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Abstract  

Introduction 

In many studies, covariates are not always fully observed because of missing data 

process. Usually, subjects with missing data are excluded from the analysis but the 

number of covariates can be greater than the size of the sample when the number of 

removed subjects is high. Subjective selection or imputation procedures are used but 

this leads to biased or powerless models. 

The aim of our study was to develop a method based on the selection of the nearest 

covariate to the centroid of a homogeneous cluster of covariates. We applied this 

method to a forensic medicine data set to estimate the age of aborted fetuses. 

Analysis 

Methods 

We measured 46 biometric covariates on 50 aborted fetuses. But the covariates were 

complete for only 18 fetuses. 

First, to obtain homogeneous clusters of covariates we used a hierarchical cluster 

analysis. 

Second, for each obtained cluster we selected the nearest covariate to the centroid of 

the cluster, maximizing the sum of correlations 
p

k

jk
j

g rC max  (the centroid 

criterion). 

Third, with the covariate selected this way, the sample size was sufficient to compute 

a classical linear regression model. 
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We have shown the almost sure convergence of the centroid criterion and simulations 

were performed to build its empirical distribution. 

 

We compared our method to a subjective deletion method, two simple imputation 

methods and to the multiple imputation method. 

 

Results 

The hierarchical cluster analysis built 2 clusters of covariates and 6 remaining 

covariates. After the selection of the nearest covariate to the centroid of each cluster, 

we computed a stepwise linear regression model. The model was adequate 

(R2=90.02%) and the cross-validation showed low prediction errors (2.23 10-3). 

The empirical distribution of the criterion provided empirical mean (31.91) and 

median (32.07) close to the theoretical value (32.03). 

The comparisons showed that deletion and simple imputation methods provided 

models of inferior quality than the multiple imputation method and the centroid 

method. 

Conclusion 

When the number of continuous covariates is greater than the sample size because of 

missing process, the usual procedures are biased. Our selection procedure based on 

the centroid criterion is a valid alternative to compose a set of predictors. 
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Introduction 

Predictive models are widely used in life sciences. For clinical practice, usual 

statistical models like regression models are often build using observed covariates to 

estimate the value of a dependant variable. Particularly in anthropology and forensic 

sciences, predictive models are mostly used to predict age and gender of subjects from 

different biometrics covariates. However, all covariates are not always fully observed 

since data measurements can be difficult (for example in case of superposition in 

radiographs) and because forensic specialists frequently have to deal with incomplete 

human remains. Usually, subjects with missing data are excluded from the analysis 

(Complete-Case Analysis). But first, if the missing data depend on a non-random 

process related to the dependant variable, excluding this selective group leads to 

biased models [1]. Second, this practice reduces the statistical power of the analysis. 

Third, in some situations the number of removed subjects is unacceptably high: even 

if the missing rates per covariate are low, few subjects may have complete data for all 

covariates leading to analyze a number of covariates greater than the size of the 

sample with complete data. Then, statistical analysis and result interpretation are 

tricky: usual statistical methods like stepwise regression methods are not able to select 

the predictive covariates. To compose a set of predictors in this context, covariates are 

often selected via ad hoc and subjective means mostly based on the number of 

available data for each covariate leading to biased models. 

To avoid this problem imputation methods consist on substituting the missing data 

with plausible values. The most popular simple imputation practice is the 

unconditional mean substitutions where missing data are replaced by the mean 

)X(E~ j  estimated from the observed values of each covariate Xj [2, 3]. This method 
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preserves the observed sample means but under-estimates variances and covariances. 

Another simple imputation method substitutes each missing data by conditional 

means estimated from regression models (e.g. linear regression) where the covariate 

Xj is estimated using the dependant variable Y ( )Y(f~)Y/X(E~ j  ) or other 

covariates ( )X,X,Y(f~)X,X,Y/X(E~ lklkj  ). But this practice biases again 

the models over-estimating the correlations. Another method called multiple 

imputations has been used in several applications [4, 5, 1, 6, 7, 8]. This technique 

generates imputations using Expectation-Maximization (EM) algorithm or Data 

Augmentation (DA) algorithm [9]. The results are combined taking into account the 

imputation uncertainty. However, missing data are generated from models based on 

the observed data and therefore multiple imputation increases colinearity [3]. 

 

The aim of this study was to develop, in this context, a method to select covariates 

using neither imputations nor subjective procedures and reducing amounts of 

information to be discarded. This method is based on the selection of the nearest 

covariate to the centroid of a homogeneous cluster of covariates. This selected 

covariate minimizes the distance to the other covariates and therefore a large amount 

of the cluster information is preserved. We applied this method to a forensic medicine 

data set in order to estimate the age of aborted fetuses. 
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Analysis 

1. Material and methods 

In case of abortions caused by traumatic situations, the fetal age has to be accurately 

determined. Indeed, in the french law the judgment and the prejudice appreciation 

differ in step with the fetal age. Fetal age can be determined using thigh-bone lengths 

[10] or foot lengths [11] as well as cranium bones measures. For the latter procedure 

of determination, 46 biometric covariates were measured (cranium bone lengths or 

angular measures [12, 13]) on 50 aborted fetuses. But, because of the traumatic 

situations, it was not possible to measure all the covariates on the whole fetus sample. 

The measures were complete for only 18 fetuses. 

First, to obtain homogeneous clusters of covariates we used a hierarchical cluster 

analysis using Pearson correlations as similarity measures. 

Second, for each obtained cluster of covariates we selected the nearest covariate to the 

centroid of the cluster. We have determined that the nearest covariate to the centroid 

is the covariate which maximizes the sum of correlations. Indeed [appendix 1], the 

squared distance between a covariate and the centroid is given by the Torgerson 

formula [14, 15]: 

 
   

2

22
2 .,.

2

1,.
,

pp

j
j


  , 

Where    
k

kjj ,,. 22   and    
j k

kj,.,. 22  and p is the number of 

covariates. 

If    jkkj   12,2  is the squared distance between two covariates, where jk is the 

correlation coefficient between two covariates,  
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Then   
k

jk
jj

maxjmin  ,2  

Furthermore, we have shown that this criterion 
p

k

jk
j

g rC max  converges almost 

surely [appendix 2]. 

 

Third, with the covariate selected this way, the sample size was sufficient to compute 

a stepwise linear regression model. The results were analyzed by cross-validation 

procedure and goodness-of-fit was estimated by the rate of explained variability R². 

 

In the presented statistical context (finite sample size and jk0), the distribution of 

the empirical correlation coefficient, jkr , is not simply usable [16, 17]. Then, it is not 

possible to formalize the distribution of the maximum of the empirical correlation 

sum ( 
p

k

jk
j

g rC max ). Therefore we studied the empirical distribution of Cg by 

simulations. Using the variance-covariance matrix of a cluster of p covariates issued 

from our sample, we simulated the same number p of covariates. Those covariates 

were extremely correlated and were normally distributed. To determine the number of 

simulations, we used, for each centile, the relative errors between a centile  nic ;  

issued from the empirical distribution simulated with n simulations, and the same 

centile  100; nic  issued from the empirical distribution simulated with n-100 

simulations: 

   
 100;

100;;






nic

nicnic
re  

The simulation was stopped when %2.0re  for each centile, and the empirical 

distribution was considered as stable. 
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We compared the resulting model with 4 other methods: 

i. The deletion procedure deleting covariates until the sample size is greater than the 

number of covariates; 

ii. The simple unconditional mean imputation method, imputing the estimated mean 

of each covariate to missing data (for each covariate Xj: )X(E~ j ); 

iii. The simple conditional mean imputation method, imputing to missing data the 

predicted value resulting from a simple linear regression on the variable Age (for each 

covariate Xj: Age~~)Age/X(E~ j  ); 

iv. The multiple imputation method: to generate imputations we used the DA 

algorithm (broadly described by 9). For this purpose, Schaffer's Norm® freeware was 

employed. Missing values were replaced by 20 simulated values in order to assure the 

efficiency of the procedure [2]. The 20 sets of imputations reflected the uncertainty 

about the true values of missing data. Each of the 20 completed data sets was 

analyzed using standard linear regression method. The results were combined into a 

single inference according to the procedure described for example in [9] [2] or [4]. 

 

The datasets, obtained by these four methods, were analyzed by stepwise linear 

regression. The goodness-of-fits of the resulting models were compared using the 

rates of explained variability and the accuracies were compared by the prediction 

errors provided by cross-validations. 
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2. Results  

2.1. Centroid method of selection 

The hierarchical cluster analysis (fig. 1), using 46 covariates, built 2 clusters with 

respectively 36 and 4 clustered covariates. The 6 remaining covariates (AFW: 

Weisbach angle, APN: nasal angle, ATO: foramen magnum angle, ASP: nasion-

sphenion-basion angle, NKB: nasion-klition-basion angle, ABO: angle formed by the 

straight line nasion-opisthion and the Francfort section) appeared to be separate from 

the other covariates. In the first cluster (36 covariates) the Cg criterion allowed us to 

select the covariate called LGB (glabella-basion length). That is, this covariate 

maximized the correlation sum and therefore was the nearest covariate to the centroid 

of the first cluster. The covariate LGB (fig. 2) represents the length between the 

frontal bone and the foramen magnum. This length is a usual and standardized 

measure [18] and, for fetuses, LGB can be easily measured by scanner. In the same 

way, the Cg criterion allowed us to select the covariate called APA (alveolar profile 

angle [13, 18]) in the second cluster composed of 4 covariates.  

On the whole we obtained 8 covariates with a sample size of 35 fetuses (free of 

missing data) to compute a stepwise linear regression model. We obtained the 

following model (fig. 3): 

LGB..age  6960844  

(age in weeks of amenorrhea, LGB in millimeter). 

The model was adequate (R2=90.02%) and the cross-validation showed very low 

prediction errors (mean: 2.23 10-3 CI95%[-0.58; 0.58]) (table 1). 

 

 



 

 10 

 
Figure 1: hierarchical cluster analysis using the correlation coefficient of Pearson as 

similarity measure. We obtained 2 homogeneous clusters of covariates and 6 

remaining covariates. 

 

 
Figure 2: scanner of a male fetus of 37 weeks of amenorrhea: sagittal section. 

LGB: glabella basion length 
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APA: alveolar profile angle 

gl: glabella: most anterior midline point of the frontal bone, usually above the 

frontonasal suture. 

ns: nasospinal: intersection between the midline and the tangent to the margin 

of the inferior nasal aperture, at the lowest points. 

pr: prosthion: midline point of the most anterior point of the maxillae alveolar 

process. 

ba: basion: midline point of the anterior margin of the foramen magnum. 

 

 

 

 
Figure 3: scatter plot of the age (in weeks of amenorrhea) and the LGB (in 

millimeter). 

The regression model is shown with its 95% confidence interval. 
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2.2. Simulations 

Using the variance-covariance matrix of the first homogeneous cluster of covariates, 

we simulated 36 correlated and normally distributed covariates. 

With 1000 simulations (fig. 4) the empirical distribution of Cg was stable that is the 

relative errors of each centile were lower than 0.02. The empirical mean (31.91 

CI95% [31.86; 31.96]) and the empirical median (32.07) were close to the theoretical 

value (32.03) in spite of the small size of the simulated samples (n=18 subjects). The 

empirical variance (0.56) and the empirical range (minimum=26.75; 

maximum=33.22) were also small. 

 

 
Fig. 4: empirical distribution of 

k

jk
j

g rmaxC ,  

1000 simulations of 36 correlated and normal distributed covariates. 
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2.3. Comparisons 

The four other methods provided four different groups of selected covariates. These 

groups were analyzed using stepwise linear regression procedure.  

 

i. The first method provided covariate deletions based on the sample size: covariates 

composed of the larger number of missing data were deleted until the size of the 

sample (with complete data) was greater than the number of covariates. We obtained 

33 fully observed covariates for 34 subjects. Stepwise linear regression provided a 

linear model composed of 2 covariates (HMTG: mastoid height and LMA: maxillo-

alveolar length) (table 1). The rate of explained variability R² was important (96.81%) 

but cross validation provided non-negligible prediction errors (mean:-0.116 CI95%[-

0.564;0.332]). 

 

ii. The analysis of the sample completed with simple imputations of unconditional 

means provided a linear model composed of 6 covariates (HNZ: nasal height, HMTG, 

JUB: bijugal breadth, BEK: biorbital breadth, LMA, LNK: nasion-klition length). The 

R²-value was important 96.97% and cross validation provided low prediction errors 

(mean: 0.049 CI95%[-0.32;0.41]) (table 1). 

 

iii. With the simple imputation method imputing conditional means (estimated from 

simple linear regression models) to missing data, stepwise linear regression procedure 

provided a final predictive model composed of 4 covariates (JUB, HMTG, LMA, 

LBH: basion-hormion length). The goodness-of-fit criterion R² was high (97.59%) 

and cross validation provided low prediction errors (mean: 0.043 CI95%[-0.29;0.37]) 

(table 1). 
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iv. Finally, the multiple imputation method provided a model composed of 2 

covariates (HMTG, LMA). The R²-value (95.98%) was slightly lower than the R²-

values of the latter models but the cross validation provided very low prediction errors 

(mean: 0.0029 CI95% [-0.38;0.39]). 

Table 1: Results of the four modeling procedures. 

 

number 

of co-

variates 

(sample 

size) 

Final model 

R² % 

Cross-

validation: 

mean of 

the 

prediction 

errors 

(SD) 

Co-

variates 

~

 CI95% p 

CD 33 (34) 

Cst 10.9 [8.25;13.55] <0.001 

96.81 
-0.116 

(1.332) 
HMTG 1.36 [0.94;1.77] <0.001 

LMA 0.75 [0.56;0.94] <0.001 

SI 

UC-

mean 

46 (49) 

Cst 9.53 [6.17;12.88] <0.001 

96.97 
0.049 

(1.3) 

HNZ 0.58 [0.24;0.91] 0.001 

HMTG 0.87 [0.48;1.26] <0.001 

JUB -0.48 [-0.62;-0.33] <0.001 

BEK 0.52 [0.35;0.69] <0.001 

LMA 0.84 [0.59;1.1] <0.001 

LNK -0.25 [-0.4;-0.01] 0.04 

SI 

C-

mean 

46 (49) 

Cst 7.42 [4.32;10.53] <0.001 

97.59 
0.043 

(1.18) 

JUB 0.31 [0,17;0.46] <0.001 

HMTG 0.78 [0.43;1.13] <0.001 

LMA 0.47 [0.22 0.72] <0.001 

LBH -0.23 [-0.46;-0.01] 0.040 

MI 46 (49) 

Cst 9.18 [6.33;12.04] <0.001 

95.98 

0.0029 

(1.38) 

 

HMTG 1.03 [0.61;1.46] <0.001 

LMA 0.88 [0.67;1.08] <0.001 

CCSR 8 (35) 
Cst -4.84 [-8.16;-1.52] 0.005 

90.02 
0.0023 

(2.07) LGB 0.7 [0.63;0.76] <0.001 

CD: covariate deletion based on the sample size 

SI UC-mean: simple unconditional mean imputations to missing data 

SI C-mean: simple conditional mean imputations (conditioned by Age), estimated 

from simple linear regression model, to missing data. 

MI: multiple imputations. 

CCSR: centroid method for covariate space size reduction. 

Cst: model's constant, ~ : estimation of the coefficients of the linear model. 

p: p-value testing the coefficients to zero (t-test) 

R²: goodness of fit criterion: percent of variability explained by the model. 

SD: standard deviation. 
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3. Discussion 

When the number of continuous covariates is greater than the sample size, because of 

missing data process, imputations methods or ad hoc selections based on available 

data are commonly applied. Our study showed that in this context the selection 

method based on the centroid criterion is a valid alternative method. Indeed, the 

choice of the nearest covariate to the centroid of a cluster of covariates is a simple 

selection method which avoids resorting to imputations or ad hoc selections. 

Complete Case Analysis cannot be applied and the covariate selection based on the 

sample size is not accurate as this method leads to biased models with high prediction 

errors. Simple imputation methods involve well-known biases [1, 2, 3, 9]. 

Unconditional mean imputations provide underestimated variances and covariances 

and introduce a conservative bias reducing the strength of the relationship between the 

dependant variable Y and the covariates Xj completed this way. Conditional mean 

imputations provide overestimated correlations and over-fitted models. This method 

introduces costly bias increasing the strength of the relationship between the 

completed covariates Xj and the dependant variable Y. On the other hand, the multiple 

imputation procedure provided here the best model according to goodness-of-fit and 

prediction errors. Performing 20 imputations lead to an efficiency of 96.9% in the 

presence of more than 50% of missing data [2]. But MI is known to increase 

colinearity [1, 2, 3, 4, 9, 19]. It introduces a costly bias increasing the strength of the 

relationship between the dependant variable Y and the completed predictive covariates 

Xj. Furthermore, different MI procedures can lead to different inferences [7]. Even if 

multiple imputation method does not much disturb the results of an explicative model 

(i.e. the presence or absence of relationship between the dependant variable and the 

covariates) imputations do modify predictions [6]. The selection method based on the 
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centroid criterion is a good alternative finding an accurate model: even if the results 

displayed the lowest goodness-of-fit, the latter remained high (R²=90.02%) and cross 

validation provided the lowest prediction errors mean: 0.0023 CI95% [-0.58;0.58]).  

Missing data do not disturb our selection method as far as they are missing at random. 

The correlation was estimated between two covariates and for these covariates the 

number of data has to be sufficient to ensure the convergence of the correlation 

estimation.  

We have proven the almost sure convergence of the centroid criterion [appendix 2]. 

But the speed of convergence depend on the sample size n and as well as the number 

p of covariates. If p is greater than n, even if the convergence of the two-by-two 

correlation coefficient is reached, the correlation matrix will be formally degraded. In 

a practical way, if n is sufficient, the convergence default will be weak. 

 

For detecting homogeneous clusters of covariates we have chosen hierarchical cluster 

analysis. But other clustering procedures can be used, such as K-means clustering. In 

our study, in spite of small changes in the clusters of covariates, using K-means 

clustering did not change the final prediction model: the LGB covariate was also the 

only covariate in the final model. In the K-means method the number of cluster has to 

be fixed a priori. On the contrary, the number of clusters can be chosen a posteriori in 

the hierarchical clustering according to the results of the similarity, or according to 

one of the numerous existing criteria [20]. 
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Conclusion 

 

Finally, one of the goals of this work was the use of the selected covariate in a usual 

model (e.g. linear regression). The results of such a model depend of course on the 

selection procedure. Thus, it is essential to use the less biased procedure such as this 

procedure based on the centroid criteria. Furthermore, when a cluster of covariates is 

summarized by a single covariate, amounts of information are discarded. Among all 

the covariates belonging to a cluster, the nearest covariate from the cluster centroid 

has to be selected to reduce amounts of discarded information. The maximum of the 

Pearson correlation sum is a useful criterion, and its practical use is very simple and 

fast. Thus, our method based on the centroid criterion is a simple and useful method 

to select covariates composing a set of predictors in the presence of missing data, in 

order to provide predictive model. 
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Appendix 1: Determination of the centroid criteria 

The previous statistical context depends on the following probabilistic model: 

  pjXX j ,...1,   

We note jk  the correlation coefficient of Pearson between 2 variables, jX  and kX , 

 kj,2  the squared distance between the 2 variables jX  and kX , which is an 

Euclidean distance (and moreover a circum-Euclidean distance) [15] : 

   
jkkj   12,2 , is a classical definition since the correlation matrix is positive 

semi-definite. 

 j,2   the squared distance between the variable jX  and the centroid . 

For every Euclidean figure, the squared distance to the centroid is given by the 

Torgerson formula [14; 21]: 

 
   

2

22
2 .,.

2

1,.
,

pp

j
j


   

Where    
k

kjj ,,. 22   which depends only on j, and    
j k

kj,.,. 22   

which is constant. 

Now, 

   

  
 

.

2

.

2

21
2

,.

12

12,.

j

j

k

jk

pp

p

p

j

p

j















 

 

Where 
k

jkj  .  

 

[1.1]
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From [1.1] we can write that: 

 
 
2

2

.

2 .,.

2

121
2,

ppp

p
j j


 


   [1.2] 

Now finding the nearest variable to the centroid is minimising  j,2  . 

Therefore, from [1.2]: 

  
k

jk
jj

maxjmin  ,2      ■ 

 

Appendix 2: Almost-sure convergence 

We consider the following statistical model: 

Let iX , i=1…n, be a series of n i.i.d. random vectors, with a common continuous 

distribution, and admitting moments of second order (i.e.  2

iXE ). 

Notations: 









 pjXX iji ,...1,  

  jijXE   

  02  jijXvar   

  jkikij XXcovar ,  

 
22

,

kj

jk

jkikij XXcorr






  

   
jkkj   12,2

 the squared distances from the theoretical model, which 

are circum-Euclidean distances 
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 
   

2

22
2 .,.

2

1,.
,

pp

j
j


   defining the centroid . 

We can suppose the uniqueness of the nearest variable to the centroid: 

   0

22

0 ,,min/ jjjunique
j

   

We now define the notations of the empirical model: 

Empirical means Mn,j 

Empirical variances 2

, jnS  

Empirical covariances jknS ,  

Empirical correlation coefficients: jknR ,  

Empirical squared distances:    
jkn RkjD  12,2  

 

From the strong law of large numbers, we can note that:  

j

sa

jnM  ..

,  

2..2

, j

sa

jnS   

jk

sa

jknS  ..

,  

jk

sa

jknR  ..

, , 

Since a continuous transformation preserves convergence, we can write that:  

   kjkjD sa

n ,, 2..2   

And 

   jjgD sa

n ,, 2..2   
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For a minimum and unique  0

2 , j , we have 

   kjkjDjj sa

n ,,, 2..2

0   and    0

2..

0

2 ,, jjgD sa

n   

Let j

nA  be the event     0

22 ,, jgDjgD nn  , 0jj  , 

Proposition 1: 

1..

0



















sa

A

jj

j
n

11  

i.e. from a certain rank, the procedure built by the empirical statistics yields the right 

variable 0j  with probability 1 (almost sure convergence). 

Demonstration 

Let us start with a lemma: 

Lemma 1. 

Let X and Y be 2 random variables. 

If aX sa

n  ..  and bY sa

n  .. , with a<b, 

Then   1..

sa

XY nn
11  

Demonstration 

If aX sa

n  ..  and bY sa

n  .. , with a<b, 

Then 0..  abXY sa

nn               [2.1] 

Now, 

        

    aXbY

abXY

nn

nnXY nn









;/

/1/ 11
 

And from [2.1]  

     

     11/

1/





 



nn XY

nn

P

abXYP

11
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  1.. 

sa

XY nn
11                     ■ 

Then, from lemma 1: 

  1, ..

0  sa

A j
n

jj 11  

  1..

0




sa

jj
A j

n

11  

1..

0



















sa

A

jj

j
n

11                    [2.2]   ■ 

Moreover the almost sure convergence implies the convergence in probability. 

Then, 

1
.

0

 

















prob

A

jj

j
n

11  

It is easy to see that this condition is equivalent to: 

1lim
0













jj

j

n
n

AP  

The probability, that  0

2 , jgDn  gives the minimum, tends to 1 when n is increasing, 

i.e. the probability to make the right choice tends to 1. 
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List of abbreviations 

CCSR: centroid method for covariate space size reduction; 

CD: covariate deletion based on the sample size; 

CI95%: 95% confidence interval; 

Cst: model's constant; 

DA: Data Augmentation algorithm; 

EM: Expectation-Maximization algorithm; 

MI: multiple imputations; 

p: p-value; 

R²: goodness of fit criterion: percent of variability explained by the model; 

SD: standard deviation; 

SI C-mean: simple conditional mean imputations (conditioned by Age), estimated 

from simple linear regression model, to missing data; 

SI UC-mean: simple unconditional mean imputations to missing data; 

 

Biometric covariates: 

ABO: angle formed by the straight line nasion-opisthion and the Francfort section; 

AFW: Weisbach angle; 

APA: alveolar profile angle; 

APN: nasal angle; 

ASP: nasio-sphenion-basion angle; 

ATO: foramen magnum angle; 

BEK: biorbital breadth; 

HMTG: mastoid height; 
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HNZ: nasal height; 

JUB: bijugal breadth; 

LBH: basion-hormion length; 

LGB: glabella-basion length; 

LMA: maxillo-alveolar length; 

LNK: nasion-klition length; 

NKB: nasion-klition-basion angle; 

ba: basion; 

gl: glabella; 

ns: nasospinal; 

pr: prosthion; 
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Figure legends 

Figure 1: hierarchical cluster analysis using the correlation coefficient of Pearson as 

similarity measure. We obtained 2 homogeneous clusters of covariates and 6 

remaining covariates. 

 

Figure 2: scanner of a male fetus of 37 weeks of amenorrhea: sagittal section. 

LGB: glabella basion length 

APA: alveolar profile angle 

gl: glabella: most anterior midline point of the frontal bone, usually above the 

frontonasal suture. 

ns: nasospinal: intersection between the midline and the tangent to the margin of the 

inferior nasal aperture, at the lowest points. 

pr: prosthion: midline point of the most anterior point of the maxillae alveolar 

process. 

ba: basion: midline point of the anterior margin of the foramen magnum. 

 

 

Figure 3: scatter plot of the age (in weeks of amenorrhea) and the LGB (in 

millimeter). The regression model is shown with its 95% confidence interval. 

 

Figure 4: empirical distribution of 
k

jk
j

g rmaxC , 1000 simulations of 36 

correlated and normal distributed covariates. 

 


