (U, I; V, J) ⊂ BF (U I, V J) are respectively defined by the conditions #(T ∩ J) ≤ 1 and by

((U ⊂ W and V ⊂ T ) or (V ∩ T = ∅ and #(U ∩ W ) ≤ 1)).
Proof. We can adapt the proof of [32, Proposition 5.7.1] immediately. We simply use the decomposition of Proposition 2.12 and we check easily that BF (V, J) and BF (U, I; V, J) index the faces which are sent to the interior of Conf mn (U, V ) under the projection p U,V .

Comparison with CD mn

In this section, we compare CFM mn with CD mn , the complementarily constrained (little) disks operad. Let D m = D n ∩ R m for convenience.

Definition 2.14. The space CD mn (U, V ) is the space of maps c : (D n ) U V → D n satisfying: (i) for all i, c i : D n → D n is an embedding obtained by composing a translation and a positive rescaling; (ii) for i = j, we have -→ CD mn . Elements of W CD mn (U, V ) are rooted trees with (U, V ) leaves, bicolored edges, internal vertices labeled by CD mn , and internal edges labeled by time parameters t ∈ [0, 1]. Operadic composition is grafting (new edges are decorated by 1). If t = 0 then the corresponding edge is collapsed and the decorations are composed. The map W CD mn → CFM mn is defined on trees with edge decorations < 1 by rescaling the disks by one minus edge decoration, composing in CD mn , and keeping the centers of the remaining disks. This extends continuously to composite trees and defines a weak equivalence of operads.

c i ( Dn ) ∩ c j ( Dn ) = ∅; (iii) for u ∈ U , we have c u (D m ) ⊂ D m ; (iv) for v ∈ V , we have c v (D n ) ∩ D m = ∅.
Let us also give examples of CD mn -algebras. Recall first that for a pointed space * ∈ X, the iterated loop space Ω n X is the space of maps γ : D n → X such that γ(∂D n ) = * . The space Ω n X is an algebra over D n . Conversely, the recognition principle states that any "group-like" D n -algebra is weakly equivalent to an iterated loop space [START_REF] Boardman | Homotopy-everything H-spaces[END_REF][START_REF] May | The geometry of iterated loop spaces[END_REF].

→ A → * → X For a pair of pointed topological spaces * ∈ A ⊂ X, the iterated loop space Ω n (X, A) is hofib(Ω n-1 A → Ω n-1 X). Concretely, let D n h := D n ∩ H n be the upper half-disk. Its boundary ∂D n h is the union of the disk ∂ -D n h := D n ∩ ∂H n ∼ = D n-1 and the upper hemisphere ∂ + D n h := ∂D n ∩ H n ∼ = D n-1 along the equator ∂D n ∩ ∂H n ∼ = S n-2 . The relative iterated loop space Ω n (X, A) is the space of maps γ : D n h → X such that γ(∂ -D n h ) ⊂ A and γ(∂ + D n h ) = * . For example, Ω 1 (X, A) = {γ : [0, 1] → X | γ(0) ∈ A, γ(1) = * }.
A sketch for n = 2 is on the side. The pair (Ω n (X, A), Ω n X) is an algebra over the operad SC n . By the relative recognition principle, any SC n -algebra satisfying appropriate properties is weakly equivalent to such a pair [START_REF] Ducoulombier | Swiss-cheese action on the totalization of operads under the monoid actions actions operad[END_REF][START_REF] Quesney | Swiss Cheese type operads and models for relative loop spaces[END_REF][START_REF] Hoefel | A ∞ -actions and recognition of relative loop spaces[END_REF][START_REF] Vasconcello | Relative Recognition Principle[END_REF].

By analogy, we define the (n, m)-relative iterated loop space:

Ω n,m (X, A) := {γ : D n → X | γ(D m ) ⊂ A and γ(∂D n ) = * }.
(2.17)

The pair (Ω n,m (X, A), Ω n X) is an algebra over the operad CD mn . We conjecture that an analogous relative recognition principle holds: any CD mn -algebra satisfying appropriate conditions should be weakly equivalent to such a pair.

(Co)homology of CD mn

In this section, we compute the integral cohomology of CD mn (Definition 2.14). We then give a presentation of the operad H * (CD mn ) by generators and relations. Unless specified, the ring of coefficients is Z in this section.

The cohomology as a Hopf cooperad

We will first compute the cohomology of Conf W (l) with

W := R n \ R m for n -m ≥ 2.
The computation is inspired by the methods of [START_REF] Dev | The (non-equivariant) homology of the little disks operad[END_REF]. We prove that it is free as an abelian group, thus we will be able to apply Künneth's formula to get the cohomology of 

CD mn (k, l) Conf R m (k) × Conf W (l)
P(Conf W (l)) l-1 i=0 (1 + t n-m-1 + it n-1 ). (3.3)
Moreover, if the equality is reached and the homology of Conf W (l-1) is free as a Z-module, then the homology of the total space Conf W (l) is free too.

Proof. We use the Serre spectral sequence of the Fadell-Neuwirth fibrations:

S n-m-1 ∨ (S n-1 ) ∨(l-1) Conf W (l) Conf W (l -1). π (3.4)
For n -m = 2, the base Conf W (l -1) is not simply connected. However, we can adapt the arguments of [START_REF] Frederick | The homology of iterated loop spaces[END_REF]Lemma 6.3] to show that the coefficient system is trivial. Let c 1 , c 2 ∈ Conf W (l-1) be two configurations and

F 1 , F 2 = π -1 (c 1 ), π -1 (c 2 ) ⊂ Conf W (l) the fibers ( S 1 ∨ (S n-1 ) ∨(l-1) ). Any path γ ∈ Ω c 1 ,c 2 Conf W (l -1
) lifts to a path in Conf W (l) by putting the lth point far from all the others (e.g. outside a ball B enclosing the compact subset im(γ)). Let us show that the induced isomorphism h γ :

H * (F 1 ) → H * (F 2 )
is the identity. It is clear that h γ does not affect the fundamental class of S n-m-1 = S 1 , as we can choose a representative with the lth point rotating around the axis R m outside the ball B. The class of the ith S n-1 in the fiber corresponds to the lth point rotating around the ith point. This can be represented by concatenating a path η ij from l to i with a small sphere σ i around i. Consider the path γ i given by the ith coordinate of the path γ. 

Then (h γ ) * [S n-1 ] can be represented by η ij • γ i • σ i (see
= m + 1, then W = R n \ R n-1 ∼ = R n R n is not even connected. However, we then have Conf W (l) = l=l +l Conf R n (l ) × Conf R n (l ) × Σ l ×Σ l Σ l . Its Poincaré polynomial is l=l +l l! (l )!(l )! l -1 i=0 (1 + it n-1 ) l -1 j=0 (1 + jt n-1
), which is the RHS of (3.3) (here, l-1 i=0 (2 + t n-1 )) by induction. The classical presentation of e ∨ n (l

) := H * (Conf R n (l)) [1, 9] is (deg ω ij = n -1): e ∨ n (l) = S(ω ij ) 1≤i =j≤l (ω ji -(-1) n ω ij , ω 2 ij , ω ij ω jk + ω jk ω ki + ω ki ω ij ). (3.6)
Definition 3.7. We define an algebra, with generators η i of degree n -m -1:

cd ∨ mn (0, l) := e ∨ n (l) ⊗ S(η i ) 1≤i≤l (η 2 i , η i ω ij -η j ω ij ). (3.8) 
Elements of e ∨ n (l) can be seen as linear combinations of simple oriented graphs on l vertices, modulo orientation signs, double edges, and a local three-term Arnold relation. In cd ∨ mn (0, l), each connected component is decorated by 1 or η (formally, vertices can be decorated and decorations can move along edges; two η classes on the same vertex give 0). Remark 3.9. This algebra is very similar to the Lambrechts-Stanley model G A [START_REF] Idrissi | The Lambrechts-Stanley Model of Configuration Spaces[END_REF] applied to A = H * (D n \ D m ) with vanishing diagonal class.

Remark 3.10. The space Conf W (l) = (R n ) l \ i =j {x i = x j } ∪ l i=1 p -1 i (R m
) is a real subspace arrangement. Its Betti numbers can be computed by [START_REF] Goresky | Stratified Morse theory[END_REF]Theorem A]. For even n and m, this is also a complex arrangement and the ring structure of the cohomology can also be computed using [START_REF] De | Wonderful models of subspace arrangements[END_REF]Section 5].

Lemma 3.11. The Poincaré polynomial of cd ∨ mn (0, l) is the RHS of (3.3).

Proof. Let V d be the graded vector space with basis 1, ω 1d , . . . , ω

(d-1)d , η d . Its Poincaré polynomial is 1+t n-m-1 +(d-1)t n-1 . It thus suffices to show that cd ∨ mn (0, l) ∼ = V 1 ⊗• • •⊗V l , i.e. that cd ∨
mn (0, l) has the basis ω i 1 j 1 . . . ω irjr η k 1 . . . η ks , where j 1 < • • • < j r , i a < j a and k b = j a for all a, b (that is, graphs where edges increase and are ordered by their target, no two edges have the same target, and no target is decorated by η).

We use the theory of commutative PBW bases [START_REF] Polishchuk | Quadratic algebras[END_REF]Section 4.8]. Generators of cd ∨ mn (0, l) are ω ij for 1 ≤ i < j ≤ l and η i for 1 ≤ i ≤ l. We order them by

η 1 > • • • > η l , ω ij < ω kl if i < k or i = k ∧ j < l,
and e.g. η k < ω ij for all i, j, k. Monomials are ordered lexicographically. Quadratic relations, written as "rewriting rules" (higher monomial = lower monomials), are ω jk ω ik = (-1) n+1 ω ij ω jk -ω ik ω ij for all i < j < k, η j ω ij = η i ω ij and ω 2 ij = 0 for all i < j, and η 2 i = 0 for all i. The claimed basis is exactly the PBW generating set.

We need to check that overlapping rewriting rules are confluent, i.e. we get to the same element using only the rewriting rules. The critical monomials are

ω lk ω jk ω ik , ω 3 ij , η 3 i , ω 2 jk ω ik , η k ω jk ω ik , η j ω 2 ij
, and η 2 j ω ij (where i < j < k < l). These are all easily seen to be confluent. For example, η k ω jk ω ik can be rewritten in two ways. The first way,

(η k ω jk )ω ik = η j ω jk ω ik = η j ((-1) n+1 ω ij ω jk -ω ik ω ij ) = (-1) n+1 η i ω ij ω jk -η i ω ik ω ij . The second way, η k (ω jk ω ik ) = η k ((-1) n+1 ω ij ω jk -ω ik ω ij ) = (-1) n+1 η j ω ij ω jk -η i ω ik ω ij = (-1) n+1 η i ω ij ω jk -η i ω ik ω ij . Proposition 3.12. For n -2 ≥ m ≥ 1, we have a well-defined algebra map cd ∨ mn (0, l) → H * (Conf W (l)) given by ω ij → θ * ij (vol n-1 ) and η i → α * i (vol n-m-1 ). Proof. Clearly α * i (vol n-m-1 ) 2 = 0, so we just need to check is that η i ω ij = η j ω ij . It is sufficient to check this on Conf W (2). The product S n-1 × S n-m-1 maps into Conf W (2):
the S n-1 describes the rotation of point 2 around point 1, while the S n-m-1 describes the rotation of the pair around R m . By (3.3), dim H n-m-1+n-1 (Conf 2 (W )) ≤ 1. Since η 1 ω 12 and η 2 ω 12 pair to 1 with the pushforward of the fundamental class of

S n-1 × S n-m-1 , we get η 1 ω 12 = η 2 ω 12 . Proposition 3.13. For n -2 ≥ m ≥ 1, the map cd ∨ mn (0, l) → H * (Conf W (l)) is an isomorphism.
Proof. Our proof is inspired by the proof of [START_REF] Dev | The (non-equivariant) homology of the little disks operad[END_REF]Theorem 4.9] (see e.g. [START_REF] Sinha | Lie coalgebras and rational homotopy theory I. Graph coalgebras[END_REF] for other uses of the pairing defined below). Given Inequality (3.3), the universal coefficients theorem, and Proposition 3.12, it is sufficient to show that the map is injective over any field k ∈ {Q, F p }.

Let us define classes in H * (Conf W (l); k) using "solar system" [46, Section 2]. With this point of view, any forest consisting of binary trees whose roots are possibly decorated by a loop induces a class in H * (Conf W (l); k). The difference with classical solar systems is that orbital centers are chosen far enough from R m , and that if a root is decorated by a loop then the orbital center itself orbits around R m in the shape of S n-m-1 . For example, the embedding S n-1 × S n-m-1 → Conf W (2) of Proposition 3.12 corresponds to the decorated binary tree with two leaves.

The homology classes induced by undecorated trees satisfy the Jacobi relation, as these homology classes come from the subspace Conf R n (l) (with R n being e.g. the upper half-space). The homology/cohomology pairing is given by the pairing between graphs (using the description after Definition 3.7) and trees, which is nondegenerate by [START_REF] Dev | The (non-equivariant) homology of the little disks operad[END_REF]Theorem 4.7], tensored with the pairing between the loops and the classes η (which is clearly nondegenerate). We therefore get that cd

∨ mn (l) → H * (Conf W (l)) is injective, establishing the result. Definition 3.14. We define, for integers k, l ≥ 0, cd ∨ mn (k, l) := e ∨ m (k) ⊗ cd ∨ mn (0, l).
For cosmetic reasons, for m ≥ 2 we will write ωij for the generators of e ∨ m (k), to distinguish them from the generators of cd ∨ mn (0, l). (Recall e ∨ 1 (k) is simply the algebra of functions on Σ k .) The CDGA cd ∨ mn (k, l) is equipped with the obvious action of Σ k × Σ l and we can therefore view cd ∨ mn as a bisymmetric collection. Proposition 3.15. There is an isomorphism of algebras cd ∨ mn (k, l) ∼ = H * (CD mn (k, l)). Proof. This follows directly from the Künneth formula and the homotopy equivalence

CD mn (k, l) Conf R m (k) × Conf R n \R m (l).
We now turn to the cooperad structure of cd ∨ mn . In e ∨ n , we have

• ∨ W (ω uv ) = 1 ⊗ ω uv if u, v ∈ W , and • ∨ W (ω uv ) = ω [u][v] ⊗ 1 otherwise. Moreover, e ∨ 1 (U ) = Ass ∨ (U ) = R[Σ U ] ∨ is the algebra of functions on Σ U := Bij(U, {1, . . . , #U }), the set of linear orders on U . The cocomposition of e ∨
1 is dual to block composition:

Σ U/W × Σ W → Σ U , (σ, τ ) → σ • W τ, ( 3.16) 
where σ • W τ is the linear order on U obtained by inserting the order on W at the position * in the order σ, e.g. (a

< * < b) • {x,y} (x < y) = (a < x < y < b).
Proposition 3.17. For m ≥ 2, the isomorphism of Proposition 3.13 induces cooperadic structure maps

• ∨ T : cd ∨ mn (U, V ) → cd ∨ mn (U, V /T ) ⊗ e ∨ n (T ) and • ∨ W,T : cd ∨ mn (U, V T ) → cd ∨ mn (U/W, V ) ⊗ cd ∨ mn (W, T )
given by:

• ∨ T (ω uu ) = ωuu ⊗ 1. • ∨ W,T (ω uu ) = 1 ⊗ ωuu , if u, u ∈ W ; ω[u][u ] ⊗ 1, otherwise. • ∨ T (ω vv ) = 1 ⊗ ω vv , if v, v ∈ T ; ω [v][v ] ⊗ 1 otherwise. • ∨ W,T (ω vv ) =      1 ⊗ ω vv , if v, v ∈ T ; ω vv ⊗ 1 if v, v ∈ V ; 0 otherwise. • ∨ T (η v ) = η [v] ⊗ 1. • ∨ W,T (η v ) = η v ⊗ 1 if v ∈ V ; 1 ⊗ η v if v ∈ T.
For m = 1, the maps • ∨ T and • ∨ W,T have the same behavior as above on the generators

ω vv and η v . On e ∨ 1 (U ) = Ass ∨ (U ) = R[Σ ∨ U ], the map • ∨
T is the identity, and • ∨ W,T is the dual of the block composition of Equation (3.16).

Proof. Our proof is similar to [START_REF] Dev | The (non-equivariant) homology of the little disks operad[END_REF]Theorem 6.3]. Recall the maps θ uu :

CD mn (U, V ) → S m-1 , θ vv : CD mn (U, V ) → S n-1 , and α v : CD mn (U, V ) → S n-m-1 from Section 2.
Let us first check that, when they are composed with the insertion maps

• T : CD mn (U, V /T )× D n (T ) → CD mn (U, V )
, we obtain the behavior indicated above on generators. For θ uu and θ vv , this is identical to the proof that e

∨ n (resp. sc ∨ m ) is the cohomology of D n (resp. SC m ). Now, let us consider the composite α v (-• T -) : CD mn (U, V /T )×D n (T ) → S n-m-1 for some v ∈ V . If v ∈ T , then the composite map α v (-• T -) is equal to α v • proj 1 , therefore: • ∨ T (η v ) = (α v (-• T -)) * (vol n-m-1 ) = proj * 1 (α * v (vol n-m-1 )) = η v ⊗ 1. (3.18)
If v ∈ T , consider the homotopy which precomposes the embedding indexed by [v] ∈ V /T with x → tx. At the limit t = 0, we find the map α * • proj 1 . Since the homotopy class of the map is constant as t varies, we also get

• ∨ T (η v ) = η [v] ⊗ 1. Now consider • W,T : CD mn (U/W, V ) × CD mn (W, T ) → D mn (U, V T
) and let us check that we get the maps from the proposition. For θ uu , this is again identical to the computation for e ∨ n . For η v , it is easy to see that η v (-• W,T -) factors by the projection on one of the two factors in the product. Similarly, for θ vv , if v, v are both in V or both in T , then θ vv (-• W,T -) also factors by one of the projections. Otherwise, WLOG assume that v ∈ V and v ∈ T . If we contract the appropriate disks by a homotopy which linearly decreases the radius, then the limit is a constant map, thus

• ∨ W,T (ω vv ) = 0.
Remark 3.19. We can compare cd ∨ mn with the cohomology of ESC mn (see Remark 2.11). We have

H * (ESC mn (U, V )) = e ∨ m (U ) ⊗ e ∨ n (U ) e ∨ n (U V ), where e ∨ n (U ) → e ∨ n (U V ) is the obvious inclusion and e ∨ n (U ) → e ∨ m (U ) sends all the generators ω uu to zero [55, Proposition 4.1]. Thus H * (ESC mn (U, V )) = e ∨ m (U ) ⊗ e ∨ n (U V )/e ∨ n (U ).
The cooperadic structure maps are defined by formulas similar to Proposition 3.17 (forgetting the η v ). The inclusion CD mn ⊂ ESC mn induces on cohomology the composite e

∨ m (U ) ⊗ e ∨ n (U V )/e ∨ n (U ) e ∨ m (U ) ⊗ e ∨ n (V ) → cd ∨ mn (U, V
). An interesting question would be whether this inclusion is formal.

Remark 3.20. The equality CD mn (-, ∅) = D m induces a left D m -module structure on CD mn (∅, -), using the operad structure of CD mn . This structure dualizes to the map ∆ :

cd ∨ mn (∅, u∈U V u ) → cd ∨ mn (U, ∅) ⊗ u∈U cd ∨ mn (∅, V u ) given by ∆(η v ) = 1 ⊗ η v (put in the corresponding cd ∨ mn (∅, V u )), ∆(ω vv ) = 1 ⊗ ω vv if v and v are in the same V u and ∆(ω vv ) = 0 otherwise.

Generators and relations for the homology

We take the opportunity to describe a presentation of cd mn := H * (CFM mn ) by generators and relations. Let us first recall the presentation of e n := H * (FM n ), due to Cohen [START_REF] Frederick | The homology of iterated loop spaces[END_REF]. An algebra over e 1 is a unital associative algebra. For n ≥ 2, an algebra over e n is a unital Poisson n-algebra, i.e. a unital commutative algebra equipped with a Lie bracket of (cohomological) degree 1 -n which is a biderivation for the product. Proposition 3.21. For n -2 ≥ m ≥ 1, an algebra over cd mn is the data (A, B, f, δ) consisting of an e m -algebra A, an e n -algebra B, a central morphism of algebras f : B → A, and its central derivation

δ : B[n -m -1] → A.

Central means that f and δ land in the center

Z(A) = {a ∈ A | ∀b ∈ A, [a, b] = 0},
where the bracket is the graded commutator (m = 1) or the shifted Lie bracket (m ≥ 2). The map δ is a derivation with respect to f :

δ(xy) = δ(x)f (y) ± f (x)δ(y).
Proof. An algebra is a pair (A, B) where B is an e n -algebra and A is a cd mn -algebra. Since cd mn (-, ∅) = e m , we know that A is an e m -algebra. Given that cd mn (0, 1) = H * (S n-m-1 ), we obtain two classes f : B → A of degree 0 and δ :

B[n -m -1] → A of degree 1 + m -n.
The two possible compositions cd mn (2, 0) × cd mn (0, 1) → cd mn [START_REF] Arnold | The cohomology ring of the colored braid group[END_REF][START_REF] Arnold | The cohomology ring of the colored braid group[END_REF] in either input of the product are homotopic, so f and δ are central. Similarly, f is a morphism of algebras. The proof that δ is a derivation is the same as the proof that the Lie bracket in e n is a biderivation.

We thus get a suboperad of cd mn that contains exactly the data of the proposition. Elements of this suboperad can be described as forests of rooted binary trees (like elements of e n ) with roots possibly decorated by a loop of degree 1 + m -n (the element δ). These are exactly the trees that appeared in the proof of Proposition 3.13 and we proved there that they generate the whole homology.

We can rephrase Proposition 3.21 more compactly. Let A be an e m -algebra and consider 

A[ε] := A ⊗ R[ε]/(ε 2 ) where deg ε = n -m -1. If m ≥ 2, then there is a Poisson bracket on A[ε] given by [x + εy, x + εy ] = [x, x ] + ε([x, y ] ± [x , y]). A cd mn -
S n-m-1 B → HC * Dm (A)
, where S n-m-1 B is the "factorization homology" of S n-m-1 with coefficients in B, and HC * Dm refers to Hochschild cochains. We view this as a "up to homotopy" version of an cd mnalgebra, the morphism f + εδ being the part S n-m-1 B → HC 0 Dm (A) and the higher terms being homotopies. It would be interesting to make this observation precise. Remark 3.22. An algebra over the homology sc n := H * (SC n ) of the Swiss-Cheese operad is the data of (A, B, f ) as in the proposition, see [START_REF] Livernet | Non-formality of the Swiss-cheese operad[END_REF]Section 4.3]. However, our computation for H * (CD (n-1)n ) in Section 3.1 above does not apply (e.g. the class ω 12 ∈ H * (CD (n-1)n (0, 2)) vanishes on some connected components). Instead, we get that cd (n-1)n -algebras are given by quadruples (A, B, f, g) where (A, B, f ) are as above and g : B → A is another central morphism (i.e. A is a unitary B-bimodule). There is an embedding SC n ⊂ CD (n-1)n . On homology, an cd (n-1)n -algebra (A, B, f, g) viewed as an sc n -algebra is simply (A, B, f ), i.e. we forget the right action. Livernet [START_REF] Livernet | Non-formality of the Swiss-cheese operad[END_REF]Theorem 4.3] proved that SC n is not formal by exhibiting a nontrivial operadic Massey product µ B , f, λ A , where µ B represents the product of B and λ A represents the Lie bracket of A. This shows that the operad of chains C * (CFM (n-1)n ; Q) cannot be formal either, because we obtain a nontrivial Massey product there too.

Graph complexes

In this section, we define a bicolored Hopf cooperad, whose operations in the second color are given by Kontsevich's cooperad graphs n [START_REF] Kontsevich | Operads and motives in deformation quantization[END_REF], and whose operations in the first color will be called cgraphs mn . Our tool of choice to define cgraphs mn will be "operadic twisting" [START_REF] Willwacher | Kontsevich's graph complex and the Grothendieck-Teichmüller Lie algebra[END_REF][START_REF] Dolgushev | Operadic twisting. With an application to Deligne's conjecture[END_REF], just like in [START_REF] Willwacher | Models for the n-Swiss Cheese operads[END_REF]. To give an idea of how cgraphs mn is built, we first recall the steps in the definition of graphs n . We also refer to [27, Sections 1.5-1.6] for more details with matching notation. Remark 4.1. We use the notation graphs n for the cooperad rather than its dual operad. Its linear dual graphs ∨ n is an operad which is quasi-isomorphic to H * (D n ). We make this choice because we never deal with graphs ∨ n . Kontsevich's graph complex GC ∨ n where the differential splits vertices will also be denoted with a dual sign. See e.g. [START_REF] Idrissi | The Lambrechts-Stanley Model of Configuration Spaces[END_REF][START_REF] Campos | Configuration Spaces of Manifolds with Boundary[END_REF] for matching notations.

Recollections: the cooperad graphs n

Untwisted The first step is to define an untwisted Hopf cooperad Gra n , given in each arity by the following CDGA, with generators e uv of degree n -1:

Gra n (U ) := S(e uv ) u,v∈U (e vu = (-1) n e uv ).

(4.2)

Graphically, Gra n (U ) is spanned by graphs on the set of vertices U . The monomial e u 1 v 1 . . . e urvr corresponds to the graph with edges --→

u 1 v 1 , . . . , --→ u r v r .
The identification e vu = ±e uv allows us to view the graphs as undirected, although we need directions to define the signs precisely for odd n. If n is even then deg e uv is odd, so we need to order edges to get precise signs. We explicitly allow tadpoles (e uu ) and double edges (e 2 uv ). However, for even n, e 2 uv = 0 because deg e uv is odd; and for odd n, e uu = (-1) n e uu = -e uu thus e uu = 0. The product is given by gluing graphs along their vertices. The cooperadic structure is given by subgraph contraction. Explicitly, the map

• ∨ W : Gra n (U ) → Gra n (U/W ) ⊗ Gra n (W ) is given by • ∨ W (e uv ) = e * * ⊗ 1 + 1 ⊗ e uv if u, v ∈ W , and by • ∨ W (e uv ) = e [u][v] ⊗ 1 otherwise. Remark 4.3.
The quotient of Gra 1 by disconnected graph forms an operad denoted by Gr in [START_REF] Sinha | Lie coalgebras and rational homotopy theory I. Graph coalgebras[END_REF]. It was used to present Harrison cohomology and find bases for cofree Lie coalgebras.

One may then produce a first zigzag of Hopf cooperads:

H * (FM n ) = e ∨ n ← Gra n ω -→ Ω * PA (FM n ), ω uv ← e uv → p * uv (ϕ n ), (4.4) 
where p uv : FM n (U ) → FM n (2) is the projection and ϕ n is the "propagator":

ϕ n := vol n-1 = cst • n i=1 ±x i dx 1 ∧ . . . dx i . . . ∧ dx n ∈ Ω n-1 PA (FM n (2)) = Ω n-1 PA (S n-1 ). (4.5)
Given a graph Γ ∈ Gra n (U ), one may define its coefficient µ(Γ) by µ(Γ) = 0 if #U ≤ 1 and µ(Γ) = FMn(U ) ω (Γ) otherwise. This element µ has a simple description: it vanishes on all graphs, except for the one with exactly two vertices and an edge between them [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]Lemma 9.4.3]. In other words, in the dual basis:

µ = 1 2 ∈ Gra ∨ n (2) ⊂ i≥0 Gra ∨ n (i). (4.6)
Twisting The second step is to twist the cooperad Gra n . Briefly, the idea of twisting is to turn an operad P that encodes algebras that are also Lie algebras (i.e. there is a morphism Lie → P) into an operad that encode P-algebras twisted by a Maurer-Cartan element, see [51, Appendix I]. In the case of Gra n , this turns out to produce the Arnold relations, which are themselves the algebraic shadow of the stratification of FM n . See Appendix A.1 for concepts and notations. The element µ of (4.6) defines a morphism from Lie n to Gra ∨ n : it sends the generating bracket λ 2 ∈ Lie n (2) to the graph appearing in (4.6). By composing with the canonical resolution hoLie n → Lie n , we thus obtain a morphism hoLie n → Gra ∨ n , which sends the binary bracket to µ and the k-ary brackets to 0 for k ≥ 3. One can check immediately that this graph satisfies the Jacobi relation. Alternatively, this can be deduced from the definition as an integral and the decomposition of the boundary of FM n (U ), cf. Proposition 4.32.

Cooperadic twisting produces a dg-cooperad Tw Gra n from Gra n and µ. Let us now describe it. As a graded module,

Tw Gra n (r) := i≥0 Gra n (r + i) ⊗ k[n] ⊗i Σ i , d µ . (4.7)
The CDGA structure is defined using the fact that Gra n (∅) = R (see [START_REF] Idrissi | The Lambrechts-Stanley Model of Configuration Spaces[END_REF]Lemma 9]) and the fact that µ vanishes on disconnected graphs as well as graphs admitting a cut point (i.e. if a point that disconnects the graph when removed).

Let us now give a graphical interpretation of this definition. The CDGA Tw Gra n (U ) is spanned by graphs with two kinds of vertices: external vertices, which are in bijection with U , and internal vertices, which are indistinguishable (in pictures they will be drawn in black). Given a graph Γ, its differential dΓ = e ±Γ/e is obtained as a sum, over all the edges e ∈ E Γ connected to at least one internal vertex, of the graphs obtained by contracting these edges. Note that in this differential, edges connected to univalent vertices are not contracted, roughly speaking because the contraction appears twice in dΓ and cancels out; but if both endpoints of the edge are univalent, then the edge is contracted with a minus sign, see [51, Appendix I.3] and Description 4.12. The product of two graphs is the graph obtained by gluing them along their external vertices. The cooperadic structure is given by subgraph contraction (summing over all choices of whether internal vertices and edges are in the subgraph).

One checks that the zigzag of Equation (4.4) extends to a zigzag: 

e ∨ n ← Tw Gra n ω -→ Ω * PA (FM n ). ( 4 
= (n -1)#E γ -n#V γ + n.
We describe its differential below.

Remark 4.11. This degree shift by n comes from the fact that we mod out by R n R >0 in the definition of FM n . To get a Maurer-Cartan element (of degree 1) out of ω in the Lie algebra GC ∨ n defined below, a shift by n is thus used. The module fGC n is a shifted algebra, with a product given by disjoint union of graphs. If GC n ⊂ fGC n is the subcomplex of connected graphs, then there is an isomorphism of shifted algebras fGC n = S(GC n [n])[-n]. The module GC n is a (pre)Lie coalgebra. Its cobracket ∆ is given by subgraph contraction (i.e. it is inherited from the cooperad structure on Gra n ). Dually, GC ∨ n is a (pre)Lie algebra, with a bracket given by graph insertion.

Description 4.12. Let us now describe the differential of GC n . It is given by (-µ ⊗ 1 + 1 ⊗ µ)∆, where µ ∈ GC ∨ n is the Maurer-Cartan element defined in Equation (4.6). The summand (1 ⊗ µ)∆ is given by the sum of contractions of edges, while the summand (µ ⊗ 1)∆ is given by the sum of contractions of edges attached to a univalent vertex. The contraction of an edge attached to exactly one univalent vertex appears twice in the sum with opposite signs, which thus cancels out. However, if both endpoints of the edge are univalent, then the contractions of this edge appears once with a plus and twice with a minus, which leaves one term with a minus. (See [51, Appendix I.3] for more details)

Dually, the differential on GC ∨ n is [µ, -].
It is roughly speaking given by vertex splitting (with the caveat about univalent vertices explained above). The space Tw Gra n (U ) is a module over the shifted CDGA fGC n , by taking disjoint unions.

Reduction The next step is to mod out graphs with internal components, i.e. connected components with only internal vertices, to obtain a new Hopf cooperad Graphs n . Formally, we consider the tensor product

Graphs n (U ) := Tw Gra n (U ) ⊗ fGCn R, (4.13) 
where fGC n acts trivially on R. In other words, in Graphs n , a graph with a connected component consisting entirely of internal vertices is set equal to zero. The map ω of Equation (4.9) factors through the quotient defining Graphs n [32, Lemma 9.3.7], and the quotient map Tw Gra n → e ∨ n clearly does. We can moreover reduce further the operad. The quotient graphs n is given by modding out graphs containing: internal vertices that are univalent or bivalent; double edges; or tadpoles. It follows again from the lemmas of [32, Section 9.3] that ω factors through this quotient (and the map Graphs n → e ∨ n clearly does). Recall that even though Ω * PA (FM n ) is not a Hopf cooperad, we take the convention that a morphism into it is a morphism in the sense defined in Section 1.3. Theorem 4.14 ([30], [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]Chapter 10]). This defines quasi-isomorphisms of Hopf cooperads e

∨ n ∼ ← -graphs n ∼ -→ Ω * PA (FM n ), thus FM n is formal over R.

The cooperad CGraphs mn

Let us now define CGraphs mn , using the same methodology that was used to define Graphs n . Note that we must take special care of the case m = 1. We define the further reduced cooperad cgraphs mn in the next section.

Untwisted The first step is the definition of the untwisted graph cooperad. 

CGra 1n (U, V ) := S(e ij ) i,j∈U V ⊗ R[Σ U ] ∨ (e ji = (-1) n e ij ).
Let us now give a graphical interpretation of CGra mn (U, V ). We will concentrate first on the case m ≥ 2. As a vector space, it is spanned by graphs with two kinds of vertices: terrestrial (in bijection with U ) and aerial (in bijection with V ). We will draw the aerial vertices as circles, and the terrestrial vertices as semicircles, below the aerial ones. There are also two kind of edges: full edges (corresponding to the e ij ) between any two vertices, and dashed edges (corresponding to the ẽuu ) between two terrestrial vertices. Note that we allow tadpoles and double edges. See If m = 1, the interpretation is similar, except that there are no dashed edges, and in addition the set of terrestrial vertices is ordered. Note that we are implicitly using the dual of the canonical basis of R[Σ U ] (i.e. we consider the basis elements of R[Σ U ] ∨ which vanish on all linear orders except one).

The product glues graphs along their vertices, and the differential is zero. These CDGAs assemble to form a relative Hopf Gra n -cooperad. The cooperadic structure maps act on the generators by the following formulas (compare with Proposition 3.17), with the convention u, u ∈ U , v, v ∈ V :

• ∨ T (ẽ uu ) = ẽuu ⊗ 1. • ∨ W,T (ẽ uu ) = ẽ * * ⊗ 1 + 1 ⊗ ẽuu , if u, u ∈ W ; ẽ[u][u ] ⊗ 1, otherwise. • ∨ T (e vv ) = e * * ⊗ 1 + 1 ⊗ e vv , if v, v ∈ T ; • ∨ T (e vv ) = e [v][v ] ⊗ 1, otherwise. • ∨ W,T (e vv ) =      1 ⊗ e vv , if v, v ∈ T ; e vv ⊗ 1 if v, v ∈ V ; 0 otherwise. • ∨ T (e uu ) = e uu ⊗ 1, • ∨ W,T (e uu ) = e * * ⊗ 1 + 1 ⊗ e uu , if u, u ∈ W, e [u][u ] ⊗ 1, otherwise, • ∨ T (e uv ) = e u[v] ⊗ 1, • ∨ W,T (e uv ) =      e * * ⊗ 1 + 1 ⊗ e uv , if u ∈ W, v ∈ T e u * ⊗ 1, if u ∈ W, v ∈ T, e [u]v ⊗ 1 otherwise. Moreover, if m = 1, then • ∨ T is the identity on R[Σ U ] ∨ , and • ∨ W,T
is the dual of block composition from Equation (3.16). Graphically, the cooperadic structure map • W,T is given by subgraph contraction, which we now explain. Definition 4.17 (Quotient graph, case m ≥ 2). Let Γ ∈ CGra mn (U, V ) be a graph and Γ ⊂ Γ be a subgraph, not necessarily full. We define the quotient graph Γ/Γ as follows. The set of vertices of Γ/Γ is the quotient set V Γ /V Γ , identifying all the vertices of Γ to produce a new vertex [Γ ], always terrestrial even if Γ contains no terrestrial vertices. The set of edges of Γ/Γ is the difference E Γ \ E Γ (we informally view the edges of Γ as being "contracted"). If e ∈ E Γ \ E Γ has an endpoint in Γ , then the corresponding endpoint of e ∈ E Γ/Γ is the new terrestrial vertex [Γ ]. In particular, if an edge is not in Γ but both of its endpoints are, then this edge becomes a tadpole on the vertex [Γ ] in Γ/Γ . . For m = 1, the definition of the quotient graph Γ/Γ is slightly modified to deal with the linear order on terrestrial vertices. Suppose that Γ ⊂ Γ is a subgraph. The linear order of the terrestrial vertices of Γ/Γ is dual to the block composition of linear orders from Equation (3.16). More concretely, Γ/Γ is a linear combination of graphs:

• If Γ has no terrestrial vertices, then Γ/Γ is a sum of several terms. Each term is a quotient graph as in Definition 4.17. The sum ranges over all possible positions for the new vertex:

if f ∈ e ∨ 1 (U ) is the decoration of Γ, then the decoration of Γ/Γ is (σ ∈ Σ U/∅ ) → f (σ| U ).
• If the terrestrial vertices of Γ are consecutive, then Γ/Γ is defined as in Definition 4.17, and the linear order on the terrestrial vertices of Γ/Γ is inherited from Γ, with the new terrestrial vertex [Γ ] in the position of the vertices of Γ . • If the terrestrial vertices of Γ are not consecutive, then Γ/Γ = 0.

We can interpret • W,T (Γ) as the sum of the Γ/Γ ⊗ Γ for all (not necessarily full) subgraphs Γ with set of vertices (W, T ).

Let us now define a zigzag of Hopf cooperad maps

H * (CFM mn ) = cd ∨ mn ← CGra mn → Ω * PA (CFM mn ). (4.20)
The left-pointing map is defined by ẽuu → 0, ẽuu → ωuu for u = u ∈ U , e vv → 0, e vv → ω vv for v = v ∈ V , and e ij → 0 if i ∈ U or j ∈ U . The right-pointing map is defined using the following three "propagators":

• Using the identification CFM mn (2, 0) = FM m (2) ∼ = S m-1 , we can use the propagator

ϕ m := vol m-1 ∈ Ω m-1 PA (FM m (2)
) of Equation (4.5). • Recall the map θ 12 : CFM mn (1, 1) → S n-1 which records the direction from the aerial point to the terrestrial point. The propagator ψ mn is the pullback of the volume form of S n-1 along θ 12 :

ψ ∂ mn := θ * 12 (vol n-1 ) ∈ Ω n-1 PA (CFM mn (1, 1)). (4.21)
• Similarly, there is another map ϑ 12 : CFM mn (0, 2) → S n-1 which records the direction from the second point to the first point. The propagator is: 

ψ mn := ϑ * 12 (vol n-1 ) ∈ Ω n-1 PA (CFM mn (0, 2)). ( 4 
= cst • i (-1) i x i dx 1 ∧ . . . dx i • • • ∧ dx d .
Hence they can be pushed forward (once) along PA bundles [START_REF] Hardt | Real homotopy theory of semi-algebraic sets[END_REF].

Remark 4.24. The map CGra mn → cd ∨ mn is not surjective as its image does not contain the classes η i . These classes are only reached once CGra mn is twisted: it is the image of a graph with internal vertices (see Remark 4.52 and Section 5.2).

We may then define a morphism If #U + 2#V ≤ 1 then we just set c(Γ) = 0 (this is due to the special case in the definition of BF , see Proposition 2.12).

ω : CGra mn (U, V ) → Ω * PA (CFM mn (U, V )) (4.
Remark 4.31. In the case (n, m) = (2, 1), these are analogous to the coefficients in Kontsevich's universal formality morphism T poly → D poly from [START_REF] Kontsevich | Deformation quantization of Poisson manifolds[END_REF]. For (n, m) = (3, 1), these are related to local versions of Kontsevich integrals [START_REF] Kontsevich | Feynman diagrams and low-dimensional topology[END_REF], which are conjectured to equal Bott-Taubes integrals [START_REF] Poirier | The configuration space integral for links in R 3[END_REF].

Twisting In this section, we are going to twist the cooperad CGra mn using the theory developed in Appendix A. 

) → (Gra ∨ n , CGra ∨ mn ). The generating bracket λ U,V ∈ ho -→ Lie mn (U, V ) is sent to the element c(λ U,V ) ∈ CGra ∨ mn (U, V )
given by Γ → c(Γ), which we can write as the possibly infinite sum c = Γ c(Γ)Γ.

Proof. The proof is similar to Kontsevich 

CFM mn : ho -→ Lie mn → C SA * (CFM mn )
which maps the generating bracket λ U,V ∈ ho -→ Lie mn (U, V ) to the fundamental chain CFM mn (U, V ) . So we just need to check that CFM mn is a morphism.

Since ho -→ Lie mn is quasi-free, we just need to check that our prescription on generators is compatible with the differential. Recall [24, Theorem 3.5] that for a compact oriented SA manifold M , d M = ∂M . If we use the description of ∂CFM mn (U, V ) from Proposition 2.12, we find that the differential in C SA * (CFM mn ) matches the cobar differential. The faces of type BF correspond to cocompositions

--→ Com ∨ mn (U, V ) → --→ Com ∨ mn (U, V /T ) ⊗ Com ∨ n (T )
, and the faces of type BF correspond to cocompositions

--→ Com ∨ mn (U, V ) → --→ Com ∨ mn (U/W, V \T )⊗ --→ Com ∨ mn (W, T ).
The "missing" faces (when #T < 2, (W, T ) = (U, V ), or 2#T + #W < 2) come from the fact that the cobar construction uses the coaugmentation quotient of the cooperad and from

Com ∨ n (∅) = --→ Com ∨ mn (∅, ∅) = 0.
Definition 4.33. The twisted graph cooperad Tw CGra mn is the relative (Tw Gra n )cooperad obtained by twisting CGra mn with respect to µ and c.

This twisted cooperad has a graphical description. The CDGA Tw CGra mn (U, V ) is spanned by graphs with four types of vertices: external terrestrial vertices, in bijection with U (drawn as semicircles); external aerial vertices, in bijection with V (drawn as circles); internal terrestrial vertices, indistinguishable among themselves, of degree -m (drawn as black semicircles); internal aerial vertices, indistinguishable among themselves, of degree -n (drawn as black circles).

There are two kinds of edges: full edges of degree n -1, and dashed edges of degree m -1. The product glues graphs along external vertices. If m = 1, then there are no dashed edges, and the whole set of terrestrial vertices is ordered (if we view e ∨ 1 (U I) as spanned by the dual basis of e 1 (U I)). In this basis, the product of two graphs Γ • Γ vanishes if the external vertices of Γ and Γ are ordered differently. Otherwise Γ • Γ is obtained by gluing the two graphs along external vertices, and summing all possible ways of ordering the union (along external vertices) of the terrestrial vertices of Γ and Γ in a way that the new order restricts to the given orders in Γ and Γ . Description 4.34. The differential is given by the twisting procedure (Appendix A.3). Recall the subgraph contractions defined in Definitions 4.17, 4.19. Given a graph Γ, its differential dΓ is given as a sum (with signs in Section A.3, the terms corresponding respectively to (-) • µ, (-) • (c -c 1 ), and c 1 • (-)):

1. contractions of full edges between an aerial internal vertex and an aerial vertex of any kind, including edges connected to a univalent internal vertex (this uses the simple description of µ in Equation (4.6)); 2. contractions of subgraphs Γ containing at most one external (necessarily terrestrial) vertex, with result c(Γ ) • Γ/Γ ; 3. forgetting of all vertices outside a subgraph Γ which contains all the external vertices, with result c(Γ/Γ ) • Γ . Note that the differential is not purely combinatorial: it depends on c, which is defined by integrals.

Since CGra mn is a Hopf cooperad satisfying CGra mn (∅, ∅) = k, and since c vanishes on disconnected graphs (see Lemma 4.37) and graphs with a terrestrial cut point (by a simple degree argument: dim CFM mn (i+i +1, j +j ) > dim CFM mn (i+1, j)×CFM mn (i +1, j )), we find again that Tw CGra mn inherits a Hopf cooperad structure, similarly to the uncolored case. For m = 1, this is also true: the differential preserves (up to quotient) the order of the terrestrial vertices, and if two consecutive terrestrial vertices in Γ • Γ come respectively from Γ and Γ (which could potentially produce an unwanted term in d(Γ • Γ ) due to the exception in Lemma 4.37), then they also appear with the opposite order in the product and the two terms in the differential cancel out. Tw CGra mn (U, V ) and #U + 2#V ≥ 2:

ω(Γ) := (p U,V ) * (ω (Γ)) = CFMmn(U I,V J)→CFMmn(U,V ) ω (Γ).
If #U + 2#V ≤ 1, then ω(Γ) = 1 if Γ has no edges and no internal vertices, and ω(Γ) = 0 otherwise.

Proof. We use the double pushforward formula [24, Proposition 8.13], Stokes' formula [24, Proposition 8.12] and the decomposition of the fiberwise boundary CFM mn (U, V ) from Section 2.1 (compare with [32, Section 9.4]).

We deal separately with the case #U + 2#V ≤ 1 (cf. [32, Section 9.1]). Indeed, the fiber of p U,V : CFM mn (U I, V J) → CFM mn (U, V ) has dimension m#I + n#J in general, but dim CFM mn (U, V ) = 0 for #U + 2#V ≤ 1, so the dimension of the fiber of p U,V is either m#I + n#J -1 or m#I + n#J -m -1 and ω would not preserve degrees. In these cases CFM mn (U, V ) is merely a singleton, so we just have to check that any cocycle is mapped to zero. This is clear if U = V = ∅, as the differential of a nonempty graph is nonempty. For Γ ∈ Tw CGra mn (1, 0) with at least one edge, the graph with no edges appears exactly twice with opposite signs in dΓ (see Description 4. This shifted CDGA is free and generated by its submodule of connected graphs. We still denote by c ∈ fCGC ∨ mn the restriction of the morphism c from (4.30).

Lemma 4.37. Let n -2 ≥ m ≥ 1. Given a disconnected graph γ ∈ fCGC mn , the coefficient c(γ) vanishes, unless m = 1 and γ = .

Proof. Let us first assume that γ has no isolated terrestrial vertices. Then γ factors as a product γ = γ 1 • γ 2 , with corresponding sets of vertices (I 1 , J 1 ) and (I 2 , J 2 ) both satisfying #I • +2#J • ≥ 2 for • ∈ {1, 2}. We need deg vol γ = dim CFM mn (I, J), otherwise c(γ) = CFMmn(I,J) Φ * γ (vol γ ) obviously vanishes. But thanks to the hypothesis Φ γ factors through CFM mn (I 1 , J 1 ) × CFM mn (I 2 , J 2 ), which is of strictly lower dimension. Hence Φ * γ (vol γ ) = 0 =⇒ c(γ) = 0. Now let γ have an isolated terrestrial vertex i ∈ I. Then Φ γ factors through CFM mn (I \ {i}, J). If (#I -1) + 2#J ≥ 2, then the codimension with CFM mn (I, J) is m > 0, and so similarly c(γ) = 0. However, if γ is the graph with two terrestrial vertices and no aerial ones (i.e. (#I, #J) = (2, 0)), then the codimension is m-1, because dim CFM mn (1, 0) = 0. Thus we only get c(γ) = 0 if m > 1.

Remark 4.38. In the case m = 1, we have that CFM 1n (2, 0) ∼ = FM 1 (2) ∼ = S 0 . We find that for γ = ∈ fCGC 1n , we have c(γ) = 1.

Definition 4.39. For n -2 ≥ m ≥ 2, the connected complementarily constrained graph complex CGC mn as the quotient of fCGC mn by disconnected graphs.

The case m = 1 is special. Mimicking [53, Section 4], we define an alternate basis of Tw Gra 1n (U, V ). Recall that Gra 1n (U, ∅) contains Ass ∨ (U ), where Ass encodes associative algebras. The symmetric sequence Ass is isomorphic to Pois = Com • Lie [START_REF] Loday | Algebraic operads[END_REF]Section 13.3]. We can thus decree that terrestrial internal vertices are in the same "Lie component" if they are connected by brackets. Definition 4.40 (Cf. [START_REF] Willwacher | Models for the n-Swiss Cheese operads[END_REF]Section 4]). A Lie-decorated graph is a graph Γ defined similarly as an element of Tw Gra 1n (U, V ) (Definition 4.33), but instead of giving a function on linear orders of terrestrial vertices, we give a function on commutative products of Lie words of terrestrial vertices. More precisely, we use the dual of the PBW isomorphism to get an isomorphism and we obtain a new basis of Tw CGra 1n (U, V ) through the twisting procedure:

CGra 1n (U, V ) ∼ = S(e ij ) i,j∈U V ⊗ Pois ∨ (U ) (e ji = (-1) n e ij ).
One possible way to describe a Lie-decorated graph Γ ∈ Tw CGra 1n (U, V ) (with internal vertices I) is to take a usual basis of Pois(U I) = (Com • Lie)(U I) and consider its dual basis in Pois ∨ (U I), i.e. functions on products of Lie words that vanish on all such elements except one. See It is actually easier to describe the differential in of a Lie-decorated graph using coLie words. Recall that a coLie word U is an element in the cofree coalgebra T ≥1 (U ) ∨ which vanishes on the image of S ≥2 (Lie(U )) under the PBW isomorphism. These words are the image of the first Eulerian idempotent e (1) = log (id), where is the convolution product of the bialgebra T (U ) ∨ (see e.g. [START_REF] Benoit Fresse | Théorie des opérades de Koszul et homologie des algèbres de Poisson[END_REF]Appendix 4.2]). CoLie words themselves are described by graphs (see [START_REF] Sinha | Lie coalgebras and rational homotopy theory I. Graph coalgebras[END_REF]), one can also thus think of Lie-decorated graphs as "graph-decorated graphs". With this basis, the differential merges coLie words (with a description similar to the one of Tw CGra mn above).

Lemma 4.41. The vector space spanned by Lie-decorated graphs with external vertices

(U, V ) is isomorphic to Tw Gra 1n (U, V ).
Proof. We use the dual of the PBW isomorphism Pois ∨ (U I) ∼ = Ass ∨ (U I) to identify linear combinations of Lie-decorated graphs with elements of Tw Gra 1n (U, V ). For the signs, terrestrial vertices have degree -1. Proof. This also follows from Lemma 4.37, in both cases m = 1 and m ≥ 2. Proof. The proof is identical to the proof of [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]Lemma 9.3.7]. Briefly, let γ ∈ Tw CGra mn (U, V ) be a graph whose edges all are between internal vertices. Let (I, J) be the sets of internal vertices of γ and assume #U + 2#V ≥ 2 otherwise the claim is obvious (see Lemma 4.35). We can fill the diagram, where ρ is the product of two projections:

CFM mn (U I, V J) (S m-1 ) E t Γ × (S n-1 ) E a Γ CFM mn (U, V ) CFM mn (U, V ) × CFM mn (I, J) Φγ ρ p U,V ∃Φ γ pr 1 . We therefore find that ω(Γ) = (p U,V ) * (ω (Γ)) = (p U,V ) * (ρ * (Φ * γ vol Γ )
). The dimension of the fibers of p U,V and pr 1 are respectively m#I + n#J > m#I + n#J -m. Therefore ω(Γ) = 0 by [START_REF] Hardt | Real homotopy theory of semi-algebraic sets[END_REF]Proposition 5.1.2]. For m = 1, we note that a Lie-disconnected graph is in particular disconnected.

Vanishing lemmas and cgraphs mn

We now prove some vanishing lemmas about ω and c, which allows us to define the further reduced cooperad cgraphs mn . This will be useful to prove that the quotient map CGra mn → cd ∨ mn extends to cgraphs mn in Section 5. Proof. The lemma is trivial if #U + 2#V ≤ 1 (see Lemma 4.35), so let us assume that we are not in this case.

Let us first deal with univalent aerial internal vertices connected to another aerial vertex. The graph Γ uni = 1 is of negative degree, thus ω(Γ uni ) = 0. For a general graph Γ containing Γ uni , the argument is the same as [START_REF] Idrissi | The Lambrechts-Stanley Model of Configuration Spaces[END_REF]Corollary 44] or [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]Lemma 9.3.9]. The map Φ Γ of (4.28) factors through CFM mn (∅, {v, j}) × CFM mn (U I, V J \ {j}), and so does the canonical projection. The two factorizations make the obvious diagram (like in Proposition 4.49) commute. Using [START_REF] Hardt | Real homotopy theory of semi-algebraic sets[END_REF]Propositions 8.10,8.13] and ω(Γ uni ) = 0, we get ω(Γ) = 0.

Let us now assume that Γ is a graph with a univalent internal vertex connected i to a terrestrial vertex u. We can assume that i is aerial or that the incident edge is dashed, as otherwise ω(Γ) = 0 by definition (4.26). Let (U I, V J) be the sets of vertices of Γ. Then both Φ Γ and p U,V factor through either X = CFM mn ({u}, {i})×CFM mn (U I, V J \{i})

(if i is aerial) or X = CFM mn ({u, i}, ∅) × CFM mn (U I \ {i}, V J) if i is terrestrial,
and the factorizations make the obvious diagram commute. The dimension of the fiber of p U,V is m#I + n#J, while the dimension of the fiber of the projection X → CFM mn (U, V ) is m#I + n#J -1 in both cases. Hence, by [START_REF] Hardt | Real homotopy theory of semi-algebraic sets[END_REF]Proposition 8.14], ω(Γ) = 0.

Remark 4.52. The argument fails for graphs containing a univalent internal terrestrial vertex connected to an aerial vertex. If we consider the following graph, then we find that ω(Γ) ∈ Ω n-m-1 PA (CFM mn (0, 1)) represents η from Section 3.1:

Γ = 1
∈ cgraphs mn (0, 1), (

Indeed, by the definition of ψ ∂ mn in (4.21) and by [START_REF] Hardt | Real homotopy theory of semi-algebraic sets[END_REF]Proposition 8.10], we find that CFMmn(1,1) ψ ∂ mn = S n-1 vol n-1 = 1. Therefore CFMmn(0,1) ω(Γ) = 1 by [24, Proposition 8.13]. This also implies that if γ is obtained from the Γ above by making the external vertex internal, then we get c(γ) = 1.

Lemma 4.54. The coefficient c vanishes on graphs with more than two vertices and which either contain a univalent aerial vertex, or which contain a univalent terrestrial vertex connected to another terrestrial vertex. It also vanishes on the graph with exactly two vertices, both aerial, and a (full) edge between the two.

Proof. We can reuse the proof of Lemma 4.51 almost verbatim. There is one caveat: the graph γ with the univalent vertex removed must still satisfy the hypothesis #I + 2#J ≥ 2. Otherwise, a degree shift occurs, to deal with the fact that dim CFM mn (I, J) = 0 and not -1 or -m -1 as the general formula would give. This is the case unless γ has exactly two vertices with at most one aerial. If γ has exactly two aerial vertices and one edge, then c(γ) vanishes for degree reasons (dim CFM mn (0, 2) = 2n -m -1 > n -1).

Remark 4.55. The restriction about the number of vertices is necessary. Indeed, for γ = ∈ CGC mn . we find c(γ

) = CFMmn(2,0) ϕ m = S m-1 vol S m-1 = 1.
Lemma 4.56. The morphism ω and the coefficient c vanish on graphs with bivalent internal terrestrial vertices connected to two terrestrial vertices.

Proof. Let us first consider the case of the graph

Γ biv = v u . ( 4.57) 
Using CFM mn (U, ∅) ∼ = FM m (U ) and the fact that the terrestrial propagator is the same as the one used in the definition of the map Graphs m → Ω * PA (FM m ), we deduce that ω(Γ biv ) = 0 from [32, Lemma 9.3.9] (see also [START_REF] Kontsevich | Feynman diagrams and low-dimensional topology[END_REF]Lemma 2.1] for the origin of this result: there is an involution on FM m (U ) which leaves ω (Γ biv ) invariant but reverses the orientation, thus ω(Γ biv ) = -ω(Γ biv )). If Γ contains Γ biv as a subgraph, then we use the same reasoning as Lemma 4.51 to show that ω(Γ) = 0. Finally, for the other cases, simply note that ω and c vanish by definitions on graphs with full edges between terrestrial vertices. Definition 4.58. Let I(U, V ) ⊂ CGraphs mn (U, V ) be the vector space spanned by graphs containing loops, double edges (of any type), univalent aerial internal vertices, univalent internal terrestrial vertices connected to another terrestrial vertex, or bivalent internal terrestrial vertices connected to two terrestrial vertices by dashed edges. For m = 1, we take graphs containing loops, double edges, and univalent aerial internal vertices.

Lemma 4.59. The subspace I(U, V ) define a CDGA ideal in CGraphs mn (U, V ), and the subcollection I ⊂ CGraphs mn define a cooperadic coideal.

Proof. It is clear that I(U, V ) is an algebra ideal. Let us show that it is a differential ideal. The fact that I defines a cooperadic coideal can also be checked easily case-by-case. We deal with m ≥ 2, and the case m = 1 is also checked by a similar case-by-case argument. Let Γ ∈ I(U, V ) be a graph. Let us show that dΓ ∈ I(U, V ). The three summands in Description 4.34 are called

d 1 = (-) • (µ -µ 1 ), d 2 = (-) • (c -c 1 )
, and d 3 = (c 1 ) • (-), where the coefficients c are defined analytically by integrals.

• If Γ contains a loop, then all the summands in dΓ contain a loop, as both µ and c vanish on loops. • Suppose Γ contains a univalent aerial internal vertex i, with incident edge e. In 

(U, V ) ω -→ Ω * PA (CFM mn (U, V )).
Proof. This follows from Lemmas 4.50, 4.51, 4.54, and 4.56.

Proof of the formality

In this section we complete the proof of the formality of the operad CFM mn . We first show that, up to homotopy, the differential of cgraphs mn can be simplified: the Maurer-Cartan element c is gauge equivalent to a much simpler one c 0 . To prove this, we compute a terrestrially-bound version of the twisted graph complex (CGC ∨ mn , d + [c 0 , -]) (denoted with a ↓ superscript). The difference c -c 0 belongs to this terrestrially-bound complex. We prove that CGC ∨,c 0 ,↓ mn quasi-isomorphic to the classical hairy graph complex HGC ∨ mn , whose cohomology is known; in particular, it vanishes in the right degree. We can then apply classical deformation-theorerical theorems to prove that c c 0 . This enables us to define a simpler version cgraphs 0 mn (replacing c with c 0 in the definition) which is quasi-isomorphic to cgraphs mn . Then we construct a map from cgraphs 0 mn to H * (CFM mn ) by explicit formulas. We prove by combinatorial arguments that this map is a quasi-isomorphism. Since ω is clearly surjective in cohomology, the theorem will follow.

Change of Maurer-Cartan element and cgraphs 0 mn

We would like to define a morphism cgraphs mn → cd ∨ mn . However, cgraphs mn depends on the Maurer-Cartan element c ∈ CGC ∨ mn from Equation (4.30), and we do not know the precise form of c. We just know its leading terms: Proposition 5.1. For n -2 ≥ m ≥ 1, we have c = c 0 + (. . . ), where (. . . ) denotes terms where #{terr. vert.} + 2#{aer. vert.} > 3, and:

c 0 := + ∈ CGC ∨ mn , if m ≥ 2; + ∈ CGC ∨ 1n , if m = 1. (5.2) 
Proof. This follows from Remark 4. If we knew that c = c 0 , then we would be able to build a map cgraphs mn → cd ∨ mn easily (see Section 5.2). In this section, we show that c is gauge equivalent to c 0 . For this we show that the cohomology of CGC ∨ mn twisted by c 0 vanishes in the right degree. Obstruction theory then shows that c is gauge equivalent to c 0 . As we will see, the cohomology of the graph complex

CGC ∨,c 0 mn := (CGC ∨ mn , d + [c 0 , -]) (5.3) 
is related to the cohomology of GC ∨ n and the cohomology of the "hairy graph complex" HGC ∨ mn that will be defined below (see e.g. [19, Section 2.2.6] or [START_REF] Arone | Graph-complexes computing the rational homotopy of high dimensional analogues of spaces of long knots[END_REF]).

Definition 5.8. Let fCGC ∨,c 0 ,↓ mn be the submodule of fCGC ∨,c 0 mn spanned by graphs whose connected components all have at least one terrestrial vertex and at least one full edge. Let CGC ∨,c 0 ,↓ mn ⊂ fCGC ∨,c 0 ,↓ mn be the submodule of connected graphs. Then clearly: Lemma 5.9. The submodule CGC ∨,c 0 ,↓ mn ⊂ CGC ∨,c 0 mn is a dg-Lie subalgebra and a Lie GC ∨ n -submodule.

Lemma 5.10. There is an inclusion of dg-modules fHGC ∨ mn ⊂ fCGC ∨,c 0 ,↓ mn obtained by considering all external vertices as terrestrial, with no dashed edges. On the connected parts, for m ≥ 2 this inclusion is compatible with the Lie structure and the action of the Lie algebra GC ∨ n on both sides. For m = 1, it can be extended to an L ∞ -morphism whose linear part is the inclusion.

Proof. Simple inspection shows that the inclusion is well-defined, and that it is compatible with the differential. The compatibility with the Lie bracket is clear for m ≥ 2. The case m = 1 follows by adapting the proof of [52, Proposition 5.1], replacing the Hochschild complex of Graphs ∨ n with CGC ∨,c 0 ,↓ 1n .

Proposition 5.11. The inclusion fHGC ∨ mn ⊂ fCGC ∨,c 0 ,↓ mn is a quasi-isomorphism.

Proof. The proof is similar to [START_REF] Willwacher | Kontsevich's graph complex and the Grothendieck-Teichmüller Lie algebra[END_REF]Lemma 4.4]. Indeed, fCGC ∨,c 0 ,↓ mn is very close to the deformation complex of the morphism Graphs ∨ m → Graphs ∨ n (denoted by Def(hoe m → Graphs n ) in [START_REF] Willwacher | Kontsevich's graph complex and the Grothendieck-Teichmüller Lie algebra[END_REF]).

We first filter both complexes by the number of full edges, which is the only kind of edges in fHGC ∨ mn . The differential of fHGC ∨ mn always increases this number strictly by 1. Let us write c 0 = c 0 + c 0 , where c 0 is the part with two terrestrial vertices, and c 0 with one vertex of each kind (see Equation (5.2)). The differential of fCGC ∨,c 0 ,↓ mn increases the filtration number by 1 (for the action of µ + c 0 ) or keeps it constant (for the action of c 0 ). Hence on the associated spectral sequences, the differential of E 0 fHGC ∨ mn vanishes, while the differential of E 0 fCGC ∨,c 0 ,↓ mn is just the bracket [c 0 , -]. We now check that the inclusion induces a quasi-isomorphism on these E 0 pages, from which the proposition follows. Let us first assume that m ≥ 2. Given Γ ∈ fCGC ∨,c 0 ,↓ mn , define its character [Γ] ∈ fHGC ∨ mn as follow: remove all terrestrial vertices and dashed edges, and call the full edges that used to be connected to terrestrial vertices "dangling", then make the dangling edges into hairs (see [START_REF] Willwacher | Kontsevich's graph complex and the Grothendieck-Teichmüller Lie algebra[END_REF]Lemma 4.4] for an analogous definition). The differential [c 0 , -] does not change the character of a graph. Hence E 0 fCGC ∨,c 0 ,↓ mn splits:

E 0 fCGC ∨,c 0 ,↓ mn = γ∈fHGC ∨ mn {Γ ∈ E 0 fCGC ∨,c 0 ,↓ mn | [Γ] = γ} =:Cγ .
(5.12)

Let γ ∈ fHGC ∨ mn be a graph with hairs {h 1 , . . . , h k }. Let G be the group of permutations of hairs. Then C γ is isomorphic to

C γ = (Graphs ∨ m • Sc (H 1 , . . . , H k ) (1,...,1)
) G , where Sc (H 1 , . . . , H k ) is the (non counital) cofree cocommutative coalgebra on variables H i of degree -m, Graphs ∨ m • -is the free Graphs ∨ m -algebra functor, and (-) (1,...,1) is the subcomplex where each H i appears exactly once. Indeed, we can view Ξ ∈ C γ as a linear combination of graphs from Graphs ∨ m (r) with each external vertex decorated by one or more H i , with each H i appearing once. We can identify Ξ with an element of C γ by making its edges dashed, its vertices terrestrial, and we glue γ to the graph obtained, connecting the hair h i to the vertex decorated by H i . The hairs are indistinguishable, but Ξ is invariant under G so this is well-defined. This is illustrated by (with Ξ at the bottom):

1

H 2 2 H 1 , H 3 γ h 2 h 1 h 3 -→ γ ∈ C γ .
(5.13)

For example, full edges between terrestrial vertices may be obtained when γ contains a copy of the "line graph", i.e. the only connected hairy graph with no internal vertices.

The differential [c 0 , -] replicates the differential of Graphs ∨ m (k) (i.e. vertex splitting), thus this is an isomorphism of dg-modules.

The homology of Graphs ∨ m is the m-Poisson operad (Theorem 4.14). Checking the degrees and the induced differential [µ + c 0 , -], we can identify the page E 1 fCGC ∨,c 0 ,↓ mn with (a shift of) the deformation complex Def(hoe m * -→ Graphs ∨ n ) considered in [START_REF] Willwacher | Kontsevich's graph complex and the Grothendieck-Teichmüller Lie algebra[END_REF]. Note that there, the case n = m is considered and so the map hoe n → Graphs ∨ n sends the Lie bracket to a nonzero element; however, in [START_REF] Willwacher | Kontsevich's graph complex and the Grothendieck-Teichmüller Lie algebra[END_REF], the part of the differential induced by this element is discarded, so the complex considered is Def(hoe m * -→ Graphs ∨ n ) up to shifts. Compare also with the results of [2, Section 5], where the full hairy graph complex is called HH m,n .

The differential of fHGC ∨ mn raises the number of edges by 1, so the page E 1 fHGC ∨ mn is just fHGC ∨ mn . Thanks to [START_REF] Willwacher | Kontsevich's graph complex and the Grothendieck-Teichmüller Lie algebra[END_REF]Lemma 4.4], the inclusion fHGC ∨ mn → Def(hoe n * -→ Graphs ∨ n ) is a quasi-isomorphism, thus our morphism induces an isomorphism on the E 2 page of the spectral sequence and so it is a quasi-isomorphism itself.

For m = 1, the proof is similar, but Lie clusters replace dashed edges. We get that E 1 fCGC ∨,c 0 ,↓ 1n is the (chains) deformation complex of hoe 1 → Graphs ∨ n (k), whose homology is the full hairy graph complex fHGC 1n . The induced morphism on the E 2 pages is the identity, from which the result follows.

Corollary 5.14. The inclusion HGC ∨ mn ⊂ CGC ∨,c 0 ,↓ mn is a quasi-isomorphism.

Proof. Both CDGAs fHGC ∨ mn and fCGC ∨,c 0 ,↓ mn are free as CDGAs, so they are in particular cofibrant. The functor of indecomposables is a left Quillen adjoint [START_REF] Loday | Algebraic operads[END_REF]Section 12.1.3]. It thus preserves quasi-isomorphisms between cofibrant objects. Since the indecomposables of the two CDGAs mentioned above are respectively HGC ∨ mn and CGC ∨,c 0 ,↓ mn , we conclude by Lemma 5.10 and Proposition 5.11.

Corollary 5.15. The Maurer-Cartan element c -c 0 ∈ CGC ∨,c 0 mn is gauge equivalent to zero; equivalently, c and c 0 are gauge equivalent.

Proof. Let C ⊂ CGC ∨,c 0 mn be the subalgebra spanned by graphs which are not the loops γ l from Proposition 5.4. Similarly let C ⊂ GC ∨ n be the subalgebra spanned by graphs with are not the loops. We have a short exact sequence 0 → CGC ∨,c 0 ,↓ mn → C → C → 0.

The coefficient c -c 0 belongs to the subalgebra C. Indeed, c vanishes on the loops γ l by degree reasons (and so does c 0 ). Moreover, we can compute c on purely terrestrial/dashed graphs and show that it agree with c. If m = 1, then this follows by immediate degree reasons. For m ≥ 2, the restriction of c to purely terrestrial/dashed graphs is equal to Kontsevich's coefficient µ ∈ GC ∨ m (CFM mn (U, ∅) = FM m (U ) and the integral is identical). So the fact that c and c 0 agree on such graphs follows from the explicit description of µ in Equation (4.6).

We can then combine Propositions 5.4, 5.7 and 5.11 to get that the homology of C vanishes in degrees > -1. We conclude by applying the Goldman-Millson theorem [START_REF] Goldman | The deformation theory of representations of fundamental groups of compact Kähler manifolds[END_REF] (see [START_REF] Getzler | Lie theory for nilpotent L ∞ -algebras[END_REF][START_REF] Dolgushev | A version of the Goldman-Millson theorem for filtered L ∞ -algebras[END_REF] for modern accounts that explicitly deal with MC elements) to the inclusion of the truncation τ <0 CGC ∨,c 0 mn ⊂ CGC ∨,c 0 mn .

Definition 5.16. Let CGraphs 0 mn be the variant of CGraphs mn where we use c 0 instead of c to twist the Hopf cooperad CGra mn in the step of Definition 4.33.

Corollary 5.17. The Hopf cooperads CGraphs mn and CGraphs 0 mn are quasi-isomorphic.

Proof. This follows from the same general arguments of [ 

, c] + 1 2 [c, c] = [µ, c 0 ] + 1 2 [c 0 , c 0 ] = 0. The Lie algebra CGC ∨ mn is the twist of CGC ∨,∼
mn with respect to c. The gauge equivalence between c and c 0 is a Maurer Cartan element c t ∈ CGC ∨,∼ mn ⊗ S(t, dt) whose restriction at t = 1 (resp. t = 0) is c (resp. c 0 ). This element c t produces a differential on CGraphs mn ⊗ S(t, dt) such that restriction at t = 1 (resp. t = 0) gives CGraphs mn (resp. CGraphs 0 mn ). We thus have a zigzag:

CGraphs mn ev t=1 ←---CGraphs mn ⊗ S(t, dt) ev t=0
---→ CGraphs 0 mn .

(5.18)

The evaluation maps ev t=0 , ev t=1 : S(t, dt) → R are quasi-isomorphisms of CDGAs. This implies that the two maps above are quasi-isomorphisms.

Definition 5.19. Let cgraphs 0 mn be the quotient of CGraphs 0 mn defined similarly to how cgraphs mn is a quotient of CGraphs mn (see Definition 4.60).

Lemma 5.20. The quotient cgraphs 0 mn is a relative Hopf graphs n -cooperad.

Proof. See Proposition 4.61: c 0 satisfies the same vanishing lemmas as c.

Proposition 5.21. The quotient map CGraphs 0 mn → cgraphs 0 mn is a quasi-isomorphism.

Proof. This follows from the same arguments as in the proof of [START_REF] Willwacher | Kontsevich's graph complex and the Grothendieck-Teichmüller Lie algebra[END_REF]Proposition 3.8].

One can set up spectral sequences (counting bivalent vertices of the appropriate type) to see that univalent vertices and bivalent terrestrial vertices with dashed incident edges are killed up to homotopy. Similarly another spectral sequence shows that loops (called tadpoles in [START_REF] Willwacher | Kontsevich's graph complex and the Grothendieck-Teichmüller Lie algebra[END_REF]) are killed up to homotopy.

Connecting the graphs to the cohomology

The goal of this section is to describe a quasi-isomorphism of Hopf cooperads π : cgraphs 0 mn → cd ∨ mn , where cd ∨ mn = H * (CFM mn ) was obtained in Section 3.1. We will describe this map on generators. The CDGA cgraphs 0 mn (U, V ) is free as an algebra for m ≥ 2. Its generators are the "internally connected" graphs, i.e. the graphs which stay connected when all the external vertices are removed. For example, if Γ has no internal vertices, then it is internally connected iff it has exactly one edge (an empty graph is not connected). • In all other cases, π(Γ) = 0. This is extended to the whole algebra. For m = 1, a graph Γ ∈ cgraphs 0 mn (U, V ) is additionally decorated (in the dual basis) with an order on U I where I is the set of terrestrial internal vertices. The element π(Γ) ∈ cd ∨ 1n (U, V ) is defined as above. It is decorated with the order on U given by the restriction of the order on U I, multiplied by the number of ways the internal vertices can be reordered while still keeping the same graph. (This normalization is due to the canonical isomorphism between invariants and coinvariants.) Proposition 5.23. The map π defined above is a quasi-isomorphism of Hopf cooperads cgraphs 0 mn → cd ∨ mn . The proof of this proposition is split in a series of lemmas, which occupies the rest of this section (until the conclusion, Theorem 5.35).

Lemma 5.24. The map π is a well-defined algebra map and is equivariant with the symmetric group actions.

Proof. For m ≥ 2, we defined π on the generators of a free algebra (forgetting about the differential), so it is well-defined. It is moreover clearly equivariant. For m = 1, we need to check the compatibility with the order on the terrestrial vertices. One can directly compute that the coefficients match. Let us first illustrate with an example:

1 2 3 4 5 1 • 1 2 3 4 5 1 → 1 2 η 1 η 3 η 4 • η 2 η 5 ,
The product on the LHS is given by: The normalization factor in the formula for π is 1 2!•3! = 1 12 which cancels with the 6 terms to give the 1 2 in the RHS. More generally, to multiply Γ, Γ ∈ cgraphs 0 mn (U, V ), if the restriction of the orders on U differ then the result is zero. Otherwise let I, I be the respective sets of internal vertices and let k = #U . The linear orders on U I and U I split I and I in (k + 1) blocks consecutive vertices, of respective sizes i 0 , . . . , i k , and i 0 , . . . , i k . The normalization factor in π(Γ) (resp. π(Γ )) is then j (i j )! -1 (resp. j (i j )! -1 ). In Γ • Γ , for each 0 ≤ j ≤ k, the i j vertices of block j in I are shuffled with the i j vertices of block j in I , yielding in total (i j + i j )!(i j )! -1 (i j ) -1 shuffles. The normalization factor in π(Γ • Γ ) is j (i j + i j )! -1 which is equal to the product of the number of shuffles and the normalization factors of Γ and Γ .

Lemma 5.25. The map π commutes with the differentials, i.e. πd = 0.

Proof. Since π is an algebra map and the differential is a derivation, it is sufficient to check this on generators. Let Γ be an internally connected graph. If Γ has no internal vertices, then dΓ = 0 thus πdΓ = 0. If Γ has one internal vertex, then πdΓ = 0 follows from the Arnold relations and the fact that full edges incident to terrestrial vertices are mapped to zero.

Assume that Γ has at least two internal vertices. If a summand in dΓ is nonzero, then after contracting one edge, all remaining edges are between external vertices or between an external aerial vertex and a univalent terrestrial internal one. There can thus be at most one aerial internal vertex. Since contracting an edge cannot reduce the valence of the remaining vertices (contracting dead ends is forbidden), there can only be one internal vertex of valence greater than one, necessarily aerial. Using the internal connectedness of Γ, this special vertex must be connected to all the univalent terrestrial vertices by a full edge. In other words, the graph Γ must be of this type (plus disconnected external vertices): The Arnold relations in e ∨ n , the symmetry relation η v ω vv = η v ω vv , and η 2 v = 0 (if there is more than one terrestrial vertex) show that πdΓ = 0. The case m = 1 is identical except that everything is multiplied by the number of ways of reordering the internal vertices.

Lemma 5.27. The map π commutes with the cooperad structure maps.

Proof. It is sufficient to check this on generators, i.e. internally connected graphs, which is completely straightforward but tedious.

Proof that π is a quasi-isomorphism

The last step for Proposition 5.23 is proving that π is a quasi-isomorphism. We split this proof in several sub-lemmas.

• W : the last external vertex is at least bivalent, or univalent and connected by a full edge to an internal vertex. Let Q = cgraphs 0 mn (k + 1, 0) cn /U ∼ = (V ⊕ W, d). We filter V by the number of edges, and W by the number of edges minus 1. In the 0th page of the spectral sequence E 0 Q, the differential maps V isomorphically onto W , so Q is acyclic and U cgraphs 0 mn (k + 1, 0) cn . For k = 0, U = R = e ∨ m (1) as expected. For k > 0, U is isomorphic to k i=0 cgraphs 0 mn (k, 0) cn [1 -m] (by removing the vertex k + 1 and its incident edge). Hence β j (k + 1, 0) = k • β j-m+1 (k, 0) as expected too.

Let us now turn to the second step of the proof. We prove that we can, in some sense, "split" our graph complex in two: external aerial and external terrestrial. Lemma 5.32. Let k, l ≥ 1 and let I k,l ⊂ cgraphs 0 mn (k, l) be the module spanned by graphs where one of the connected components contains an external aerial vertex and an external terrestrial vertex. Then I is an acyclic dg-ideal.

Proof. The subspace I k,l is a dg-ideal: contracting edges does not affect connected components, and gluing along external vertices can merge connected components but never split them. Let us prove that it is acyclic. We only deal with connected graphs (the general case follows by the Künneth formula). The proof is similar to Lemma 5.30: we fix l ≥ 1 and work by induction on k ≥ 1.

For k = 1 we check acyclicity directly. We split I 1,l in two submodules (either the external vertex is univalent with a dashed edge, or not) and we filter like in Lemma 5.30 to get a trivial E 1 page. Let us now assume that the claim is true for a given k ≥ 1. Just like in the proof of Lemma 5.30, we can split I k+1,l in three summands, depending on whether the last external terrestrial vertex is: univalent, connected by a dashed edge to an external vertex; univalent, connected by a dashed edge to an internal vertex; all other cases. The first summand is isomorphic to k i=1 I k,l 0. The quotient by this summand can be filtered like in Lemma 5.30 and is thus also acyclic.

Lemma 5.33. The map π : cgraphs 0 mn (0, l) → cd ∨ mn (0, l) is a quasi-isomorphism.

Proof. This final lemma is also proved by induction. Once again π is clearly surjective on cohomology, so it suffices to prove that both complexes have the same Betti numbers.

Using the results of Section 3.1, the Poincaré polynomial of CFM mn (0

, l) Conf R n \R m (l) is P(Conf R n \R m (l)) = l-1 i=0 (1 + t n-m-1 + it n-1
). We can again work with the connected part of the graph complex cgraphs 0 mn (0, l) cn . Note that the case l = 0 is covered by Lemma 5.30. The base case that we need to prove is β 0 (0, 1) = β n-m-1 (0, 1) = 1, and β j (0, 1) = 0 for other j. The recurrence relation is β j (0, l + 1) = l • β j-n+1 (0, l) for all j and all l ≥ 1.

For l = 1, we split cgraphs 0 mn (0, 1) cn = cgraphs 0 mn (0, 1) according to the valence of the only external vertex:

• U : the external vertex is zero-valent (i.e. Γ = 1) or univalent, connected to a univalent internal terrestrial vertex (i.e. Γ = 1 ). • V : the external vertex is at least bivalent.

• V : the external vertex is univalent, connected to an aerial internal vertex.

• W : the external vertex is univalent, connected to a terrestrial internal vertex; this vertex is itself bivalent and its other incident edge is dashed. • W : the external vertex is univalent, connected to a terrestrial internal vertex; this vertex is itself either at least trivalent, or bivalent and both incident edges are full. Let Q = cgraphs 0 mn (0, 1)/U . We can set up a spectral sequence just like in Lemma 5.30 so that

E 0 Q = V d -→ ∼ = V ⊕ W d -→ ∼ = W .
Thus Q is acyclic and U cgraphs 0 mn (0, 1) is thus a quasi-isomorphism, as we wanted.

For the induction step, we split cgraphs 0 mn (0, l + 1) cn as above. We just replace U by U = l i=1 U i where U i is spanned by graphs where the external vertex (l + 1) is univalent, connected to the external vertex i. The others are similar but the valence conditions are on the external vertex (l+1) instead. The same argument shows that U ⊂ cgraphs 0 mn (0, l+ 1) cn is a quasi-isomorphism. We have an isomorphism U i ∼ = cgraphs 0 mn (0, l) [1 -m] given by removing the last external vertex and its incident edge. The Betti numbers thus satisfy the expected recurrence relation: β j (0, l + 1) = l • β j-n+1 (0, l).

Case m = 1

We deal separately with the case m = 1, because e 1 is the associative operad and not the Poisson operad. To summarize the differences, recall that: the graphs do not have dashed edges, and the terrestrial vertices are ordered (Definition 4.16); the notion of "disconnected" is replaced by "Lie-disconnected" (Definition 4.42); the differential [c 0 , -] merges coLie clusters (5.2).

Proposition 5.34. The map π : cgraphs 0 1n (k, l) → cd ∨ 1n (k, l) is a quasi-isomorphism.

Proof. As in the case m = 2, the map π is clearly surjective on cohomology, so we just need to check that cgraphs 0 1n (k, l) has the correct Betti numbers. The proofs of Lemmas 5.30, 5.32, and 5.33 can be adapted in a straightforward manner. We can follow the same proofs, replacing m with 1. The crucial difference will be in the splitting of the complex cgraphs 0 1n (k, l) cn or of I k,l . • In cgraphs 0 1n (k, 0) cn (for Lemma 5.30), we set U to be the submodule where the (k + 1)th external vertex is isolated but not adjacent to a terrestrial internal vertex (terrestrial vertices are ordered for m = 1), V the submodule where the (k + 1)th external vertex is isolated and adjacent to a terrestrial internal vertex, and W all other kinds of graphs.

• In I k,l (for Lemma 5.32), we use the same splitting as for cgraphs 0 1n (k, 0) cn . • In cgraphs 0 1n (0, l) (for Lemma 5.33), we keep the same U , V , and V as in the proof of Lemma 5.33. We change the submodules W and W : in W , we require the last external vertex to be connected to a univalent internal terrestrial vertex, while in W we put all other graphs. With this, we obtain the correct recurrence relations on the Betti numbers.

Conclusion

Theorem 5.35. The operad CFM mn is formal over R for n -2 ≥ m ≥ 1.

Proof. We have a zigzag, where cd ∨ mn is defined in Section 3.1, CGraphs mn in Definition 4.47, CGraphs 0 mn in Definition 5.16, CGraphs mn ⊗ S(t, dt) in Corollary 5.17, and cgraphs 0 mn in Definition 5.19, the map π is defined at the beginning of Section 5.2, and the map ω is defined in Proposition 4.61: We proved in Proposition 3.17 that cd ∨ mn ∼ = H * (CFM mn ) as Hopf cooperads. We moreover proved in Corollary 5.17 that the two maps involving the three variants of CGraphs mn were quasi-isomorphisms of Hopf cooperads. We also proved that the quotient CGraphs 0 mn → cgraphs 0 mn is a quasi-isomorphism in Proposition 5.21. In addition, we proved that π was a quasi-isomorphism of Hopf cooperads in Proposition 5.23 (for m ≥ 2) and Proposition 5.34 (for m = 1). Therefore it just remains to check that ω is a quasi-isomorphism of Hopf cooperads to conclude.

We already know that CGraphs mn and Ω * PA (CFM mn ) have the same cohomology cd ∨ mn . Thus we only need ω to be surjective on cohomology, which is clear (η v is obtained by graphs of the type seen in Remark 4.52).

A. Relative cooperadic twisting

Operadic twisting is a tool originally introduced in [51, Appendix I], studied in further detail in [START_REF] Dolgushev | Operadic twisting. With an application to Deligne's conjecture[END_REF], and generalized to certain types of colored operads in [START_REF] Willwacher | The Homotopy Braces Formality Morphism[END_REF]Appendix C]. In this appendix, we quickly recall operadic twisting for cooperads and right comodules, and we combine both to deal with relative cooperads.

A.1. Twisting cooperads

General references for twisting of plain operads are [51, Appendix I] and [START_REF] Dolgushev | Operadic twisting. With an application to Deligne's conjecture[END_REF]. The dual notion of cooperadic twisting is spelled out in [START_REF] Idrissi | The Lambrechts-Stanley Model of Configuration Spaces[END_REF]Section 1.5]. Let Lie n = Lie{n -1} be the operad governing Lie algebras with a bracket of homological degree n -1 (so Lie n ⊂ e n ). Let hoLie n = Ω(Lie ¡ n ) = Ω(Com ∨ {n}) be its Koszul resolution. Suppose that C is a cooperad with finite-dimensional components (so that C ∨ is an operad) equipped with a morphism µ : hoLie n → C ∨ . We consider the following convolution Lie algebra:

g C := hom Σ (Com ∨ {n}, C ∨ ) = i≥0 C ∨ (i) ⊗ R[-n] ⊗i Σ i [n], d, [-, -] .
The differential is induced from C. The Lie bracket of f, g ∈ g C is [f, g] = f g ∓ g f , where is the convolution product. Thanks to [START_REF] Loday | Algebraic operads[END_REF]Theorem 6.5.7], the morphism µ : hoLie n → C ∨ can equivalently be seen as a Maurer-Cartan element µ ∈ g C .

The twist of C with respect to µ is the dg-cooperad given in each arity by: Tw C(U ) := The entries labeled by U are called "external", whereas the entries that were labeled by {1, . . . , i} before taking coinvariants are called "internal". The cooperadic structure is inherited from C. Let µ 1 ∈ j≥0 C ∨ ({1, . . . , j, * }) Σ j = Tw C ∨ ( * ) (up to shifts and signs) be the element obtained from µ by summing over all possible ways of distinguishing one of the inputs. The differential of x ∈ Tw C is dx = d C x + x • µ -x • µ 1 -µ 1 • x, i.e. the sum of the internal differential of C with a threefold action of µ that we now describe term by term (see [START_REF] Willwacher | Kontsevich's graph complex and the Grothendieck-Teichmüller Lie algebra[END_REF] for details): (i) co-insertion of µ in an internal input of x in all possible ways; (ii) co-insertion of -µ 1 in an external input of x in all possible ways; (iii) co-insertion of x in the external input of -µ 1 . One checks that µ -µ 1 defines a Maurer-Cartan element in g C Tw C ∨ ( * ), so this differential squares to zero. The compatibility with the cooperad structure is immediate by coassociativity.

A.2. Twisting right comodules

We now recall twisting of right comodules (see [START_REF] Willwacher | The Homotopy Braces Formality Morphism[END_REF]Appendix C.1] for the dual case of right modules). 

A.3. Twisting relative cooperads

Let us finally deal with relative cooperads (see Section 1.1 for the definition). The definition is inspired by the case of "moperads" (i.e. relative operads which can only admit operations with zero or one terrestrial input) [START_REF] Willwacher | The Homotopy Braces Formality Morphism[END_REF]Appendix C.3].

Let -→ Lie mn be the relative Lie n -operad governing triples (g, h, f ) where g is a Lie malgebra, h is a Lie n -algebra, and f : h[m -n] → g is a morphism of shifted Lie algebras. We define below an operad ho -→ Lie mn over -→ Lie mn . We will not prove that -→ Lie mn is Koszul, although this seems doable using techniques similar to [START_REF] Hoefel | On the spectral sequence of the Swiss-cheese operad[END_REF]. 

Proof.

  Adapting the proofs of [32, Proposition 5.4.1] is straightforward. If p : E → B is an SA bundle of rank, then its fiberwise boundary p ∂ : E ∂ → B is an SA bundle of rank k -1, where E ∂ = x∈B ∂p -1 (x), see [24, Definition 8.1]. The fiberwise Stokes formula reads d(p * α) = p * (dα) ± p ∂ * α [24, Proposition 8.12], where p * : Ω * min (E) → Ω * -k
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 25 as follows, using the convention that u, u ∈ U and v, v ∈ V : ω (ẽ uu ) := p * uu (ϕ m ); ω (e vv ) := p * vv (ψ mn ); ω (e uu ) := 0; ω (e vu ) := p * vu (ψ ∂ mn ). Given a graph Γ ∈ CGra mn (U, V ) with #U + 2#V ≥ 2, we may define its coefficient c(Γ) by c(Γ) := CFMmn(U,V ) ω (Γ). (4.30)

Lemma 4 . 35 .

 435 For n -2 ≥ m ≥ 1, the morphism ω extends to a morphism of Hopf cooperads ω : Tw CGra mn → Ω * PA (CFM mn ) by setting, for Γ ∈ CGra mn (U I, V J) ⊂

Definition 4 . 36 .

 436 34): for Γ = Γ in -Γ • c 1 = -c(Γ )Γ/Γ + . . . , and for Γ containing only the external vertex in c 1 • Γ = c(Γ/Γ )Γ + . . . . Graph complex fCGC mn We now mimic Definition 4.10: For n -2 ≥ m ≥ 1, we define fCGC mn := Tw CGra mn (∅, ∅)[-m].

  Figure 4.2 for an example.

Figure 4 . 2 :

 42 Figure 4.2: Lie-decorated graph; the depicted product of Lie words [x 1 , x 2 ] ∧ x 3 ∧ x 4 is actually the element in the dual basis of Pois ∨ (4)

Definition 4 . 42 .Lemma 4 . 43 .Definition 4 . 44 .Lemma 4 . 45 .

 442443444445 Two vertices in a Lie-decorated graph are in the same Lie component if they are connected by full edges or if they are both terrestrial and in the same Lie word. A Lie-decorated graph is Lie-connected if all its vertices are in the same Lie component, and Lie-disconnected otherwise. The coefficient c vanishes on the image of a Lie-disconnected graph under the isomorphism ofLemma 4.41. Proof. This follows from Lemma 4.37. For n ≥ 3, the Lie-connected complementarily constrained graph complex CGC 1n as the quotient of fCGC 1n by the image of the Lie-disconnected graph under the isomorphism of Lemma 4.41. For n -2 ≥ m ≥ 1, the coefficient c : fCGC mn → R factors through the quotient defining CGC mn . Abusing notation, we denote by c the induced map CGC mn → R.

Remark 4 . 46 .Definition 4 . 47 .Proposition 4 . 49 .

 446447449 The dual CGC ∨ mn is a (pre-)Lie algebra and the Lie algebra GC ∨ n acts on it by derivations, in both cases using insertion of graphs (respectively at terrestrial and aerial vertices). The differential of CGC ∨ mn is given by [µ + c, -] where c represents the coefficients from Equation (4.30). The elements µ and c satisfy the Maurer-Cartan equation, i.e. [µ, µ] = 0 and [µ, c] + 1 2 [c, c] = 0.Reduction We now mod out internal components. For n -2 ≥ m ≥ 2, we define the graph cooperad CGraphs mn to be the relative Graphs n -cooperad given by quotient of Tw CGra mn by the Hopf cooperadic ideal of graphs with internal components. For n -2 ≥ m = 1, we define CGraphs 1n to be the quotient of Tw CGra 1n by the Hopf cooperadic ideal of Lie-disconnected graphs (Definition 4.42).Remark 4.48. Compare this with Willwacher's model SGraphs n for the Swiss-Cheese operad[START_REF] Willwacher | Models for the n-Swiss Cheese operads[END_REF]. In SGraphs n , there are no dashed edges, the full edges are oriented, and their source is always aerial. The morphism ω factors through the quotient and defines a morphism ω : CGraphs mn → Ω * PA (CFM mn ).

Lemma 4 . 50 .Lemma 4 . 51 (

 450451 The morphism ω vanishes on graphs with loops or double edges.Proof. This follows from simple dimension arguments, cf. [32, Section 9.3]. Cf. [32, Lemma 9.3.9]). The morphism ω vanishes on graphs containing univalent aerial internal vertices, or univalent terrestrial internal vertices connected to another terrestrial vertex.

d 2 Γ

 2 = Γ c(Γ )Γ/Γ , if contains e then c(Γ ) vanishes by Lemma 4.54, and otherwise Γ/Γ contains either a loop (if i ∈ Γ ) or a univalent aerial internal vertex (if i ∈ Γ ). Similarly, all terms in d 3 Γ = Γ c(Γ/Γ )Γ either vanish, contain a loop, or contain a univalent aerial internal vertex. The only problem in d 3 Γ is for Γ = Γ \ e: then c(Γ/Γ ) = 1 (see Equation (5.2)) and Γ does not have a univalent vertex anymore. But this term cancels with the contraction of e in d 1 Γ, and all the other summands of d 1 Γ contain a univalent aerial internal vertex. • If Γ contains a univalent terrestrial vertex connected to another terrestrial vertex, then Lemma 4.54 and an argument similar to the previous one show that all summands of dΓ either vanish, contain a loop, or contain a univalent terrestrial vertex connected to another terrestrial vertex. • Suppose that Γ contains a bivalent internal terrestrial vertices connected to two terrestrial vertices by dashed edges. Let i be the internal terrestrial vertex, and e, e its incident edges. All terms in d 1 Γ contain a similar subgraph. In d 2 Γ = Γ c(Γ )Γ/Γ : -If i ∈ Γ , then Γ/Γ still contains a bivalent internal terrestrial vertices connected to two terrestrial vertices. -If i is in Γ but e, e are not, then c(Γ ) = 0 by Lemma 4.54. -The term with Γ = e is cancelled with the terms with Γ = e . -If e ∈ Γ but e ∈ Γ and Γ = e, then c(Γ ) = 0 by Lemma 4.54. The case e ∈ Γ and e ∈ Γ is symmetric. -Finally if both e, e ∈ Γ , then c(Γ ) = 0 by Lemma 4.56. The fact that d 3 Γ ∈ I(U, V ) follows by similar arguments. Definition 4.60. The reduced graph cooperad cgraphs mn is the relative graphs n -cooperad given in each arity by the quotient of CGraphs mn (U, V ) by I(U, V ).Proposition 4.61. The CDGA cgraphs mn (U, V ) is well-defined, and ω factors through the quotient to define cgraphs mn

Definition 5 . 22 .

 522 If Γ is an internally connected graph, then π(Γ) ∈ cd ∨ mn (U, V ) is given by:• If Γ = e vv has no internal vertices and one full edge between v = v ∈ V , then π(Γ) = ω vv . • If Γ = ẽuu (for m ≥ 2) has no internal vertices and one dashed edge between u = u ∈ U , then π(Γ) = ωuu . • If Γ is the graph of (4.53), then π(Γ) = η u .

  0 mn ← CGraphs 0 mn ← ← CGraphs mn ⊗ S(t, dt) → CGraphs mn ω -→ Ω * PA (CFM mn ),

i≥0C

  (U {1, . . . , i}) ⊗ R[n] ⊗i Σ i .

.

  Fix µ : hoLie n → C ∨ as in Section A.1. Suppose that M is a right C-comodule. Then as a graded module,Tw M(U ) := i≥0 M(U {1, . . . , i}) ⊗ R[n] ⊗i Σ i This inherits a right (Tw C)-comodule structure from the C-comodule structure of M. The differential of x ∈ Tw M(U ) is given by dx = d M x + x • µ -x • µ 1 (where one uses the comodule structure instead of the cooperad structure). Note that since M is only a right module, there can be no term of the type µ 1 • x.

  Let --→Com mn be the operad governing triples (A, B, α) where A is a Com{n}-algebra, B is a Com{m}-algebra, and α :A → B[n -m] is a morphism of shifted commutative algebras. In particular, --→ Com mn (U, V ) ∼ = R[-m] ⊗U ⊗R[-n] ⊗V ⊗R[m] is one-dimensional for all pairs (U, V ) = (∅, ∅) (and --→ Com mn (∅, ∅) = 0). By definition, --→Com mn is a relative Com{n}operad. Thus the cobar construction ho -→ Lie mn := Ω( --→ Com ∨ mn ) is a relative hoLie n -operad (since hoLie n = Ω(Com ∨ n )).

  >0 by the action of translations and positive rescalings. This space embeds in (S n-1) Conf U (2) × [0, +∞] ConfRemark 1.2. There is an operad Disk fr n related to locally constant framed factorization algebras on Dn and which has the same homotopy type as D n , see [35, Definition 5.4.2.10] or [4, Notation 2.8]. This operad Disk fr n is associated, in some sense, to the trivial stratification of R n . The present article is devoted to the operad Disk fr m⊂n associated to the stratification {R m ⊂ R n } [4, Section 4.3].

U

(3) 

using the maps θ ij and δ ijk from (2.2), (2.3). The Fulton-MacPherson compactification FM n (r) is the closure of the image of this embedding. The collection FM n forms an operad [32, Section 5.2] with the same homotopy type as D n , see

[START_REF] Markl | A compactification of the real configuration space as an operadic completion[END_REF] 

and

[START_REF] Salvatore | Configuration spaces with summable labels[END_REF] Proposition 4.3]

.

  then the action is free, smooth, and proper, thus Conf mn

  Using composition of embeddings, CD mn is a relative D n -operad, called the complementarily constrained disks operad.Remark 2.15. The usual Swiss-Cheese operad SC n is the suboperad of CD (n-1)n formed by the components where all the aerial disks are in the upper half-disk. There exists a zigzag of weak homotopy equivalences of operads (CD mn , D n ) (CFM mn , FM n ).

	Proposition 2.16. Proof. We can adapt the proof of Salvatore [42, Proposition 3.9] directly. Briefly, we use the Boardman-Vogt resolution W CD mn ∼

  as a tensor product. Then we study the maps induced on cohomology by the operad structure of CD mn .

	Definition 3.1. The Poincaré polynomial of X is P(X) := i≥0 (rk H i (X)) • t i . For
	P, Q ∈ N[[t]], we say that P Q if the coefficients of Q -P are nonnegative.

Proposition 3.2. For n -m ≥ 2, the Poincaré polynomial of Conf W (l) satisfies:

  algebra is the data of an e m -algebra A, an e n -algebra B, and a central morphism f + εδ : B → A[ε]. Compare this result with the ∞-categorical counterparts from [4, Section 4.3]. An algebra over the ∞-categorical version Disk fr m⊂n consist of a Disk fr m -algebra A, a Disk fr nalgebra B, and a morphism of Disk fr m+1 -algebras α :

  [START_REF] Axelrod | Chern-Simons perturbation theory. II[END_REF]. The general motivation of twisting is to encode Maurer-Cartan equations. Here, since we are going to twist with respect to the coefficients c, which come from the stratification of CFM mn , we get a differential which matches the way the boundary facets of CFM mn interact.Recall the relative hoLie n -operad ho -→ Lie mn from Appendix A.3. Recall also the coefficient µ : hoLie n → Gra ∨

n from Equation (4.6). Proposition 4.32. Together with µ, the collection of coefficients c defines a morphism of colored operads (hoLie n , ho -→ Lie mn

  's proof that µ defines a morphism hoLie n →

	Gra ∨ n . Let C SA * monoidal [24, Proposition 3.8] so C SA be the functor of semi-algebraic chains [24, Section 3]. It is lax-

* (CFM mn ) is a dg-operad. We can dualize Lemma 4.27 to get a morphism I : C SA * (CFM mn ) → Ω * PA (CFM mn ) ∨ → CGra ∨ mn , σ → ω (-), σ . The claimed morphism c : ho -→ Lie mn → CGra ∨ mn is the composition of I with:

  7, Section 5.4]. Let us briefly describe them. Let S(t, dt) be the algebra of polynomial forms on the interval [0, 1], with deg t = 0 and deg dt = 1. Let CGC ∨,∼ mn be the Lie algebra with differential [µ, -], i.e. we are only allowed to split aerial vertices. Both c and c 0 are Maurer-Cartan elements, i.e. they satisfy [µ

In previous versions of this article, this operad was denoted VSCmn and called the "variant Swiss-Cheese operad".

(4.26) Here, p ij (x) = (p i (x), p j (x)) (including if i = j). The following lemma is immediate: Lemma 4.27. This defines a zigzag cd ∨ mn ← CGra mn → Ω * PA (CFM mn ).Given a graph Γ ∈ CGra mn (U, V ), we defineV Γ = V t Γ ∪ V a Γ = U ∪ Vto be its set of vertices, partitioned into terrestrial and aerial ones. Similarly,E Γ = E f Γ ∪ E dΓ is its set of edges, split into full edges and dashed edges. The graph Γ induces:Φ Γ : CFM mn (U, V ) → (S m-1 ) E d Γ × (S n-1 ) E f Γ , (4.28)obtained using the maps θ ij from Section 2. We also definevol Γ ∈ Ω deg Γ PA ((S m-1 ) E d Γ × (S n-1 ) E f Γ ) (4.29)to be the product of the volume forms. Then by definition, ω (Γ) = Φ * Γ (vol Γ ).
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Proposition 5.4 ([19, Proposition 2.2.3]). The cohomology of GC ∨

n splits as H * (GC ∨,≥3 n )⊕ l≡2n+1 (mod 4) kγ l , where deg γ l = l -n and GC ∨,≥3 n is the Lie subalgebra of graphs whose vertices are all at least trivalent. The class γ l is represented by the loop with l vertices. Moreover H >-n (GC ∨,≥3 n ) = 0 for n ≥ 3. Definition 5.5. For k ≥ 0, let Graphs n (k) be the quotient of Graphs n (k) by the ideal spanned by graphs which are disconnected or whose external vertices are not univalent. The hairy graph complex is (with differential from Graphs n ):

(5.6)

The full hairy graph complex is the dual of the shifted CDGA S(HGC mn [m])[-m]. The complex HGC ∨ mn is spanned by (infinite sums of) graphs whose external vertices are exactly univalent and indistinguishable. The differential is given by vertex splitting. Each external vertex, together with its only incident edge, can be seen as a "hair", which justifies the terminology. This hairy graph complex is of great topological interest, as it can e.g. be used to compute spaces of higher-codimensional long knots [START_REF] Arone | Graph-complexes computing the rational homotopy of high dimensional analogues of spaces of long knots[END_REF] or the mapping space Map(D m , D n ) [START_REF] Benoit Fresse | The rational homotopy of mapping spaces of E n operads[END_REF]. Proof. Note that our definition of the hairy graph complex (denoted by HGC mn without the dual in [START_REF] Fresse | The intrinsic formality of E n -operads[END_REF]) is slightly different, as we allow bivalent and univalent internal vertices. However, we can reuse their arguments to show that the inclusion of their complex into ours is a quasi-isomorphism (see also [START_REF] Willwacher | Kontsevich's graph complex and the Grothendieck-Teichmüller Lie algebra[END_REF]Proposition 3.4] for a similar argument). Briefly, we can filter both complexes by the number of internal vertices of valence ≥ 3.

Both spectral sequences collapse starting on page E 2 , and the inclusion induces an isomorphism on this page. We can then use [START_REF] Fresse | The intrinsic formality of E n -operads[END_REF]Proposition 2.2.7] to show the vanishing of the homology in degrees > -1 (note that in the reference, homologically graded complexes are used, so we just use the natural correspondence that reverse degrees).

For m ≥ 2, there is a natural preLie product on HGC ∨ mn , induced by the operad structure of Graphs ∨ n . Roughly speaking, Γ • Γ is obtained by inserting Γ in an external vertex of Γ and reconnecting the incident edge to a (non-hair) vertex of Γ , in all possible ways. Moreover, there is a natural action of the Lie algebra GC ∨ n (see Definition 4.10) on HGC ∨ mn . Given Γ ∈ HGC ∨ mn and γ ∈ GC ∨ n , the action Γ • γ is given by inserting γ at a vertex of Γ in all possible ways.

When m = 1, this simple Lie algebra structure is not right. There is an L ∞ -structure on HGC ∨ 1n , called the Shoikhet structure [START_REF] Willwacher | Deformation quantization and the Gerstenhaber structure on the homology of knot spaces[END_REF]. It is defined by a certain Maurer-Cartan element m trans [START_REF] Shoikhet | An L ∞ algebra structure on polyvector fields[END_REF] (in an oriented version of the graph complex GC ∨ n ). The hairy graph complex with this L ∞ -structure is denoted by HGC ∨ 1n and encodes the deformation complex of the map e 1 = Ass → e n rather than Pois → e n (we refer to [START_REF] Benoit Fresse | The rational homotopy of mapping spaces of E n operads[END_REF]Theorem 7.16] where this connection is spelled out in detail). See [START_REF] Willwacher | Deformation quantization and the Gerstenhaber structure on the homology of knot spaces[END_REF]Section 7] for examples of this L ∞ structure.

Case m ≥ 2

Let us give a rough outline of our strategy. It is clear that π is surjective on cohomology, so we just need to check that cgraphs 0 mn (k, l) has the same Betti numbers as CFM mn (k, l). We first prove the case l = 0, using an inductive argument inspired by [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]Theorem 8.1]. Then, we reduce to the case of "split" graphs, where external aerial vertices and external terrestrial vertices are not in the same connected components. This mirrors the fact that as a space,

. Finally, we prove the case k = 0, again using an inductive argument. We conclude using the Künneth formula.

We make an observation that will be useful throughout the proof. A graph Γ ∈ cgraphs 0 mn (k, l) determines a partition of {1, . . . , k} {1, . . . , l}, by looking at connected components of Γ. We can define the subcomplex of connected graphs:

(5.28)

Then the complex cgraphs 0 mn (k, l) splits as a direct sum, over all partitions of {1, . . . , k} {1, . . . , l}, of tensor products of complexes cgraphs 0 mn (-, -) cn , one for each set in the partition (cf. [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]Equation (8.4)]). We define:

(5.29)

Note that we will focus on the two cases k = 0 and l = 0, as these will be the relevant ones for the application of the Künneth formula.

Lemma 5.30. The map π :

If cgraphs 0 mn (k, 0) had no aerial (internal) vertices and no full edges, then it would be equal to Graphs m (k), which is quasi-isomorphic to e ∨ m (k) by [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]Theorem 8.1]. The next proof is the formalization of the intuition that a full edge is killed by:

and that internal vertices, whether aerial or terrestrial, do not produce any homology class and are just here to kill the Arnold relations.

Proof of Lemma 5.30. Let us work by induction. The case k = 0 is clear: each component must contain an external vertex, so all graphs are empty and π is the identity. Assume that cgraphs 0 mn (k, 0) → e ∨ m (k) is a quasi-isomorphism for some k ≥ 0. It is sufficient to prove that cgraphs 0 mn (k + 1, 0) and e ∨ m (k + 1) have the same Betti numbers since π is clearly surjective on cohomology. Using the splitting in terms of connected components and the Betti numbers of Conf R m , it suffices to prove that 

The relative (Tw C)-cooperad structure is inherited from D. Let c 1 be the element obtained from c by summing over all possible ways of distinguishing one of the terrestrial inputs of c (similarly to how µ 1 is defined from µ). Then the differential of x ∈ Tw D(U, V ) is given by d 

B. Compactifications and projections

In this appendix, we sketch a proof of Proposition 2.9: CFM mn (U, V ) is a compact SA manifold and a smooth manifold with corners, and the canonical projection maps are SA bundles. Our proofs are heavily inspired by [32, Section 5.9].

u 1 u 2 Let (U, V ) be a pair of finite sets. A relative (rooted) tree T with leaves (U, V ) is a rooted tree with dashed and full edges. We require that the leaves with incident full (resp. dashed) edge are in bijection with U (resp. V ), that if a vertex has only one incoming edge then this edge is full, and that if an edge is full then all the edges above it are full. An example is on the side.

For a relative tree T , we let V T be the set of all its vertices, V 0 T = V T \ root, and

The set V T is partially ordered by considering that a vertex is smaller than any vertex above it. For i ∈ V T , we let in(i) = in t (i) ∪ in a (i) = {incoming dashed edges} ∪ {incoming full edges} and par(i) ∈ V T be the immediate predecessor of i. Finally, we let:

The spaces Conf T mn will be used to give a decomposition of CFM mn (U, V ) as in [32, Section 5.9

T , we let ξ(i) := ξpar(i) (i). We then define, for r > 0 and i ∈ V T :

x(ξ, r, i) :=

Then (x(ξ, r, i)) i∈U V is a configuration for r small enough. Let use define h T : Conf T mn → CFM mn (U, V ) by h T (ξ) = lim r→0 (x(ξ, r, i)) i∈U V . The map h T is a homeomorphism onto its image, {im(h T )} T covers CFM mn (U, V ), and the interior of CFM mn (U, V ) is the stratum corresponding to a corolla. Now let x = h T (ξ) ∈ CFM mn (U, V ). We want to build an SA chart around x. Let

Note that r 1 ≤ 1 2 , because ξi has radius 1. Define a neighborhood of ξ by

} (thanks to the distance condition, distinct points stay distinct and aerial points stay aerial). For τ ∈ [0, r 1 ] V * T with τ root = 0 and 0 ≤ r ≤ r 1 , we let y(ζ, τ, r, root) := 0 and

We can then define Φ :

We also let V be the image of Φ. The proof that Φ is an SA chart onto a compact neighborhood of x is identical to [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]Lemma 5.9.3]. This proves the first part of Proposition 2.9.

We would now like to prove that p U,V : CFM mn (U I, V J) → CFM mn (U, V ) is an SA bundle. Since the composite of two SA bundles is an SA bundle [START_REF] Hardt | Real homotopy theory of semi-algebraic sets[END_REF]Proposition 8.5], it is sufficient to check that the following are SA bundles:

We will describe the fibers explicitly as complements of open balls. The fiber of p will be almost identical to the one in [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]Section 5.9.4]. However the fiber of q is slightly different, because the new aerial point cannot touch the ground.

Let x = h T (ξ), r 1 > 0, and W as before. For ζ ∈ W and i ∈ V T , define x 1 (ζ, i) := x(ζ, r 1 , i) and ε(i) := 4r [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]Lemma 5.9.5]. It is such that φ c,ε r is radial, the identity outside B(c, ε), and shrinks B(c, ε/3) by a factor r. Moreover for a configuration x ∈ Conf B(c,ε/3) (k), φ c,ε r (x) is a configuration in Conf n (k) that does not depend on r, and φ behaves well with respect to other points z ∈ B(c, ε) (see the reference for details). We note in addition that, thanks to the properties of φ

max(r,τ (i))/r 1 . Moreover, let φ r be the composition (in any order thanks to the disjointness of the balls) of the φ i r for i ∈ U V . (Despite the notation, φ r depends on x, ζ and τ .) We then check, like in [32, Lemma 5.9.6], that φ r (x 1 (ζ, i)) = x(ζ, τ, r, i) for r > 0 and i ∈ U V .

We can now check the local trivialities of p and q. Let us first deal with p : CFM mn (U * , V ) → CFM mn (U, V ). We define T \root × G → CFM mn (U * , V ) with a formula similar to the one above. This map covers Φ, and showing that Φ(ζ, τ, -) maps G ζ SA-homeomorphically to q -1 (Φ(ζ, τ )) is a straightforward adaption of the arguments in [START_REF] Lambrechts | Formality of the little N -disks operad[END_REF]Section 5.9.4]. This completes the proof of the second part of Proposition 2.9.