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MIDDLE MULTIPLICATIVE CONVOLUTION AND
HYPERGEOMETRIC EQUATIONS

BY NICOLAS MARTIN

ABSTRACT. — Using a relation due to Katz linking up additive and multiplicative
convolutions, we make explicit the behaviour of some Hodge invariants by middle
multiplicative convolution, following [DS13] and [Marl8al in the additive case. More-
over, the main theorem gives a new proof of a result of Fedorov computing the Hodge
invariants of hypergeometric equations.

The starting point of this article is a work of Dettweiler and Sabbah [DS13]
consisting in making explicit the behaviour of Hodge invariants by middle ad-
ditive convolution by a Kummer module, motivated by the Katz algorithm
[Kat96]. In [MarI8al, we developed this work without doing the assumption
of scalar monodromy at infinity assumed in the Katz algorithm and in [DS13],
and more precisely we made precise the behaviour of nearby cycle local Hodge
numerical data.

There exists a tricky link between middle additive convolution with a Kum-
mer module and middle multiplicative convolution with a particular hypergeo-
metric module, due to Katz [Kat96] and detailed in Proposition It allows us
in §2|to transpose the general results of [Marl8al to the multiplicative context,
after having recalled in §1| the necessary definitions for understanding it.
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An application of these results is another way to prove a theorem due to
Fedorov computing the Hodge invariants of hypergeometric equations [Fed17,
Th. 3], very different but more direct, insofar as it uses the explicit behaviour
of the Hodge invariants at infinity and 0.

1. Numerical Hodge data

Let us begin by recalling the definition of local Hodge invariants introduced
in [DS13}, §2.2]. Let A be a disc centered in 0 with coordinate ¢ and (V, F*V, V)
be a complex polarizable variation of Hodge structure on A*. We denote by
M the corresponding Za-module minimal extension at 0.

Nearby cycles. For a € (—1,0] and A = e~2™  the nearby cycle space at the
origin 1 (M) is equipped with the nilpotent endomorphism N = —2in(t9; — a)
and the Hodge filtration is such that NEPyy (M) C FP~145(M). The mono-
dromy filtration induced by N enables us to define the spaces Py (M) of
primitive vectors, equipped with a polarizable Hodge structure. The nearby
cycle local Hodge numerical data are defined by

V8 (M) == hP (Peypa(M)) = dim gri-Peyr (M),

with the relation 1f (M) := kP (M) = Y S VPEF(M). We set
1>0k=0

+£
Vg\),prim(M) = Z Vg\),@(M) and Vﬁ,coprim(M) = Z Vﬁx),f (M)
£>0 £>0

Vanishing cycles. For A # 1, the vanishing cycle space at the origin is given
by ¢ (M) = 15 (M) and comes with N and F? as before. For A = 1, the Hodge
filtration on ¢ (M) is such that FPPy¢py(M) = N(FPPyy1¢1(M)). Similarly
to nearby cycles, the vanishing cycle local Hodge numerical data is defined by
1S (M) := hP (Pypa(M)) = dim grfzPega (M).

Now let us leave the local point of view, and let * = {z1,...,z,} denote
a set of points of G, 79 = 0, Z = Yg,, = C[t,t"1(d;) and j the inclusion
Gu\z < P Let (V,F*V,V) be a complex polarizable variation of Hodge
structure on G,,\  and M be the Z-module minimal extension on points of .
We set .#™" the Zp1-module minimal extension of M at 0 and infinity.

Degrees 67. The Deligne extension VO of (V, V) on P! is contained in M, and
endowed with the filtration j,FPV NV We set
L FPV A VO

— py/0 _
(SP(M) = degngV = deg W .
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2. Middle multiplicative convolution with Hy -,

Let us fix v € (0,1] and set A = exp(—2imy). The Kummer module % is
defined by 4\ = 2/2 - (t0; — v) and the middle additive convolution functor
with £ is denoted by MC,. The next proposition links up additive and mul-
tiplicative convolution and is due to Katz [Kat96, Lemma 2.13.1], and adapted
here to the point of view of Z-modules:

PROPOSITION 2.1. — Let us denote by j : G,, — Al the inclusion and by
Hy  the hypergeometric module 2/ - (t0, —t(t0, —)). We have the following
formula for every holonomic Z-module M :

M*midx H(),'y = ]+(MC)\(JT+(M ®$X)))

ASSUMPTION 2.2. — In everything that follows, we fix 79 € (0,1) and set
Ao = exp(—2imyp). If we assume that M is an irreducible regular holonomic
Z-module, not isomorphic to %), and not supported on a point, then j; (M ®
%57)) satifies Assumption 1.2.2 of [DS13] and we can apply to it the results of
[DS13] and [MarI8a]. Therefore, we do this assumption in what follows.

The following proposition gives the behaviour of vanishing cycle local Hodge
numerical data by middle convolution with Hg .,:

PROPOSITION 2.3. — For alli € {1,...,n}, we have:

P .
wh M) ifye (0,7

,uf:h)\’e(M *midx Ho,o) = pii/w( : . ( |
/uxi’)\/)\o,g(M) ify e (’YOa 1]~

Proof. — For i € {1,...,n}, Proposition gives
Hig, 30 (M *miax Hoqo) =t 5 o(MCx, (i1 (M ® 257))).-

According to Assumption we know that j; (M ®fx) satisfies Assumption
1.2.2 of [DS13], then we can apply [DSI3l Th. 3.1.2(2)] and get

p B Iy, a/no (M ® Z55) if v € (0,70]
oy xo(M #miax Hoqg) =9 04 .
Mali,)\//\o,f(M ® gx) if v e (70) 1]

As Z5- has trivial monodromy around z; # 0, we have ! 2o (M@ L) =
/ﬂ;i’)\/AO’Z(M) and it is possible to conclude the proof. O
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Concerning nearby cycle local Hodge numerical data at infinity, Proposition
22.1) combined with Theorem 1 of [MarI8a] and [DS13| 2.2.13] directly gives the
following proposition:

PROPOSITION 2.4. — We have the following data:
Viae(M) ify € (0,1 )
Vi (M) if vy € (1—1,1)

e (M) iA=1

L (M) A=, £> 1.

00,X0,0~1

Vgo,)\7Z(M *midx Hoy0) =

REMARK 2.5. — We also have an explicit but more complicated formula for
vP (M *miax Ho.,), given and proved in [MarI8bl Prop 6.4.3].

00,X0,0

The nearby cycle local Hodge numerical data at 0 are given by the following
proposition:

PROPOSITION 2.6. — We have the following data:
Vi e(M) if 7 € (0,70)
Ve (M) if 7 € (70,1)
Vo xe(M #miax Hoo) = Y no,e+1(M) if A= Ao
v (M) fA=1,0>1
hPHY(PY, DR.Z™")  if A =1, £=0.

Proof. — Similarly to Proposition Proposition combined with [DS13]
Th. 3.1.2(2)] and [DS13, 2.2.14] directly gives the result, except if A = 1 and
¢ = 0. This last case is treated in [Marl8bl Prop 6.4.5]. O

REMARK 2.7. — Summing the nearby cycle local Hodge numerical data, we
deduce an explicit formula for Hodge numbers:

hP(M *mid x Hoy’)’o) = hp(M) + V(Z)),I,lprim(M) - V(I)),;\i,prim(M)

+ P H (P DRA™™) + > (B3 M) — v\ (M)).
Y€ [v0,1)
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To finish this study of the behaviour of Hodge invariants by middle multipli-
cative convolution with Hy -, let us make explicit the degrees ¢” defined in

PROPOSITION 2.8. — The degrees 6P are given by:

0P (M miax Hong) = 0P (M) + D> (V55 (M) = V53N (M) + V55t i (M)

0,prim
Y€[v0,1)
T
-1
- Z fy, 1 (M) + Z fig, (M)
i=1 ~v€(0,1—70)

Proof. — According to Proposition and Theorem 3 of [Mar18a], we have

0P (M miax Hoqg) = 0P(M® L)+ > vl (M ® .25
Y€E[v0,1)

D EMezo)+ > (M%)
1=0 ~v€(0,1-70)

Let us make precise each of these terms. Applying [DS13| Prop. 2.3.2], we get

F(M® L) =0 (M)—hP(M)+ Y B (M)+ > 2 (M)
Y€[v0,1) YE[1—70,1)

Applying [DS13] 2.2.13], we have

(2.9) Z V&,A(M®gx): Z Vi,AE(M): Z ’/zo,)\(M)

v€[v0,1) Y€ [v0,1) v€[0,1-70)
(2.10) Yoo omMeg) = > M)
7€(0,1-70) v€(v0,1)
(2.11) ph (M ® Z55) = Vi1 (M © 255) = vV i (M © 255)
= V(Z)),;\i (M) - V(I)I;\i,prim(M)’

and we get the expected formula. O
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3. Fedorov’s formula

For any a, 3 € [0,1)", the hypergeometric differential operator Hyp(e, 3)
is defined by

i=1 j=1
and the corresponding hypergeometric module by Hq g := 2/% - Hyp(c, 8).
These Z-modules are irreducibles if and only if o; # §; for all ¢,j € {1,...,n}
[Kat90, Cor. 3.2.1]. We assume in what follows that this condition is satisfied.

The leading term of the operator is t"(1 — t)9;", then we have a connection
on the trivial holomorphic bundle of rank n on P!\ {0,1,00}. The three singu-
larities are regular, and Theorem 3.5.4 of [Kat90] shows that the corresponding
local system on P!\ {0,1, 00} is physically rigid. In other words, and Riemann
already remarked it in 1857, the hypergeometric equation can be reconstructed,
up to isomorphism, with the knowledge of its monodromies at 0, 1 and co. By
[Sim90, Cor. 8.1], the restriction of Hy g to Gy, \ {1} underlies a complex
polarizable variation of Hodge structure, unique up to a shift of the Hodge
filtration [Del87, Prop. 1.13(i)]. Let us make precise the three monodromies
and what that implies on the calculation of local Hodge invariants.

At 0o : For m € {1,...,n}, we set mult(8,,) = #{j € {1,....,n} | B; = B},
n(B) = mult(B,,) — 1 and A, = exp(2inS,,). The monodromy matrix at
infinity if composed for each eigenvalue \,, with a unique Jordan bloc of size
mult(5,,). We deduce that dimPyt)eo z,, (Ha,g) = 0 except for £ = £,,(3) for
which this quantity is equal to 1. The computation of v}y = ,(Ha,g) is reduced
to finding the value of p € Z for which this quantity for ¢ =/l (B) is non zero
(and equal to 1).

At 0 : For m € {1,...,n}, we set mult(o,) = #{j € {1,....,n} | aj = an},
L () = mult(a,,) — 1 and py, = exp(—2imay,). The monodromy matrix at 0
if composed for each eigenvalue p,, with a unique Jordan bloc of size mult(avy,).
We deduce that dim Py ,,, (Ha,g) = 0 except for £ = £,,(a) for which this
quantity is equal to 1. The computation of Vg,um,é(Haﬁ) is reduced to finding
the value of p € Z for which this quantity for £ = £,,,(c) is non zero (and equal
to 1).

At 1 : The monodromy at 1 is a pseudoreflection, sum of the identity and a
matrix of rank 1. We know by a Pochhammer’s result that there are n — 1
independant eigenvectors associated to the eigenvalue 1 (see [BH89), Prop. 2.8]
and [Beu08| Th. 1.1]). If we set v, € (0,1] such that y5 = > ;_, (B — a;) mod
Z, we deduce that Ay = exp(—2imys) is also an eigenvalue of the monodromy,
called the special eigenvalue.
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o If \; # 1, then the monodromy is diagonalizable. We have p1 x,(Ha,8) =
Vi, Hap) =1, 111(Hapg) =n—1and pu11(Ha,pg) = 0. The only thing left
to be determined is the value of p € Z for which 11 \ (Ha,g) is non zero (and
equal to 1). &

e If \; = 1, then the monodromy is a transvection. We have v1 1(Ha,g) =n
and p11(Hea,g) = 1. More precisely, p11,¢(Hag) = 0 except for £ = 0 for
which this quantity is equal to 1. The only thing left to be determined is the
value of p € Z for which pf | ;(Hga ) is non zero (and equal to 1).

DEFINITION 3.1. — Let us set o, 8,7 € [0,1). We say that the pair («, ) is
separated by v if exp(2imy) is in the open interval (exp(2ima),exp(2inf3)) of
the oriented circle, a property that we denote by o — v — B. It means that
either 0 <a<vy<f<lor0<y<fB<a<lor0<f<a<y<l.

REMARK 3.2. — It is the same notation as in the beginning of Chapter 4 of
[Fed17], with the difference that a, 8 and v are not necessarily distinct (but in
this last case, the property @ — v — f is not satisfied).

DEFINITION 3.3. — For o, 8 € [0,1)" and v € [0,1), we set

ple, B.7) = #H{k | = =7 = B} = # {k | ax =7 = B}
Note that this quantity does not depend on the numbering of the n-tuple of
pairs ((Oé]_, 61)7 ceey (a’ru ﬁn))

We denote by {-} the fractional part.

THEOREM 3.4. — Given a decomposition Hog = Hoy g, * -+ % Hy, g, into
convolutions of hypergeometric modules of rank 1, then Heq g is equipped of a
natural polarizable variation of Hodge structure satisfying:

1 ifp=pla,B,,) and £ = £, ()
(a) Vg,ur,,L,e(Ha,B) = { 0

otherwise

1 if p=p(e, B, B) and € = £, (8)

b P Ha =
(b) Voo,kml( 8) { 0 otherwise

1 ifp=+# {Z e{l,..,n} ‘{22:1(5k - Oék)} < ’Ys}
(©) pix, (Hap) = and £ =0

0 otherwise.
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REMARK 3.5. — 1) The order in which the convolutions are done does not
matter when we consider the Hodge filtration, because Hq g is defined as
my(Ho, X -WH,, g, ), where w : (G,)" — Gy, is the product map. Renum-
bering the n-tuple ((a1,81), .., (@, Br)) has no influence on Hodge invariants.
2) Given a decomposition into convolutions of hypergeometric modules of rank
one, there exists a unique associated Hodge filtration, if we started from the
trivial Hodge filtration for rank one. This means that the filtration is natural
only if we give such a decomposition.

3) By uniqueness of the Hodge filtration up to a shift, we deduce that changing
the decomposition will induce a shift in the filtration.

Proof. — By induction on n € N*| length of & and 3. The theorem is satisfied
forn =1. Letussetn > 1, (o, B) = ((ao, ---; an ), (Bo, -, Bn)) two (n+1)-tuples
such that o, # 3; for all ¢, j € {0,...,n}, and m € {0, ...,n}.

Formula (b). Let us suppose that (b) is satisfied for all tuples of length n.
(Case 1) Let us suppose that 3, # By. According to [DS13] 2.2.13], we have
Vgo,km,f(HavB) = Vgo,)\mexp(fﬁﬂ'ao),Z(H{Q*QO}v{ﬁ*QO})'

We know that
Hia-ao} {800} = Higg—ag} (Ba-ae} * 108000}
where ayq is the tuple a where we have removed «p, and similarly for ,/8\0.

Applying Proposition [2.4] we get

p—1 _
Yoo Amexp(~2imao) £ (H{a)—ao},{ao—ao})

if {Bm — Oé()} > {/8() — Oéo}

P —
Yoo, Amexp(—2imaq),¢ (H{&B—ao}w{ﬁo—ao})
if {Bm — Oé()} < {Bo — Ot()}.

Vf))o,)\mexp(fﬂmxg),é(H{O‘_ao}a{ﬁ_at)}) =

Applying [DS13] 2.2.13] once again, we have

P . .

P (Hap) =4 ot Hep) a0 = Bm=Fo

Voo rm e\ le,B) = p—1 .
A &80 otherwise.

By the induction hypothesis, the left quantity is non zero if and only if p =
p(avﬂ7ﬂm) and ¢ = Em(/B) = gm(/BO)

(Case 2) Let us suppose that 8,, = Bp and ¢y(8) > 1. Applying the same
reasoning as before and using Proposition (case A = Ao, £ > 1), we get

P _ ,p—1 e
Voo,)\o,f(Havﬁ) - VOOy)\O’Zfl (Ha_?J»B()) ’
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non zero if and only if £ = £y(8) = £y (BB)—H. In this case, we have p(a, B, By) =
p(@0, Bo, Bo) + 1 because we do not have ag — By — Bo.

(Case 3) Let us suppose that 3, = By et £y(8) = 0, so we have 1 # So.
Applying the same reasoning as in Case 1, we get

o (Hep) = Vierow \Has g ) H{Bo—on} <{B1—au}
e oo (Hag)  if{Bo—ai} > {81 —an}

» = .
) Voo Ha\lﬁ1 ifag — Pog— 51
— _1 )

VP otherwise.

Ooa)‘(hé Ha\l7é:

By the induction hypothesis, and as the order in which the convolutions are
done does not matter, the left quantity is non zero if and only if p = p(«, 3, fo)

and £ = (o(8) = Lo(B1) = 0.
To conclude, Formula (b) is satisfied for the couple (a, 3).

Formula (a). Let us suppose that (a) is satisfied for all tuples of length n.
(Case 1) Let us suppose that a,, # ag. According to Proposition and
[DS13l 2.2.13], and applying the same reasoning as in Case 1 of the proof of
Formula (b), we have

p - .
p H. _ Vovunla[ HOTo,ﬁQ if Qg — O, —7 ,60
V07um,€( aﬁ) = p—1 i . .
V0,1m ¢ \ P a5.30 otherwise.

By the induction hypothesis, the left quantity is non zero if and only if p =
ple, B, ) and £ = by, () = £ (x0).

(Case 2) Let us suppose that o, = oo and {y(a) > 1. Applying the same
reasoning as before and using Proposition (case A=1,£ > 1), we get

~1
Vguol(Haﬁ) = Vg7uo7e—1 (HCTO-,E\O> ’
non zero if and only if £ = fy(a) = fy(ag) + 1. In this case, we have

p(a, B, ap) = p(&B,BB,aO) + 1 because we do not have ag — ag — Bo.

(Case 3) Let us suppose that a,, = ag et lo(a) = 0, so we have a; # ap.
Applying the same reasoning as in Case 1, we get

» - .
V0,10, Ha;,@l ifag = ag = b
p—1

vy _
Vo,uo,z(Hoz,B) =
Vo.uo.t \Has 3

otherwise.
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By the induction hypothesis, and as the order in which the convolutions are
done does not matter, the left quantity is non zero if and only if p = p(e, 3, ap)
and ¢ = Eo(a) = é()((/l\l) =0.

To conclude, Formula (a) is satisfied for the couple («, 3).

Formula (c). Let us suppose that Formula (c) is satisfied for all tuples of
length n. We set A, the special eigenvalue of Hq g, A} the special eigenvalue of
Hg. 5. andyo = {Bo—aw}. Realsy, and +, in (0, 1] verlfymg As = exp(—2imys)
and X = exp(—2imy.) are linked by the relation v5 = v, + 7o mod Z.

According to Proposition and [DS13] 2.2.14], and applying the same rea-
soning as in the proof of Case 1 of Formula (b), we have

Mf P (H&B,B\o) if 75 € (0,70]

P
Ml,As,e(Haﬁ) = .
Nl )\/ (HA ’\) if v € (70,1].

By induction hypothesis, we have

//L/\; (Ho?o 50) = { 1ifp= #{i 2 1’ {Zi‘,:l(ﬂk _ak)} < 7;} and £ =0

0 otherwise,

and we can remark that

#iz 1] {o-af <]

: W N if'%e(oﬁo]
{Z(ﬂk k>}<v} #{Dl‘{é(ﬁk_ak)}w}ﬂ

if 75 € (70, 1].

To conclude, Formula (c) is satisfied for the couple (e, 3). O

Link between Theorem and Fedorov’s formulas. Formulas (a) and
(b) of the previous theorem corresponds to Formulas (a) et (b) of Theorem
3 in [Fed17]. However, this is not fully obvious in the sense that Fedorov
considers in his article the space of solutions of the connection associated with
the hypergeometric equation, while we consider the space of horizontal sections
of the connection. Let us begin by transposing Fedorov’s formulas in terms of
horizontal sections with the following lemma. Note that we do not necessarily
assume that the tuples are ordered.
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LEMMA 3.6. — Parts (a) and (b) of [Fed17, Th. 3] are equivalent to the follo-
wing statement:

The hypergeometric module Hq, g is equipped with a variation of polarized Hodge
structure verifying, up to a shift, the following identities:

1 lfp:#{] | Bj <Olm}—#{i | ai<a7rL}
(a) Vg,um,f(H‘lﬁ) = and £ =, ()

0 otherwise.

1 ifp:#{j|6j§ﬁm}_#{i|ai<ﬁm}
(b) Vgo’)\m’e(Ha7ﬁ) = and £ = {,,(B)

0 otherwise.

Proof. — The space of solutions and the space of horizontal sections are dual
(see for example [Pha79l Cor. 7.1.1]). If we denote by * the dual, we have the
relation (P,H)* ~ N*P,(H*) as Hodge structures and then

(grhPeH)" ~ gr P (P H)* =~ gr;‘lePg(H*) ~ gr;p+€Pg(H*).

Consequently, duality translates as the transformation (p,¢) — (—p + ¢, 7).
Applying this rule, we deduce that [Fed17, Th. 3(a)] is equivalent to

1 ifp= —(#{i | i S am} — #4 | B < an}) + lu()
l/g’ﬂm’z(Ha7ﬁ) = and £ = {,,(a)

0  otherwise,

in other words
1 ifp=#{j | B <om}—#{i | o <am}
Vg,ym,f(Ha,B) = and ¢ = Em(a)

0  otherwise.
Similarly, [Fed17, Th. 3(b)] is equivalent to
1 ifp:—(#{i | ai<6m}_#{j ‘ ﬁj <Bm}’)+€m(/3)

Vig .t (Hap) = and ¢ = £,,(8)

0 otherwise,
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in other words

1 lfp:#{]‘ngﬁm}_#{z|al<5m}
P J(Hap) = and £ = £,,(8)

00, Am

0 otherwise,

that concludes the proof. O

It remains to show that the formulas of the previous lemma correspond to the
formulas of Theorem up to a shift. This is a consequence of the following
combinatorial lemma, insofar as #{k | o < Bk} only depends on a and 3.

LEMMA 3.7. — We have the following relations:
(i) ple, Byam) — (#{7 | B; < am} —#{i | i <an})=#{k | ar < B}
(ii) p(ee, B, Bm) — (F#{7 | Bi < Bm} — #{i | i < Bm}) = #{k | ar < Bi}-

Proof. — (i) Let us sum up in the following table the contributions of k €

{1,...,n} to p(e, B, ) and #{j | B; < am} — #{i | a; < a;} according to
the relative positions of ay, i and ;.

contribution of k to
relative positions pla, B, ) #{j | Bj < am}
—#{i | a; < am}
a < Bk 0<apm<ap<pfr<l 1 0
0<ar=a, <Br<l1 1 0
0<ap<a,<pr<l 0 -1
0<ap<fBr<a,<l 1 0
ag > Ok 0<am<pfr<a,<l1 0 0
0<fBk<am<ap,<l1 1 1
0<fr<ar=a,<1 1 1
0<fBr <ap <a,y<l 0 0

This table proves that p(ca, 3, ) and #{j | B; < am} —#{i | a; < oy, } differ
by #{k | as < Bk}, showing Formula (i).

(ii) Let us now sum up in the following table the contributions of the integer k

to p(e, B, Bm) and #{j | B; < Bm} — #{i | i < B} according to the relative
positions of ag, Br and S,,.
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contribution of & to
relative positions p(a, B, Bim) #{j | B; < Bm}
_#{ilai<ﬂm}
ar < B 0< B <ap<pfr<l1 1 0
0<ap<fBm<pr<l 0 —1
0<ap<fr=0mn<1 1 0
0<ap<fBr<pfm<l1 1 0
ak>5k 0§5m<ﬁk<ak<1 0 0
0<Br=0Fm <ap<1 1 1
0<Br<PBm<ap<l1 0 0
0< B <ar<fm<l1 1 1

This table proves that p(a, B, ) and #{j | 5; < B} —#{i | a; < Bm} dlffer
by #{k | aix < B}, showing Formula (ii).
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